ON THE CONFLUENT HYPERGEOMETRIC FUNCTIONS IN 2 VARIABLES

Yongyan LU

Graduate School of Mathematical Sciences
The University of Tokyo

§0. Introduction

Let $\lambda = (\lambda_0, \dots, \lambda_{l-1})$ be a partition of n, sometimes called a 'Young diagram λ ' of weight n. Let $H_{\lambda} = J(\lambda_0) \times \dots \times J(\lambda_{l-1}) \subset GL(n)$ be the associated maximal abelian subgroup with respect to λ , where J(m) is the Jordan group of size m, i.e.,

$$J(m) = \left\{ \sum_{i=0}^{m-1} h_i \Lambda^i \mid h_0 \in \mathbb{C}^{\times}, h_1, \dots, h_{m-1} \in \mathbb{C} \right\},$$

where the $m \times m$ matrix Λ is defined as

$$\Lambda = \begin{pmatrix} 0 & 1 & & 0 \\ & 0 & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}.$$

We define the biholomorphic map

$$\iota: H_{\lambda} \longrightarrow \prod_{i} (\mathbb{C}^{\times} \times \mathbb{C}^{\lambda_{i}-1})$$
$$h \longmapsto (h_{0}^{(0)}, \dots, h_{\lambda_{0}-1}^{(0)}, \dots, h_{0}^{(l-1)}, \dots, h_{\lambda_{l-1}-1}^{(l-1)})$$

where
$$h = (h^{(0)}, \dots, h^{(l-1)}), h^{(i)} = \sum_{0 \le k < \lambda_i} h_k^{(i)} \Lambda^k \in J(\lambda_i).$$

Let $\alpha = (\alpha^{(0)}, \dots, \alpha^{(l-1)}), \alpha^{(i)} := (\alpha_0^{(i)}, \dots, \alpha_{\lambda_i-1}^{(i)})$ $(0 \le i \le l-1)$ be an n-tuple of complex numbers satisfying $\sum_{i=0}^{l-1} \alpha_0^{(i)} = -r$. We define the character $\chi(\cdot; \alpha) : \overset{\sim}{H_{\lambda}} \longrightarrow \mathbb{C}^{\times}$ of the universal covering group $\overset{\sim}{H_{\lambda}} = \tilde{J}(\lambda_0) \times \cdots \times \tilde{J}(\lambda_{l-1})$ of H_{λ} by $\chi(h; \alpha) = \prod_{i=0}^{l-1} \chi(h^{(i)}; \alpha^{(i)})$, where

$$\chi(h^{(i)}; \alpha^{(i)}) = h_0^{\alpha_0^{(i)}} \exp \left[\sum_{j=1}^{\lambda_i - 1} \alpha_j^{(i)} \theta_j \left(\frac{h_1^{(i)}}{h_0^{(i)}}, \dots, \frac{h_{\lambda_i - 1}^{(i)}}{h_0^{(i)}} \right) \right]$$

where θ_j are defined as the coefficients of the generating series

$$\log(1 + x_1T + x_2T^2 + \cdots) = \sum_{j=0}^{\infty} \theta_j(x_1, \dots, x_j)T^j.$$

Recall that the hypergeometric function $\Phi(z; \alpha)$ of type λ (see [K-H-T]) is a function defined by

(0.1)
$$\Phi(z;\alpha) = \int_{\Delta} \chi(\iota^{-1}(tz);\alpha) \cdot \omega \quad \text{for} \quad z \in Z_{r,n}$$

where $Z_{r,n}$ is the set of $r \times n$ complex matrices in general position (see [K-H-T]) with respect to λ , $\omega := \sum_{0 \le i < r} (-1)^i t_i dt_0 \wedge \cdots \wedge dt_{i-1} \wedge dt_{i+1} \wedge \cdots \wedge dt_{r-1}$ and Δ is a twisted cycle in the t-space depending on z and α . Note that for $\lambda = (1, \ldots, 1)$, the hypergeometric functions of type λ coincide with the general hypergeometric function defined in [G].

The set $Z_{r,n}$ admits an action of the group $GL(r) \times H_{\lambda}$:

$$GL(r) \times Z_{r,n} \times H_{\lambda} \longrightarrow Z_{r,n}$$

 $(q, z, h) \longmapsto qzh,$

under which Φ behaves as

(0.2)
$$\Phi(gz;\alpha) = (\det g)^{-1}\Phi(z;\alpha) \qquad g \in GL(r)$$

$$\Phi(zh_{\lambda};\alpha) = \chi(h_{\lambda})\Phi(z;\alpha) \qquad h_{\lambda} \in H_{\lambda}.$$

Furthermore, the function Φ admits another symmetry:

(0.4)
$$\Phi(zw_{\lambda};\alpha) = \Phi(z;\alpha^{t}w_{\lambda}) \qquad w_{\lambda} \in W_{\lambda},$$