Simultaneous effects of homogenization and vanishing viscosity in fully nonlinear elliptic equations^{*}

Kazuo Horie¹⁾ and Hitoshi Ishii²⁾

1 Introduction

We consider the partial differential equation

$$(P)_{\varepsilon} \qquad F(x, x/\varepsilon, u^{\varepsilon}(x), Du^{\varepsilon}(x), \delta D^{2}u^{\varepsilon}(x)) = 0 \quad \text{in } \mathbf{R}^{n},$$

where ε and $\delta \equiv \delta(\varepsilon)$ are two positive parameters, $F \in C(\mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^n \times \mathcal{S}^n)$, \mathcal{S}^n denotes the space of real symmetric $n \times n$ matrices, u^{ε} is the unknown, and Du^{ε} and D^2u^{ε} denote the gradient and Hessian of u^{ε} , respectively. The parameter δ will be given as a function of ε , that is, $\delta = \delta(\varepsilon)$. A typical example of $\delta(\varepsilon)$ is: $\delta(\varepsilon) = \varepsilon^a$, where $0 \le a < \infty$. We always assume

(A1) F is uniformly elliptic, that is, there are constants $0 < \theta \le \Theta$ for which if $X, Y \in \mathcal{S}^n$ and $Y \ge 0$, then

$$F(x, y, u, p, X) - \Theta \operatorname{tr} Y < F(x, y, u, p, X + Y) < F(x, y, u, p, X) - \theta \operatorname{tr} Y;$$

(A2) the function: $y \mapsto F(x, y, u, p, X)$ is periodic with period \mathbb{Z}^n , that is,

$$F(x, y + z, u, p, X) = F(x, y, u, p, X)$$
 for all $z \in \mathbf{Z}^n$;

and

(A3) there is a constant $\lambda > 0$ such that the function: $u \mapsto F(x, y, u, p, X) - \lambda u$ is non-decreasing in **R** for any $(x, y, p, X) \in \mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}^n \times \mathcal{S}^n$.

^{*} Major part of this paper was prepared by the first author and delivered in a meeting held at Tokyo Metropolitan University on August, 30, 1999.

¹⁾ Died on October 2, 1999, when he was a graduate student of Tokyo Metropolitan University.

²⁾ Supported in part by Grant-in-Aid for Scientific Research, No. 12440044, JSPS.

We investigate the asymptotic behavior of the solution u^{ε} of $(P)_{\varepsilon}$ as $\varepsilon \to 0$. The parameters ε and δ represent a state in the processes of homogenization and vanishing viscosity in $(P)_{\varepsilon}$, respectively, and our motivation to studying $(P)_{\varepsilon}$ is to understand the simultaneous effects of the periodic homogenization and vanishing viscosity in $(P)_{\varepsilon}$.

Let us describe briefly our results on the effects of the homogenization and vanishing viscosity. For this, we formulate the following three cell problems. Henceforth $C(\mathbf{R}^n/\mathbf{Z}^n)$ denotes the space of periodic functions u on \mathbf{R}^n with period \mathbf{Z}^n . Fix $(\hat{x}, \hat{u}, \hat{p}, \hat{X}) \in \mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^n \times \mathcal{S}^n$. The first cell problem is to find a pair of $\mu \in \mathbf{R}$ and $v \in C(\mathbf{R}^n/\mathbf{Z}^n)$ such that v is a (viscosity) solution of

(CP)₂
$$F(\hat{x}, y, \hat{u}, \hat{p}, \hat{X} + D^2 v(y)) = \mu \quad \text{in } \mathbf{R}^n.$$

The second cell problem is to find a pair $(\mu, v) \in \mathbf{R} \times C(\mathbf{R}^n/\mathbf{Z}^n)$ such that v is a (viscosity) solution of

(CP)₁₂
$$F(\hat{x}, y, \hat{u}, \hat{p} + Dv(y), D^2v(y)) = \mu$$
 in \mathbb{R}^n .

The third cell problem is to find a pair $(\mu, v) \in \mathbf{R} \times C(\mathbf{R}^n/\mathbf{Z}^n)$ such that v is a (viscosity) solution of

$$(CP)_1 F(\hat{x}, y, \hat{u}, \hat{p} + Dv(y), 0) = \mu in \mathbf{R}^n.$$

In this paper we deal with fully nonlinear PDE which may be degenerate elliptic and which may not have classical solutions, and we adapt the notion of viscosity solution (see [CIL2]). Henceforth we suppress the word "viscosity" and, for instance, we call a viscosity solution simply a solution.

Under appropriate hypotheses each of these problems $(CP)_2$, $(CP)_{12}$, and $(CP)_1$ has a solution (μ, v) and moreover, the value of μ is determined uniquely while the function v is not determined uniquely. The correspondence of $(\hat{x}, \hat{u}, \hat{p}, \hat{X})$ to this value μ is called the homogenized or effective function and denoted by $\bar{F}_2(\hat{x}, \hat{u}, \hat{p}, \hat{X})$, $\bar{F}_{12}(\hat{x}, \hat{u}, \hat{p})$, and $\bar{F}_1(\hat{x}, \hat{u}, \hat{p})$, respectively, in problems $(CP)_2$, $(CP)_{12}$, and $(CP)_1$.

Four cases arise in our study of the asymptotics for $(P)_{\varepsilon}$. Case 1: $\lim_{\varepsilon \to 0} \delta(\varepsilon) \in (0,\infty)$. Case 2: $\lim_{\varepsilon \to 0} \delta(\varepsilon) = 0$ and $\lim_{\varepsilon \to 0} \delta(\varepsilon)/\varepsilon = \infty$. Case 3: $\lim_{\varepsilon \to 0} \delta(\varepsilon)/\varepsilon \in (0,\infty)$. Case 4: $\lim_{\varepsilon \to 0} \delta(\varepsilon)/\varepsilon = 0$. We may assume by a simple normalization that $\lim_{\varepsilon \to 0} \delta(\varepsilon) = 1$ in Case 1 and $\lim_{\varepsilon \to 0} \delta(\varepsilon)/\varepsilon = 1$ in Case 3.

Our main results state that under appropriate hypotheses, the solutions u^{ε} of $(P)_{\varepsilon}$ converge uniformly on \mathbb{R}^n , to the solution $u \in \mathrm{BUC}(\mathbb{R}^n)$ of

$$ar{F}_2(x, u(x), Du(x), D^2u(x)) = 0$$
 in \mathbf{R}^n ,
 $ar{F}_2(x, u(x), Du(x), 0) = 0$ in \mathbf{R}^n ,