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1. Introduction

In 1970 Keller and Segel [15] proposed a mathematical model describing
chemotactic aggregation of cellular slime molds which move preferentially
towards relatively high concentrations of a chemical secreted by the amoebae
themselves. With the cell density of the cellular slime molds u(x,¢) and the
concentration of the chemical substance v(x,f) at place x and time ¢, a
prototype of the Keller-Segel models is described as the system

% =V . (diVu— ajuVv) in Q, t>0,
ov .
E:dzdv—azvﬂ’aﬂl n Q, t>0,

where Q2 is a bounded domain in R” with smooth boundary 09, d;,d>, a1, a3, a3
are positive numbers. The boundary conditions on # and v are homogeneous
Neumann conditions on 0€2.
To study the Keller-Segel system, it is convenient to transform the system
by
aj d a a;

dlt"_)t7 d—l=X7

&% 4=" 4 °

Then we arrive at the following initial-boundary value problem

r%zV-(Vu—)(qu) in 2, t>0,
QE‘—AU— v+ ou me, >0
(KS) ﬁ i Y ’ ’
ou Ov
%——5’;— on@Q, t>0,
Lu(-,0) =up, v(-,0) =19 on Q.

Here, uy and vy are non-negative smooth functions on Q.
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One of interesting aspects of the Keller-Segel model (KS) is the possibility
of blow-up of solutions in finite time (see Nanjundiah [21]). Especially in two
space dimensions, a conjecture by Childress [7] and Childress and Percus [8]
states that there exists a threshold number ¢ such that if [, uo(x)dx < ¢ then the
solution (u,v) exists globally in time, and if [, uy(x)dx > ¢ then u(x, t) can form
a delta function singularity in finite time. We refer to such a blowup
phenomenon as chemotactic collapse. " In the case of radial initial functions
(up,v0) on = {xe R*|x| <L}, the threshold number is conjectured as
¢ = 8xn/(ay).

The conjecture mentioned above is strongly supported by results in [11, 14,
19], where they considered the simplified system by setting ¢ = 0 in (KS). Jiger
and Luckhaus [14] showed the global existence of solutions in time when the
initial functions have small enough mass, and that there exist radial solutions
which blow up at the origin in finite time. Nagai [19] confirmed that the
possibility of blow-up of radial solutions to (KS) with ¢ =0 requires the
threshold number 8n/ (oc)() for radial functlons up on Q= {xeR%|x| <L} as
follows:

(i) If the radial function u satisfies the condition [, uo(x)dx < 8x/(ax),
then the radial solution (u,v) exists globally in time and is globally
bounded; '

(i) If the radial functlon uo satisfies the condition such that [, up(x)dx >
87/(ax) and |, uo(x)|x|*dx is sufficiently small, then the radial
solut1on (u,v) blows up in finite time.

Concermng chemotactlc collapse Herrero and Velazquez [11] succeeded to
construct radial solutions to (KS) with ¢ = 0 on 2 = {x € R?*;|x| < L} such that
u(x,t) blows up in finite time to form a J-function singularity at the origin by
using matched asymptotic expansions methods.

As for (KS) with ¢ > 0 in two space dimensions, Yagi [28] has studied the
local existence of solutions and some norm behavior of maximal solutions to
more general parabolic systems including the Keller-Segel model, and showed
the global existence of solutions under the condition such that Jo uo(x)dx is
sufficiently small. Recently, Herrero and Velazquez [12, 13] have extended
their results in [11] to the case ¢ > 0 in (KS) by using the similar method to that
in [11]. :

For related results to the chemotaxis system, we refer to [9, 17, 20, 23,
24]. We also mention that a system similar to (KS) with ¢ =0 arises from
another mathematical model describing the gravitational interaction of particles
(see Biler and Nadzieja [2], Biler [4] and the references therein), and in [2, 4]
the existence of global solutions in time and blow-up of solutions have been
studied. :
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In this paper we prove the time global existence and L* estimate of the
solution to (KS) with & > 0 in the case 2 — R? by making use of the Trudinger-
Moser inequality extended to the Sobolev space W!”?(Q) which is stated in
Section 2. As usual we denote W*2(Q) by H*(Q) for nonnegative integer k,
and H**9(Q) by the intermediate space between H*(Q) and H**! for any
0<0<1 (see [16, 26]). Our main theorem is the following

Theorem 1.1. Let Q be a bounded domain with smooth boundary in
R%.  Assume ug,vo € H'*®(Q) for some 0 < e <1, and up 20, vy =0 on Q.

