MOLECULES OF THE HARDY SPACE AND THE NAVIER-STOKES EQUATIONS

Funkcialaj Ekvacioj Volume 45, No. 1, pp 141--160

Giulia FURIOLI

Département de Matématiques Université d'Évry-Val-d'Essonne

Bd. F. Mitterrand F–91025 EVRY CEDEX

 $e\text{-}mail: \verb"giulia@matapp.unimib.it", furioli@lami.univ-evry.fr$

and

Elide TERRANEO

Dipartimento di Matematica "Federigo Enriques" Università degli studi di Milano via Saldini, 50 I–20133, MILANO

e-mail: terraneo@balinor.mat.unimi.it, terraneo@lami.univ-evry.fr

Abstract: For the incompressible Navier–Stokes system, we consider data $\vec{u}_0 \in (L^3)^3$ whose Laplacian is a molecule of the Hardy space. We prove that this property is preserved by the only solution in $C\left([0,T[,(L^3(\mathbb{R}^3))^3]\right)$ at least at the beginning of its evolution.

In this paper we analyze the action of the Navier-Stokes equations on a subspace of $C\left([0,T[,(\mathbf{L}^3(\mathbb{R}^3))^3\right)$ which is specially adapted to study the location and oscillation of the diffusion term $\Delta \vec{u}$. Let us recall the Navier-Stokes system describing the motion of an incompressible, homogeneous, viscous fluid filling out the whole space \mathbb{R}^3 , without the action of external forces:

$$\begin{cases} \partial_t \vec{u} = \Delta \vec{u} - \vec{\nabla} \cdot (\vec{u} \otimes \vec{u}) - \vec{\nabla} p \\ \vec{\nabla} \cdot \vec{u} = 0 \end{cases}$$

where $\vec{u}(t,x): \mathbb{R}^+ \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is the velocity vector field and $p(t,x): \mathbb{R}^+ \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ is the pressure. Dealing with the Cauchy problem with initial data $\vec{u}(0,x) = \vec{u}_0(x)$, it is possible to rewrite the system in the following integral expression:

(1)
$$\vec{u}(t) = e^{t\Delta} \vec{u}_0 - \int_0^t e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot (\vec{u} \otimes \vec{u})(s) ds$$

where $e^{t\Delta}$ is the heat semigroup defined by the convolution with the Gauss kernel:

$$e^{t\Delta}f(x) = \left(\frac{1}{(4\pi t)^{\frac{3}{2}}}e^{-\frac{|\cdot|^2}{4t}} * f\right)(x)$$

and **P** is the projection operator on the divergence–free vector fields, defined by the matrix:

$$\begin{bmatrix} \operatorname{Id} + R_1 R_1 & R_1 R_2 & R_1 R_3 \\ R_2 R_1 & \operatorname{Id} + R_2 R_2 & R_2 R_3 \\ R_3 R_1 & R_3 R_2 & \operatorname{Id} + R_3 R_3 \end{bmatrix}$$

where $\widehat{R_{j}f}(\xi) = i\frac{\xi_{j}}{|\xi|}\widehat{f}(\xi)$ are the Riesz transforms for j = 1, 2, 3.

In fact the integral and the differential systems are equivalent in this framework, as it is shown in [FLT] under slight assumptions verified by a large class of spaces.

Given a Banach space X, the problem of the existence and the uniqueness of a function $\vec{u}(t) \in$ $C([0,T[,X^3)$ solution of (1) in S' (a so-called mild solution) is normally approached by a fixed point argument. It is now well known ([FLT], [MA], [LE2]) that for a given $\vec{u}_0 \in (L^3(\mathbb{R}^3))^3$ the only solution in $C\left([0,T[,(\mathbb{L}^3(\mathbb{R}^3))^3\right)$ belongs to every $(\mathbb{L}^p(\mathbb{R}^3))^3$ space with p>3 for all its existence time. We are now interested in investigating the following problem: if the data \vec{u}_0 have some extra properties, does the solution keep verifying them at least on a small interval of time?

