 
 
 
 
 
   
 : この文書について...
 : On a class of
 : Introduction
 
- 1
-  
 F. V. Andreev and A. V. Kitaev, 
 Transformations  of the ranks of the ranks and algebraic
 solutions of the sixth Painlevé equation, 
 preprint, nlin.SI/0107074. and algebraic
 solutions of the sixth Painlevé equation, 
 preprint, nlin.SI/0107074.
- 2
- 
 B. Dubrovin and M. Mazzocco, 
 Monodromy of certain Painleve VI transcendents and reflection groups, 
 Invent. Math. 141 (2000) 55-147.
- 3
- 
 N. J. Hitchin, 
 Poncelet polygons and the Painlevé equations, 
 Geometry and analysis (Bombay, 1992) 151-185, 
 Tata Inst. Fund. Res., Bombay, 1995. 
- 4
- 
 K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, 
 From Gauss to Painlevé - A Modern Theory of Special Functions, 
 Aspects of Mathematics E16, Vieweg, 1991.
- 5
- 
 K. Kajiwara and T. Masuda, 
 On the Umemura polynomials for the Painlevé III equation, 
 Phys. Lett. A 260 (1999) 462-467. 
- 6
- 
 K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, 
 Determinant formulas for the Toda and discrete Toda equations, 
 Funkcial. Ekvac. 44 (2001) 291-307. 
- 7
- 
 K. Kajiwara and Y. Ohta, 
 Determinant structure of the rational solutions for the Painlevé II equation,
 J. Math. Phys. 37 (1996) 4693-4704. 
- 8
- 
 K. Kajiwara and Y. Ohta, 
 Determinant structure of the rational solutions for the Painlevé IV equation,
 J. Phys. A: Math. Gen. 31 (1998) 2431-2446. 
- 9
- 
 A. N. Kirillov and M. Taneda, 
 Generalized Umemura polynomials, 
 to appear in Rocky Mountain Journal of Mathematics, math.CO/0010279. 
- 10
- 
 A. N. Kirillov and M. Taneda, 
 Generalized Umemura polynomials and Hirota-Miwa equations, 
 to appear in MSJ Memoirs, math.CO/0106025. 
- 11
- 
 K. Koike, 
 On the decomposition of tensor products of the representations of the classical groups: 
 by means of the universal characters, 
 Adv. Math. 74 (1989) 57-86. 
- 12
- 
 T. Masuda, Y. Ohta and K. Kajiwara, 
 A determinant formula for a class of rational solutions of Painlevé V equation, 
 to appear in Nagoya Math. J. 168 (2002), nlin.SI/0101056. 
- 13
- 
 M. Mazzocco, 
 Picard and Chazy solutions to the Painlevé VI equation, 
 Math. Ann. 321 (2001) 157-195. 
- 14
- 
 M. Mazzocco, 
 Rational solutions of the Painlevé VI equation, 
 J. Phys. A: Math. Gen. 34 (2001) 2281-2294. 
- 15
- 
 M. Noumi, S. Okada, K. Okamoto, and H. Umemura,
 Special polynomials associated with the Painleve equations II, 
 In: Saito, M. H., Shimizu, Y., Ueno, K. (eds.) 
 Proceedings of the Taniguchi Symposium, 1997, 
      Integrable Systems and Algebraic Geometry.
 Singapore: World Scientific, 1998, pp. 349-372. 
- 16
- 
 M. Noumi and Y. Yamada, 
 Symmetries in the fourth Painlevé equation and Okamoto polynomials, 
 Nagoya Math. J. 153 (1999) 53-86. 
- 17
- 
 M. Noumi and Y. Yamada, 
 Umemura polynomials for the Painlevé V equation, 
 Phys. Lett. A247 (1998) 65-69. 
- 18
- 
 M. Noumi and Y. Yamada, 
 Higher order Painlevé equations of type  , 
 Funkcial. Ekvac. 41 (1998) 483-503. , 
 Funkcial. Ekvac. 41 (1998) 483-503.
- 19
- 
 M. Noumi and Y. Yamada, 
 Affine Weyl groups, discrete dynamical systems and Painlevé equations, 
 Commun. Math. Phys. 199 (1998) 281-295. 
- 20
- 
 M. Noumi and Y. Yamada, 
 A new Lax pair for the sixth Painlevé equation associated with 
 
 , 
 to appear in Microlocal Analysis and Complex Fourier Analysis, 
 World Scientific, math-ph/0203029. , 
 to appear in Microlocal Analysis and Complex Fourier Analysis, 
 World Scientific, math-ph/0203029.
- 21
- 
 K. Okamoto, 
 Studies on the Painlevé equations I, 
 sixth Painlevé equation P , 
 Annali di Matematica pura ed applicata CXLVI (1987) 337-381. , 
 Annali di Matematica pura ed applicata CXLVI (1987) 337-381.
- 22
- 
 K. Okamoto, 
 Studies on the Painlevé equations II, 
 fifth Painlevé equation P , 
 Japan J. Math. 13 (1987) 47-76. , 
 Japan J. Math. 13 (1987) 47-76.
- 23
- 
 K. Okamoto, 
 Studies on the Painlevé equations III, 
 second and fourth Painlevé equations, P and P and P , 
 Math. Ann. 275 (1986) 222-254. , 
 Math. Ann. 275 (1986) 222-254.
- 24
- 
 K. Okamoto, 
 Studies on the Painlevé equations IV, 
 third Painlevé equation P ,
 Funkcial. Ekvac. 30 (1987) 305-332. ,
 Funkcial. Ekvac. 30 (1987) 305-332.
- 25
- 
 P. Painlevé, 
 Sur les équations différentielles du second ordre à points critiques fixes, 
 C. R. Acad. Sci. Paris 143 (1906) 1111-1117. 
- 26
- 
 M. Taneda, 
 Polynomials associated with an algebraic solution of the sixth Painlevé equation, 
 to appear in Jap. J. Math. 27 (2002). 
- 27
- 
 H. Umemura, 
 Special polynomials associated with the Painlevé equations I,
 preprint. 
- 28
- 
 A. P. Vorob'ev,
 On rational solutions of the second Painlevé equation. 
 Diff. Uravn. 1 (1965) 58-59.
- 29
- 
 Y. Yamada, 
 Determinant formulas for the  -functions of the Painlevé equations of type -functions of the Painlevé equations of type , 
 Nagoya Math. J. 156 (1999) 123-134. , 
 Nagoya Math. J. 156 (1999) 123-134.
Nobuki Takayama
Heisei 15-5-31.