G If [, uo(x)dx < 4n/(xy), then (KS) admits a unique classical solution
(u,v) on Q x (0, 00) satisfying

sup{[[u, ll= + o =} < o0

(ii) Let Q = {xe R%|x| <L} and (uy,vo) be radial in x. Then the same
assertion as (i) holds under the condition [, uo(x)dx < 8/ (ax).

Our theorem and the results of Herrero and Velazquez [12, 13] show that
under radial conditions on the initial functions the value 8z /(ay) is the threshold
number conjectured by Childress [7] and Childress and Percus [8] as to whether
the solution to (KS) exists globally in time or not.

2. The Trudinger-Moser inequality

Let 2 be a domain in R"(n = 2) with finite measure |Q2| = [, dx < co and
W(}’p (Q) denotes the Banach space obtained from C!-functions u(x) with
compact support in 2 by completion with the norm

1/p
1Vl g (or simply [Va],) = (jg VP dx) .

Moser showed a sharp form on an inequality by Trudinger [27] as the following

Theorem ([18]). Let ue W,"(2),n =2 and
J |Vu|"dx < 1.
Q
Then there exists a constant c¢ depending only on n such that

J e dx < ¢|Q),
Q
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where

n 1/(n—1
pP=_—7 o < o = no)/§7Y,

and w,_, is the (n — 1)-dimensional surface area of the unit sphere in R". The
integral on the left actually is finite for any positive o < o, but if o > a, it can be
made arbitrarily large by an appropriate choice of u.

As a corollary to this theorem the following inequality holds.

Corollary. Let ue W,"(Q2) and n=2. Then there exists a constant c
depending only on n such that

1
J expluldx < c|Qlexp (— IIVuIIZ),
Q

n

where

pu= ()

n—1

Proof. When ||Vu|, =0, the proof is trivial. So we consider only the
case ||Vu|,#0. Put v=u/|Vu|, and g =n. Then we have

1 1
I Vo|"dx =1 and —+=-=1,
Q b 49
where p =n/(n—1). By Young’s inequality we have
(2.1) jul = (o) 7 lo] - (pota) VPV,

1 1 -
= I—,{(pan)l/”lvl}P+a{(pocn) 2|V}
p_ 1 n
= an[v]" + 2= ||Vl
1
Since [, |Vv["dx =1, it follows from the above theorem that
J exp(an|vf)dx < c|€,
Q

which together with (2.1) implies

1
J expluldx < exp (i |[Vu||2) J exp(o|vff )dx < c|Q|exp (If— ||Vu||Z>
Q n Q

n

The proof is complete.
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Our aim of this section is a modification of the corollary to Moser’s
theorem of the Sobolev space W'?(Q), where W!P(Q) is the space of functions
ue L?(Q2) whose weak derivative 0Ou/0x; € LP(2). First we extend this
corollary to the case of radially symmetric functions.

Theorem 2.1. Let Q={xeR"|x|<L}(n=2) and ue WH"(Q) with
u(x) = u(|x|). Then for any & > 0 there exists a constant C, depending on & and
|2| such that

1 2"
2.2 J expluldx < C,ex {(—+s) Vul[; + —||u }
(2.2) . plul P V| o] 2]l

Proof. Since C(Q) is dense in W!"(), it suffices to prove in the case
ue C1(Q). We can also assume u(x) = 0. Put

v(x) = (u(x) —u(L)),

where w, = max{w,0}. Then

Vo — {Vu if u(x) > u(L),
0 otherwise.

Since v e W(}’"(Q) and ||V, < |Vul,, by Corollary to the Trudinger-Moser
Theorem we have

J expvdx < c|Q| exp(—l—HVuH:).
Q n
On the other hand,

j expvdx = exp{—u(L)} J exp u dx.
Q Q

Therefore,

exp{—u(L)} L expudx < c|Q|exp (—1—||Vu||2),
and so
(2.3) L expudx < c|2|exp (—/%; |Vull; + u(L)).

