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1. Introduction

In this paper we study the global behavior of solutions to the reaction-
diffusion system :

u = diAu~+ uf(u,v) in 2 x (0, 00),
(1.1) vy = doAv + vg(u,v) in 2 x (0, 00),
: bu =t =g on 992 x (0, 00),

u(z,0) = ug(xz) >0, v(x,0) =vo(z) >0 in Q,

where () is a bounded smooth domain in R” and v is the outward unit normal
vector to 0. The initial functions ug(z), vo(x) are not identically zero, and
the functions f(u,v) and g(u,v) are of class C'(Q) where

Q = {(u,v) € R?[u>0,v > 0}.

For f(u,v) and g(u,v) we will consider the following two cases of competition
type which make (1.1) a competition-diffusion system :

(@) f(u,v) =a; —bu—cyv, g(u,v) = ag — bou — cyv,
(B) f(u,v) = a1 — biu? — c1v?, g(u,v) = ay — bou? — cov?.

In the system (1.1) v and v are nonnegative functions which represent the
population densities of two competing species. d; and dy are the diffusion
rates of the two species, respectively. a; and a, denote the intrinsic growth
rates, b; and ¢y account for intra-specific competitions, by and c¢; are the
coefficients for inter-specific competitions. For details on the backgrounds of
this model, we refer the reader to [6].

Remark. The linear functions for f(u,v) and g(u,v) as in («) are often
used in the classical competition-diffusion systems. Though the quadratic



functions for f(u,v) and g(u,v) as in (8) may not be used commonly, they
make the system (1.1) the gradient system of an energy functional (after
simple scalings) which helps one to analyze the system (1.1) more clearly.
And, in the course of this paper it will be shown that the system (1.1) with
(B) has similar properties as the system with («).

The global behavior of solutions to the system (1.1) is related to that
of its kinetic system which is the following system of ordinary differential
equations :

(1.2) { u = uf(u,v) in (0,00),

vy =vg(u,v) in (0,00).

Clearly @ is positively invariant for the flow of (1.2). The equilibria of the
kinetic system (1.2) in @ consist of four points (u4,0), (0,vp), (uc,vc) and
(0,0), where u 4, vg, uc and v¢ are positive constants in both cases («) and
(B) of the functions f(u,v) and g(u,v). Throughout this paper we impose
the following strong competition conditions on the coefficients in f(u,v) and
g(u,v) :
b ax C1
(1.3) < m <o
We note that the condition (1.3) assures that (0, 0) is unstable, (u4,0), (0,vg)
are stable, and (uc,v¢) is a saddle point for (1.2). The flows of the kinetic
system (1.2) under the condition (1.3) are shown in Figure 1.

For the general properties of separatrix h(u) of the kinetic system (1.2)
which is illustrated in Figure 1 we refer the reader to the result due to lida
et al. [2] which is stated in Proposition 1.1 in the following. The reader
may also refer to Hirsch and Smale [1], Ninomiya [5] for the properties of
separatrices.

Proposition 1.1. Suppose for the system (1.2) that f(u,v) and g(u,v) are
as in either (a) or (B). Then there ezists a monotone function h(u) defined

on [0, Ueo) With Us € (uc, 00| such that

Wy ={(u,v) € Qv < h(u)} is the basin of attraction for (u4,0),
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