next up previous
: Bibliography : Counterexample to global existence : Counterexample to global existence

Introduction and main result

We consider the Cauchy problem for systems of semilinear wave equations with different propagation speeds in three space dimensions of the form

(1.1)     $\displaystyle \square_{c_i}u_i=F_i(u,\partial_t u),
\quad (x,t)\in \mathbb{R}^3\times [0,\infty),\, i=1,2,$
(1.2)     $\displaystyle u_i(x,0)=\varepsilon \varphi_i(x), \hspace{3mm}
\partial_t u_i(x,0)=\varepsilon \psi_i(x),
\quad x\in \mathbb{R}^3,\, i=1,2,$

where $ \square_{c}=\partial_t^2-c^2\Delta$, $ c_1$, $ c_2$, $ \varepsilon$ are positive constants, $ c_1\ne c_2$, and $ u=(u_1,u_2)$ is an $ \mathbb{R}^2$-valued unknown function of $ (x,t)$. We assume that the nonlinear functions $ F_1$ and $ F_2$ are quadratic with respect to $ (u,\partial_t u)$, and study the small data global existence and blowup for (1.1). Here, we say that the small data global existence holds for (1.1) if for any $ \varphi_i$, $ \psi_i\in C_0^{\infty}(\mathbb{R}^3)$ $ (i=1,2)$ there exists a constant $ \varepsilon_0>0$ such that for any $ \varepsilon \in (0,\varepsilon_0]$ the Cauchy problem (1.1)-(1.2) admits a unique global classical solution $ u\in C^{\infty}(\mathbb{R}^3\times [0,\infty),\mathbb{R}^2)$. Moreover, we say that the small data blowup occurs if the small data global existence does not hold. In the present paper, we do not consider the case where the nonlinear terms $ F_i$ depend only on $ u$ (for that case, see Kubo and Ohta [10]), and we put

(1.3) $\displaystyle F_i(u,\partial_t u)=\sum_{j,k=1,2} (A_{i}^{j,k}u_j\partial_t u_k+B_{i}^{j,k}\partial_t u_j\partial_t u_k),$

where $ A_{i}^{j,k}$, $ B_{i}^{j,k}\in \mathbb{R}$, $ i=1$, $ 2$. In what follows, we always assume that

(1.4) $\displaystyle A_{i}^{i,i}=B_{i}^{i,i}=0,\quad i=1,2,$

because it is proved by F. John [4] that the small data blowup occurs for the single equations $ \square u=u\partial_t u$ and $ \square u=(\partial_t u)^2$ in three space dimensions (see Klainerman [8] and Christodoulou [2] for the small data global existence when $ c_1=c_2$).

For the case $ c_1\ne c_2$ and (1.4), the small data global existence for (1.1) has been studied by many authors (see, e.g., [1,3,5,6,7,9,11,12,13]). Yokoyama [13] proved that the small data global existence holds for (1.1) with (1.3) if $ c_1\ne c_2$ and $ A_{i}^{j,k}=B_{i}^{i,i}=0$ for $ i,j,k=1,2$. For the case where both $ F_1$ and $ F_2$ can be written in the divergent form

$\displaystyle F_i=\partial_t \left(\sum_{j,k=1,2}D_{i}^{j,k}u_ju_k\right),
\quad D_{i}^{j,k}\in \mathbb{R},~ i=1,2,$

it is proved in [5] that the small data global existence holds for (1.1) if $ c_1\ne c_2$ and $ D_{i}^{i,i}=0$ for $ i=1,2$. Moreover, Katayama [7] proved that the small data global existence holds for (1.1) with (1.3) if $ c_1\ne c_2$ and $ A_{i}^{j,j}=B_{i}^{j,j}=0$ for $ i,j=1,2$.

However, to our knowledge, no results on the small data blowup have been obtained for (1.1) with (1.3) when $ c_1\ne c_2$ and (1.4). The purpose in the present paper is to show that the condition (1.4) is not sufficient to prove the small data global existence for (1.1) with (1.3) when $ c_1\ne c_2$. More precisely, we consider

(1.5) $\displaystyle \left\{\begin{array}{ll} \square_{c_1}u_1=u_2\partial_t u_1, &\qu...
..._2(x,0)=0,~ \partial_t u_2(x,0)=0, &\quad x\in \mathbb{R}^3. \end{array}\right.$

The main result in the present paper is as follows.

Theorem 1.1   Let $ 0<c_1<c_2$, $ \varepsilon\in (0,1]$, $ \psi_1(\vert x\vert)\in C_0^{\infty}(\mathbb{R}^3)$, and we assume that there exists a constant $ \delta>0$ such that

(1.6) $\displaystyle \psi_1(r)>0$   for$\displaystyle \hspace{2mm} r\in [0,\delta),\quad \psi_1(r)=0$   for$\displaystyle \hspace{2mm} r\in [\delta,\infty).$

Then, the classical solution $ (u_1,u_2)$ of % latex2html id marker 614
$ (\ref{b-sys})$ blows up in a finite time $ T^*(\varepsilon)$. Moreover, there exists a positive constant $ C^*$, which is independent of $ \varepsilon$, such that

$\displaystyle T^*(\varepsilon)\le \exp(C^*\varepsilon^{-2}),\quad \varepsilon\in (0,1].$

In the next section, we will give the proof of Theorem 1.1.


next up previous
: Bibliography : Counterexample to global existence : Counterexample to global existence
Nobuki Takayama Heisei 16-1-21.