In order to estimate u(L), let us choose rg € [L/2,L) such that

-1 2 t n—1
u(ro)yrg < — u(r)r*dr.
L/2

I~
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Then
24 () S b o | s
é. (g)l—" L“’Zn—l L u(x)dx
=2" L”al),,_l Lz u(x)dx = n|2;| JQ u(x)dx.

Here we used |Q| = n~!L"w, 1. Since

L L
W' (r)dr = u(ro) + J

ro

u(L) = u(ro) + J

o

r(l—n)/nu/(r)r(n—l)/ndr,

by Holder’s inequality and (2.4) we have

ro ro

L ("_1)/" 1 l/n
< u(ro) + ( | r—ldr) (—) Wl
L/2 Wy

1 1 l/n
< ulr) + Gog 207 () vl
n
n

2
< &l|Vull, +

u(x)dx + C,,

which together with (2.3) leads to (2.2). The proof is complete.

For the two-dimensional case without the restriction of the radially
symmetric functions the following theorem is an immediate consequence of
Proposition 2.3 by Chang and Yang [5].

Theorem ([S]). Suppose Q2 is a piecewise C?, bounded, finitely connected
domain in R* with finite number of vertices. Let Og be the minimum interior
angle at the vertices of Q. Then there exists a constant cqo such that

1o 1 }
expluldx = Cqoexpq o ||Vull; +—=|lu
|, exslulax = Caenp{ g 171} + g7l
for ue WH2(Q).

We remark that 8o = = = ,/16 in the case where there are no corners on
Q.
Before stating Theorem 2.2 we prepare the Gagliardo-Nirenberg inequality.
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. Lemma (Gagliardo-Nirenberg inequality [10, p. 37]). Let Q be a bounded
domain in R" with C™ boundary, and let ue W™I(Q)NL(Q). Then the
inequality ' ' "

lutll e < Clallima -l

holds, if k—n/p=0m—n/q) —n(1—-0)/r, 1 p,q,r < o, and k/m <0< 1.
The constant C depends only on Q,m,r,q,k.

For functions in W!”() on a n-dimensional domain € with smooth
boundary we can show Theorem 2.2 by using a similar argument to that in
Cherrier [6]. In order to prove we need a partition of unity subordinated to a
finite covering { U(x;)}(x; € 0Q2) of the boundary 0Q to transform u(x) on U(x;)
onto B;; ={&=(&,...,&) e R & < p, &, >0} by a orthogonal transforma-
tion 4, and then apply the Trudinger-Moser inequality to the extended function
v(é)( e Wg’”(Bp)) on B, of the function u(Ax), where B, = {& € R";|{| < p}.
The proof also depends on the Gagliard-Nirenberg inequality.

Theorem 2.2. Let Q be a bounded domain in R"(n = 2) with smooth
boundary. Then for any € > 0 there exist positive constants C, and y, such that

n

2
@5) || exphidr = Cooxp{ (2-+2)vals + el
Q

for ue wn(Q).

3. Time global existence

This section is devoted to the existence of the global solution to (KS) in the
case 2 c R? by making use of the Trudinger-Moser inequality shown in Section
2 and the theorem by Yagi [28]. To do so we need the boundedness of
lu(-,2)||, for 0 < ¢ < Tmax. In what follows we frequently denote

(> D, = {Jg |u(x, 1) P dx}l/p

simply by |lu||,. First we remember the . following

Theorem ([28]). Let Q be a bounded domain in R*. Assume up,
vo € H'7®(Q) for some 0 < ey <1 and up =0, v9 20 on Q. Let Tyax be the
maximal existence time of (u,v).

(i) (KS) has a unique non-negative. solution (u,v) satisfying

u,v € C([0, Tax) : H1(2)) N CH((0, Tmax) : L*(22)) N C((0, Tmax) : H*(RQ))
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for any 0 < g1 < min{ey, 1/2}. Moreover (u,v) has further regularity properties:
ue C((0, Tmax) : H'(R)), ve CY4((0, Trmax) : L*(2)) N C¥4((0, Trmax) : H'(2)).
(i) If Tmax < o0, then

i ([uC, ) + (190 D) v = 00,

lim sup |ju(-, #)||L, = 00 forany1<p = oo,

t— Tmax

lim sup(||v(-, #)|| g1+« = 0©  for any 0 < & < &.
t— Trnax
(iii) There exists ¢ > 0 such that if [, uo(x)dx < c then the solution (u,v) of
(KS) exists globally in time.

