next up previous
Next: About this document ... Up: Decomposition of Variation of Previous: Introduction

Bibliography

1
Burton, T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orlando, Florida, 1985.

2
Chow, S. N. and Hale, J. K., Strongly limit-compact maps, Funkcial. Ekvac. 17 (1974), 31-38.

3
Daners, D. and Medina, P. K., Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Math. Ser. volume 279, Longman. New York, 1992.

4
Dinculeanu, N., Vector Measures, Pergamon Press. New York, 1967.

5
Fink, A. M., Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer, Berlin-New York, 1974.

6
Furumochi, T., Naito, T. and Nguyen Van Minh, Boundedness and almost periodicity of solutions of partial functional differential equations, J. Differential Equations, (to appear).

7
Hale, J. K., Theory of Functional Differential Equations, Springer-Verlag, New York-Heidelberg-Berlin, 1977.

8
Hale, J. K. and Verduyn Lunel, S. M., Introdcution to Functional Differential Equations, Springer-Verlag, 1993.

9
Hale, J. K. and Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.

10
Hatvani, L. and Krisztin, T., On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations, J. Differential Equations 97 (1992), 1-15.

11
Henr $ \acute{\rm i}$quez, H. R., Periodic solutions of quasi-linear partial functional differential equations with unbounded delay, Funkcial. Ekvac. 37 (1994), 329-343.

12
Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer-Verlag, Berlin-New York, 1981.

13
Hino, Y. and Murakami, S., Periodic solutions of a linear Volterra system, Differential equations (Xanthi, 1987), 319-326, Lecture Notes in Pure and Appl. Math., 118, Dekker, New York, 1987.

14
Hino, Y., Murakami, S. and Naito, T., Functional Differential Equations with Infinite Delay, Lecture Notes in Math. 1473, Springer-Verlag, Berlin-New York, 1991.

15
Hino, Y., Murakami, S., Naito, T. and Nguyen Van Minh, A variation of constants formula for abstract functional differential equations in Banach spaces, J. Differential Equations, (to appear).

16
Hino, Y., Naito, T., Nguyen Van Minh and Shin, J. S., Almost Periodic Solutions of Differential Equations in Banach Spaces, Gordon and Breach, (to appear).

17
Hu, Z. S. and Mingarelli, A. B., On a question in the theory of almost periodic differential equations, Proc. Amer. Math. Soc. 127 (1999), 2665-2670.

18
Langenhop, C., Periodic and almost periodic solutions of Volterra integral differential equations with infinite memory, J. Differential Equations 58 (1985), 391-403.

19
Levitan, B. M. and Zhikov, V. V., Almost Periodic Functions and Differential Equations, Cambridge University Press 1982.

20
Li, Y., Lin, Z. and Li, Z., A Massera type criterion for linear functional differential equations with advanced and delay, J. Math. Anal. Appl., 200 (1996), 715-725.

21
Li, Y., Cong, F., Lin, Z. and Liu, W., Periodic solutions for evolution equations, Nonlinear Anal. T.M.A. 36 (1999), 275-293.

22
Massera, J. L., The existence of periodic solutions of systems of differential equations, Duke Math. J. 17 (1952), 457-475.

23
Murakami, S., Naito, T. and Nguyen Van Minh, Evolution semigroups and sums of commuting operators: a new approach to the admissibility theory of function spaces, J. Differential Equations 164 (2000), 240-285.

24
Murakami, S., Naito, T. and Nguyen Van Minh, Massera theorem for almost periodic solutions of functional differential equations, (submitted for publication).

25
Naito, T. and Nguyen Van Minh, Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Differential Equations 152 (1999), 358-376.

26
Naito, T., Nguyen Van Minh, Miyazaki, R. and Shin, J. S., A decomposition theorem for bounded solutions and the existence of periodic solutions to periodic differential equations, J. Differential Equations 160 (2000), 263-282.

27
Naito, T., Nguyen Van Minh, Miyazaki, R. and Hamaya, Y., Boundedness and almost periodicity in dynamical systems, Journal of Difference Equations and Applications, (to appear).

28
Naito, T., Nguyen Van Minh and Shin, J. S., New spectral criteria for almost periodic solutions of evolution equations, Studia Mathematica, (to appear).

29
Naito, T., Shin, J. S. and Murakami, S., On solution semigroups of general functional differential equations, Nonlinear Anal. T.M.A. 30 (1997), 4565-4576.

30
Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Math. Sci. 44, Spriger-Verlag, Berlin-New York, 1983.

31
Prüss, J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.

32
Ruess, W. M. and Summers, W. H., Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity, Dissertationes Math. (Rozprawy Mat.) 279 (1989).

33
Ruess, W. M. and Vu, Q. P., Asymptotically almost periodic solutions of evolution equations in Banach spaces, J. Differential Equations 122 (1995), 282-301.

34
Vu, Q. P., Almost periodic solutions of Volterra equations, Differential and Integral Equations 7 (1994), 1083-1093.

35
Vu, Q. P. and Schüler, E., The operator equation $ AX-XB = C$, stability and asymptotic behaviour of differential equations, J. Differential Equations 145 (1998), 394-419.

36
Shin, J. S. and Naito, T., Semi-Fredholm operators and periodic solutions for linear functional differential equations, J. Differential Equations 153 (1999), 407-441.

37
Wu, J., Theory and Applications of Partial Functional Differential Equations, Applied Math. Sci. 119, Springer, Berlin- New York, 1996.

38
Yoshizawa, T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Applied Math. Sciences 14, Springer-Verlag, New York, 1975.

  nuna adreso :
   
  Yoshiyuki Hino
  Department of Mathematics and Informatics
  Chiba University
  1-33 Yayoicho, Inageku, Chiba 263-8522
  Japan
  E-mail: hino@math.s.chiba-u.ac.jp
   
  Satoru Murakami
  Department of Applied Mathematics
  Okayama University of Science
  1-1 Ridaicho, Okayama 700-0005
  Japan
  E-mail: murakami@youhei.xmath.ous.ac.jp
   
  Nguyen Van Minh
  Department of mathematics
  Hanoi University of Science
  334 Nguyen Trai, Hanoi
  Vietnam
  E-mail: nvminh@netnam.org.vn


Nobuki Takayama 2003-01-30