In [FLT] it was already established that if $\Delta \vec{u}_0 \in (\mathcal{H}^1)^3$, the Hardy space, then the solution $\vec{u}(t)$ satisfies $\Delta \vec{u}(t) \in (\mathcal{H}^1)^3$ for $0 < t < T' \leq T$. We will consider here a particular case of the previous one where the Laplacian of the data is a "molecule" for the Hardy space, and so well-localized in the space variables; we will prove then that the solution verifies the same property, namely its diffusion term keeps on being well-localized at the beginning of the motion.

In the following the reference space will always be \mathbb{R}^3 .

More precisely, let $\delta \in \frac{3}{2}, \frac{9}{2}[$, $\delta \neq \frac{5}{2}, \frac{7}{2}$ and let us introduce the following functional space:

$$X_{\delta} = \begin{cases} u & \text{vanishes at infinity,} \\ \Delta u \in \mathcal{L}^{2}((1+|x|^{2\delta})dx), \\ u \in \mathcal{S}' & : \int \Delta u(x)dx = 0 \quad \text{ for } \frac{3}{2} < \delta < \frac{9}{2} \\ \int x_{i}\Delta u(x)dx = 0 \quad \text{ for } \frac{5}{2} < \delta < \frac{9}{2}, \ i = 1, 2, 3 \\ \int x_{i}x_{j}\Delta u(x)dx = 0 \quad \text{ for } \frac{7}{2} < \delta < \frac{9}{2}, \ i, j = 1, 2, 3 \end{cases}.$$

The space X_δ normed by $\|u\|_{X_\delta} = \|\Delta u\|_{\mathrm{L}^2((1+|x|^{2\delta})dx)}$ is a Banach space. The theorem we are going to prove is the following one.

Theorem .

Let $\vec{u}_0 \in X^3_{\delta}$ and $\vec{\nabla} \cdot \vec{u}_0 = 0$. Then the mild solution of the Navier–Stokes equations $\vec{u}(t) \in C([0,T[,(L^3)^3)])$ is also in $C([0,T'], X_{\delta}^3)$ for $0 < T' \le T$.

We would like to stress that the solution we obtain decays pointwise in space like $\frac{1}{1+|x|^{\delta-\frac{1}{2}}}$ for every $t \in [0,T']$ (see also proposition 2). In the particular case $\frac{3}{2} < \delta < \frac{7}{2}$, this decay property may also be recovered by the results of Miyakawa in [MII], who establishes a pointwise space-time asymptotic behavior with respect to space-time variables x and t for a particular class of data.

For other results close to these topics see also [AGSS], [B2], [C], [HX], [MI2], [SS], [T].

I. GENERAL PROPERTIES OF X_{δ}

In the following we will write

$$\begin{split} \mathbf{L}_{\delta}^2 &= \mathbf{L}^2((1+|x|^{2\delta})dx) \\ \|u\|_{\mathbf{L}_{\delta}^2} &= \|u(x)\|_{\mathbf{L}^2((1+|x|^{2\delta})dx)} \,, \\ \|u\|_{\mathbf{L}_{\delta-\frac{1}{2}}^{\infty}} &= \left\| (1+|x|^{\delta-\frac{1}{2}})u(x) \right\|_{\mathbf{L}^{\infty}} \,. \end{split}$$

We remark that the definition of X_{δ} is well posed; indeed if $\Delta u \in \mathcal{L}^2_{\delta}$ then $\Delta u \in \mathcal{L}^1$, for $\delta > \frac{3}{2}$, $x_i \Delta u \in \mathcal{L}^1$ for i = 1, 2, 3 and $\delta > \frac{5}{2}$, $x_i x_j \Delta u \in \mathcal{L}^1$ for i, j = 1, 2, 3 and $\delta > \frac{7}{2}$. Moreover, $X_{\delta} \subset \Delta \mathcal{H}^1$ and more precisely