In what follows by a solution of (KS) on Qr = Q2 x (0,7) we mean a
function (u,v) on Q7 such that

(i) wu,veC([0,T): H**(Q))NCI((0,T) : L*(2))NC((0,T) : H*(RX)).

(ii) (u,v) satisfies (KS) for 0 <t < T.

Throughout the rest of this section and the next section we always assume that
up =0, u#0 and vp = 0,

which assures the positivity of the solution (u,v) on Q x (0, Tax) (see Lemma
3.1 below).

Let us regard y — 4 as a closed operator in a Banach space. So define the
closed operator 4, in L?(2)(1 < p < o) with domain D(4,) by

A, =y—4, D(Ap):{ue WZ’P(Q);%zo on&Q}.

The operator A4, is sectorial in L?(Q) and o(A4) < {z € C;%(z) > y,} for a
positive number y,, where o(4) is the spectrum of A4,. Then for f =0 the
fractional powers A5 of 4, are defined, and the domain X? = D(4f) is a
Banach space under the norm ||u|| X = ||A§u||p. Since A4, is sectorial in L?(Q),
the operator —A4, generates the analytic semigroup {7,(¢f)}. For fundamental
properties of sectorial operators and analytic semigroups, we refer to [10, 22,
25]. As for X}’? we know the following

Lemma ([10]). Suppose 2 < R" a bounded domain with smooth bound-
ary. Then for 0 = B <1, the following holds:

Xf = wH(Q)  whenk—n/q<28-n/p, qZp,
X< Q) when 0 < v < 28 — n/p,

and the inclusion is continuous.
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Lemma 3.1. Let non-negative solution (u,v) to (KS) satisfies the following:
(1) (u,v) is a classical solution;
(i) wu(x,t) >0, v(x,£) >0 on Q x (0, Tmax)-

Proof. Tt suffices to show that (u,v) is a classical solution, because the
positivity of (u,v) follows from the strong maximum principle for classical
solutions to single parabolic equations.

For simplicity we put y=e=py=a=1. For fix 7€ (0, Tmax/2) the
second equality of (KS) is rewritten as

t

vo(t+ 1) = T2 (t)v(z) + L To(t—su(s+1)ds (0<t< Tmax — 7),

where v(¢) = v(-,¢) and u(¢) = (-,¢). For fe€(0,1/2) we have
Ao(t+7) = Ta(H) Ao(z) + Jt Ty(t — 5)Abu(s + 1)ds (0 < t < Tmax — 7).
0

By noting that u € C1((0, Tmax) : H(R)) and X,’*> = H'(Q), there is a positive
constant C, such that

| 4Bu(t + 1) — Au(s+7)|l, £ Cilt—s] (2,5 € [0, Tmax — 21)).
Then Lemma 3.5.1 in [10] yields that
ABo(- + 1) € C'((0, Tmax — 27) : X}) foranyye[0,1),
which implies that
(3.1) ve C1((0, Tmax) : X2) for any f € [0,3).

Next we rewrite the first equation of (KS) as

%:: = AZu + g,
where
(3.2) g(t) = —Vo(t) - Vu(t) — u(t)dv(t) + u(z).

Direct calculations give us that for #;,# € (0, Tax)

lg(@1) — g(22)ll; = 2llv(t1) — v(22)l|xz ll(t1) 1| 2
+ 2lle(e)llxy + Dllu(t) — u(z2)ll g,

from which together with (3.1) it follows that for fix 7 € (0, Tmax)‘ there is a
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positive constant C, such that
lg(t1) — g(22)|l £ Celtr — 22| for 1,15 € [v, Tmax — 7.

Hence, by Theorem 3.5.2 in [10] we have
(3.3) ue C'((0, Tmax) : XP) forany fe0,1),
which imp'lies

(3.4) % € C'(Q x (0, Tmax)) foranyve[0,1).

By using a similar way to that used above, it is also obtained that
ve C((0, Tmax) : X‘ZB) for any g € [0,2),
which implies that

v,%l—;,Av € C"(Q2 x (0, Tmax)) foranyve|0,1),
because of Xf cC'(R2) for 0=v<2f—1and 0 <2.
For fix t e (0, Tmax) let us rewrite the first equation of (KS) as

{Au—u:h in Q,

(3.5)

%=0 on 022,

where

ou
h—a+g

and g is the same as (3.2). Noting that

1
Xt < whi(Q) for 2§’q<—1_—ﬁ, 0<p<1,

by (3.3), (3.4) and (3.5) we see that
he C((0, Tmax) : L1(€2)) for any g € [2, 0).
Hence,
ue C((0, Tmax) : W>9(Q)) for any g € [2, ).
which together with W24(Q) = C*(2)(0 £ v < 2 —2/q) yields that

% € C((0, Tmax) : C'(R2)) foranyve(0,1) (i=1,2).
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By this, 2 e C((0, Tmax) : C’(22)) for any v € (0,1). Hence, we have
ue C((0, Tmax) : C*™¥(R)) forany ve (0,1).
Therefore, (u,v) is a classical solution of (KS).

Lemma 3.2. The following holds:

llu(-, )y = lluolly,
and
o
l[o(-, &)l = e~ |jno ]|, + " ol (1 — e~ 0/)).

Proof. We integrate the first equation of (KS) and use Green’s formula to
obtain

d
7 L) u(x, t)dx =0,

from which it follows that

(3.6) JQ u(x, t)dx = L) up(x)dx.

Next by the second equation of (KS) and Green’s formula we have

ij vdx:——zj vdx—l—gj udx.
dt Q & Jo € Jo

Put V(f) = [, vdx. Then by (3.6) we have

d y o
7 V() = % V() +E”u°”1’

from which it follows that
V(e) = eV (0) + ol (1 = =)

The proof is complete.

Lemma. 3.3. Put

_ _ V4 2 2
W(t) = L{u log u — yuv + o (IVo]” +yv )}dx.
Then we have

aw () +X£ J (v,)*dx + J ulV - (log u — yv)|*dx = 0.
dt a Jo Q
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Proof. Multiplying log u — yv by the first equation of (KS) and using
Green’s formula, we have

(3.7) L u;(log u — yv)dx = Jg V- (Vu— yuVv)(log u — yv)dx

= —J ulV - (log u — yv)|*dx.
Q
Noting that [, u,dx =0 holds, we have

(3.8) J us(log u — yv)dx = J (u log u), dx — J urdx — x J uvdx
Q 2 el Q

d d
= JQ u log udx—xa; JQ uvdx + x L) uv, dx.

Since, from the second equation of (KS),

1
u=£v,——Av+zv,
o7 v o

we have

&

J uvtdx——-—J (v,)zdx—lj (Au)v,dx—!—zj v, dx.
Q x Jo % Jao x Jo

From Green’s formula it follows that

_1d 2
L(Av)v, dx = 5% L) |Vo|“dx,

and so

e[ Lij 2 lij 2
(3.9) JQ uv,dx—ajg(v,) dx+2adt Q]Vv| dx+2cxdt dex.

By (3.8) and (3.9) we have
_d X 2, .2 XE J 2
L) u,(log u — yv)dx = o L{u log u — yuv + 20((]Vv[ + yv )}dx+ . Q(v,) dx,
which together with (3.7) leads to
— () += J (v,)dx = —J ulV - (log u — yv)|dx.
x Jo Q

The proof is complete.

We proceed to the estimation of J uvdx and u log udx. To do so, we

Q Q
use the Trudinger-Moser inequality derived in Section 2 and an analogous
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argument in the proof of Theorem 2 of Biler and Nadzieja [2] to show the
following

Lemma 3.4. Let W(t) be the same as in Lemma 3.3 and let

o= { 87 if Q={xeR%|x| <L} and (uy,ve) isradial in x,
4n otherwise.

If [, uodx < m*/(ax), there exists a positive constant C independent of t such that

J wdx < C and |W(f)| £ C.
Q
Proof. For any 6 > 0 we rewrite W(t) as

(3.10) W(t) = Jg{u log u — (x + J)uv}dx + L{éuv + % (Vo]* + yvz)}dx

ety
= — J u log
Q

X 7ol 4 o
dx + L{éuv—i—za(lVﬂ + yv )}dx.

M= J up(x)dx.
Q
Then from Lemma 3.2, we have
M =J u(x, t)dx.
Q
Since —log x is a convex function and
u
—dx =1,
J,

it follows from Jensen’s inequality that

1 L) 4
— — (r-+0)v(x,1) S - =
(3.11) log{M Lz e dx} log JQ ” i dx

(x+d)v(x,2)

e u

<

< J ( log )M dx

1 Lo

By the Trudinger-Moser inequality for any & > 0 there exists a constant C > 0
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such that

[ e ax < coxp{ (5 +2) o+ P Ivell + 2D oy,
Q 27 2]

that is,

1 C 1 L2+
S (x+o)v < — 2 2

From this together with (3.10) and (3.11) we have

Witz -M log{% J el+o)u(x) dx} +J {5uv + 2%((|Vu|2 + yvz)}dx
Q Q

C 1 212 . 2(x +9)
> —
> M{logM+(2n*+8)(x+5) Ivol + 2= ol

J{&uv+ (IVo]* + y?) }dx

Consequently we have

X 1 2 2
{Z_oc_M(Z " +8)(x+5) }||Vv||2 +0 JQ uvdx

C , 2 +9)
gM{l e ol ||1}+W(t)§C+W(0).

If we can choose 6 > 0 and & > 0 such that

(3.12) {%—M(z;+a>(){+5)2} >0

our assertion holds. This is possible, because the condition of this lemma
implies ayM /n* < 1, from which we can take 6 > 0 such that

oxM (x+90 2<1
T X )

Then we choose ¢ such that

2
ac)(M(1 +2)<)%5)<1,

from which (3.12) follows. The proof is complete.

Remark 3.1. From Lemmas 3.3 and 3.4 we see that there exists a constant
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C > 0 such that
t
(3.13) | g c
In fact, Lemma 3.3 we have
2 d X€ 2
— | uViegu—yv|"dx=— W(t)+= | (v:)dx,
Q dt oa Jo

which leads to, by integration to the both sides,

t

J, o015 < W@ - Wi < WO+ WO < €

Thus we have our assertion.

The following lemma is a modification of the inequality ([3])

1F13 < ell flzn 1S log A1l + Cell A1y

for any f € H' (), where Q is a domain R? with smooth boundary. The proof
is done by using a similar way to that in [3] and the following inequality

- 1
111, < CIf " - 1A 2 Sp <o)
by the Gagliardo-Nirenberg inequality.

Lemma 3.5. Let Q be a bounded domain in R* with smooth boundary, and
let 2<p < oo. Then for any ¢ >0 there exist positive constants ki and kj
depending on ¢ such that k; — 0 and ky — o as ¢ — 0, and

1-1 1 1
A1, < &lVF 13771 f tog | AIIVE + Fall £ Tog | f11l; + Kall £ 1277
for any f e H(Q).
Now we show the following
Lemma 3.6. There exists a positive constant C such that ||u(-,1)|, < C.
Proof. 1In this proof the coefficients of the system (KS) are not essen-

tial. To avoid the complication of notations we put y=e=y=a=1 in
(KS). Multiply u by the first equation of (KS). Then we have

J uudx = J Vuudx — J V- (uVv)udx,
Q Q : e
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which leads to

(3.14) J Wdx + J \Vul*dx = —J V- (uVv)udx.
e Q Q

ld
2 dt
As for the right hand side, we have

(3.15) — L? V- (uVv)udx = JQ(uVu) - Vodx

N —
S,
Q

Vi? - Vodx = —l J WVodx
2 Jo

J W (v 4+ v — w)dx
e

N = N ==

1
< - J uzv,dx—I-—J Wdx.
Q 2Jo

It follows from Lemma 3.5 that
1/3 1
lalls < el|Vully|lu log ully* + C(llu log ully + [[ull}).
By Horder’s inequality and the Gagliardo-Nirenberg inequality we have
|, bevie < ol

1/2 1/2 1/2
< Cllodl, (AVally” + lully>) [lully*)?
< Clloll, (IVal|lll, + [|2el13)
< &||Vull3 + C(|lvell3 + lloello) lull3,

which together with (3.14) and (3.15) leads to
d
Sz + 21Vull3 < ellval; + Cllodlz + loell) 1l

2 3
+&||Vull3]|u log ully + C(|lu log ully + ||u]),)-

that is,
d
(3.16) EH%II% +(2—&—&||ulog ul|,)||Vull3

2 2
< C{(llvell3 + llvellp) | eell5 + ||u log u!ﬁ + |lul; }-

Since |lu log u||; is bounded, we can choose ¢>0 such that 2—¢—
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&|lulog ul|; = 1. Thus it follows from (3.16) that

2 2 2 2 3
lullz + [IVullz = C{llvall2 + llvell2)llullz + [lu log ully + |lull, }-

d
(3.17) =1

By the Gagliardo-Nirenberg inequality we have

1/2 1/2
lull, < CUVully* lull;? + (lull,),
that is,

lull3 < CVullyllully + l2ll?)
< [IVullz + Cllullf,

from which it follows that
(3.18) IVull5 = |ful5 — Cljul7-

Thus from (3.17) and (3.18) we have
d
(3.19) a3+ 3 = Lol + o)l + L3,

where

L= C sup{julog ul; + [l + 1}
Putting h(t) = o/, )3 and £(£) = u(-, ||}, we have, by (3.19),
£1O+1(0) < C(he) + VAD) () + L.
Since Cv/Ah(tf) < 1/2+ C?h(2)/2, we have
(3.20) 7w+ (3-c b0 )0 s L
where ¢ = C + C2/2. Define ¢(r) by

o(t) = j; G —c- h(s)) ds.

Then it follows from (3.20) that

t

(3.21) £(0) ££(0)e™*) 4 Le™40) J e ds.
0
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Remembering (3.13) in Remark 3.1, we have
1 ! 1
—p(t)=—5t+c| h(s)ds= -5t+C
2 0 2

with some positive constant C. Taking this into account, we have, from (3.21)

f(t) £ C(f(0)e" /2t 4 L),

which implies
[u( Dl = C

with some positive constant C which is independent of ¢. The proof is
complete.

Now since we proved the boundedness of ||u(-, )|, for 0 <7 < Thax, by
Yagi’s theorem we see Tpax = 0o, which means the time global existence of the
solution of (KS).

4, L*° estimate

In this section we prove the second property

@D sup (s Dll + o Dll} < 00

in Theorem 1.1 by making use of Moser’s technique (see Alikakos [1]). In
what follows we assume as before that Q is a bounded domain in R?, and we
put y =a =1 in (KS) for simplicity.

Lemma 4.1. Let 2/3 < B < 1. Then there exists constants C >0 and A,
such that for any t >0

—Aat

e t e—,lzs
7ot 0lls < S el + by [ < s,

where My = sup,.o||u(?)|,.

Proof. The second equality of (KS) is rewritten as
t R :
v(t) = Ta2(t)vo +J To(t — s)u(s)ds (¢ >0).
0
Consider

t
Abole) = ABTs (0o + 45 | Talt - oyu(s)
0

t
= AET (t)vo + L ABTy(t — s)u(s) ds,
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from which there exist constants A, > 0 and C > 0 such that

—Aat t ,—A(t—s)
e e
||A’§v<r)n2§c{ p nvon2+j

o (1—s)

()1l dS}

: e—lzt t e—/bs
<
< {5 ol + 1 [ <57 ).

From the assumption on g the inclusion D(45) = W'3(Q) is continuous. Thus
there exists a constant C > 0 such that

IVo(t)||; < Cll450(2)]l,

e—/‘lzt te—lzs
< I
< S il + a1 [ <5 as),

which completes the proof.
Lemma 4.2. For any © > 0 there exists a constant C; > 0 such that
(4.2) oG D)l + VOl = C forrz e

Proof. From Lemmas 3.6 and 4.1 for any 7 > 0 there exists a positive
constant C; > 0 depending on ||vo||,,supollu(-,#)||, and 7 such that

(4.3) Vo||; = C, fort=1/2,

where ||Vv||; = |Vu(-,?)||3- Then we proceed to the proof of the boundedness
of ||u(-,?)]l,- Multiply the first equation of (KS) by #° to get
1d

44) -—= J wdx ~+—E J VwlPdx = — | ¥’V - (uVv)dx = J V(i) - uVvdx
4dt ) 4 Jo Jo Q

| 3
=3 | #Vu-Vodx == J w?V (u?) - Vdx
Jo 2 Jo

% wVw - Vodx,
2 )g

where w(x,?) = u?(x,t). As for the final part of the equality above, by
Holder’s inequality and the Gagliardo-Nirenberg inequality we have

1
(4.5) || wrw - vods| < 317wi3 -+ el

< SIWwlB+ M forez 2

where M = sup, ./, C||Vv||3*||u|5- Here we note that it follows from (4.3) and
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Lemma 3.6 that M < co. By (4.4) and (4.5) we have

(4.6) a J wldx + J |Vw|’dx < 6M fort 7/2.

By the Gagliardo-Nirenberg inequality and the Schwarz inequality there exists a
0 > 0 such that

1
Il = 5 (wli + i),

which together with (4.6) leads to

(4.7) % J wldx + 6 I w?dx < 6M + ||jul]3 < 6M + L fort > 1/2,
Q o

where L = sup,>0[|u(-,t)||§. It follows from (4.7) that
1
lw(-, )3 < llu(,7/2)|[ze7°02 +506M+ L) forrzz/2,

which means that there exists a constant C; > 0 depending on 7, |||, and
Sup,o||#||, such that

u(-,8)|l4 < C; fort=17/2.

Finally we show (4.2). Let 3/4 < f < 1, and consider
t
Ao(t) = APT4(t — </ 2)0(z/2) + J AT - Ju(s)ds

Then there exists constants C > 0 and A4 > 0 such that

e—l4(t 7/2) e —A4(t—s)
(48) [ Ao(o)], < c{ — mﬁn o(t/2 >||4+j 5 nu(s)|14ds}

.C e—/14(t—r/2) ” ( /2 Iy t e—L;(t—s) p
= —||v(T + J s »,
N =</2)P la =+ Ma 2 (1—s)P

where My = sup,.,[|u(?)|l4- From (4.8) it follows that

(4.9) | 45v(d)|l, £ C. fort =t

Since 3/4 < f <1, the inclusion D(4f) = C'(Q) is continuous. Thus from
(4.9) we have

1oC, Dl + IV0(, 2)llg < CllA4Go(D)]ly < € for iz,

which completes the proof.
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We are now in a position to prove the boundedness of (u,v).

Proof of (4.1). For any 7 > 0 there exists a constant C; > 0 such that
4100 [u(,0)ll, < Comax{L, u(, D)y, lu(, )|} forez .
In fact let 1 < p < o0 and multiply # by the first equation in (KS). From

Green’s formula we have

1 d
= p+1 P~ L7 ul?d J PVu - Vod
p+ldtjgu pJgu |Vu|“dx + p gu u-Vodx

. ZJ IVu(I’“)/z]zdx—i-pJ wPVu - Vodx.
p+1) Je Q

From Lemma 4.2 and the Schwarz inequality it follows

1/2 1/2
p J wVu-Vvdx < pC, (J upPt! dx) (J w1 |Vu|2dx)
Q Q Q

< (pzpl)zj |Vu<p+1>/212dx+§ C. J wtldx fortzr.
+ Q 2

Therefore, we have

4 J wWtldx < — 2P J Va2 gx +{’_(_’i2 C, J Wt dx,
dt Q P +1 Q 2 Q

which yields (4.10) by using Moser’s technique (see Alikakos [1]). On the other
hand since

u,ve C([0, ) : H'(Q)),
and
H'"(Q) = C(@2),
there exists a constant K; > 0 such that
(4.11) lu(-, )]l + l1vG, Dl = K for0<t<r.
From (4.2), (4.10) and (4.11) it follows that
tSlgl%{llu(', Moo + llo(: Dl } < o0
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