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1. Introduction

In this paper we shall investigate the global existence and decay of
solutions to the initial-boundary value problem for the quasilinear wave
equation with a viscosity and a nonlinear perturbation:

(P) { uy — div{o(|Vu*)Vu} — du, +g(u) =0  in [0,00) x £,
u(0, x) = ug(x), u:(0,x) =u1(x) and ulz, =0,

where Q is a bounded domain in RY. As nonlinearities we want to treat, for
example, o(v?) = 1/v/1+v2 and g(u) = —|u|*u.

The problem (P) with N = 1 and g(u) = 0 was proposed by Greenberg [10]
and Greenberg, MacCamy & Mizel [11] as a model of quasilinear wave equation
which admits a global solution for large data. Physically, this represents a longi-
tudinal motion of a visco-elastic material. (For more physical background see
[23].) Since then, related problems have been investigated by many authors
from various points of view ([1]-[6], [8], [13]-[25], [27]-[30] etc.). The term
g(u) = —|u|*u, o >0, is often called as “blowing up” term, and existence or
nonexistence of global solutions to the wave equation with such nonlinear term
has been discussed by many authors (Cf. [9], [12], [15]-[16], [24], [28] etc.).

When o(v2) = |v|, p >0, and |g(u)| < ko|u|**!, 0 <a < (p(N +2)+4)/
(N — p — 2)*, the global existence of solutions was discussed in Nakao & Nanbu
[21] by use of a “stable set” method. But, the method in [21] cannot be
applied to the case o(v?) = 1/v1 + v

Quite recently, Kobayashi, Pecher & Shibata [14] has treated such non-
linearity and proved the global existence of smooth solutions to the problem
(P) with g(u) = 0. Subsequently, one of the present authors [19] has derived a
decay estimate of the solutions under the assumption that the mean curvature
of 0Q is nonpositive.

The object of this paper is to combine the method in [19] with a concept
of stable set to prove the global existence of the problem (P) with ¢ and g like
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o =1/v/1+v? and g(u) = —|u|*u, « > 0, respectively. The main difficulty in
our problem lies in the fact that the operator —div{a(|Vu[*)Vu} is not coercive
in a usual sense, that is,

J o(|Vul?)|Vul*dx

lim o = o0
|Vl —o0,ue HO IV ul

does not hold. Caused by this non-coercivity, it is difficult to control the non-
linear perturbation g(u). '
To overcome this difficulty we treat the so-called Hj-solutions instead of
usual energy finite solutions and derive a precise decay estimate for the energy.
We note that our restriction on the growth order « is weaker than the usual
one. Indeed, when a(v?) = 1, we can take 0 < « < 4/(N — 4)", which is much
weaker than the usual restriction 0 < x < 4/(N —2)%.
 Finally we note that our method can be applied to another typical non-
linearity 6(v?) = |v|?, p > 0, and yields a new existence theorem of global solutions.
We discuss on this topic at the last section.

2. Statement of the result

We make the following assumptions on the nonlinear terms o(v?) and
g(u). | |

Hyp.A. o(-) is a differentiable function on R+ = [0, 00) and satisfies the
conditions '

(2.1) koo(vH)v? < J o(n)dy < kio(v?)v? (i)
0
and
(2.2) ko(1+v¥)7* < o(v?)
with some kg, k; >0 and
(2.3) , 0</3<——g— - (0<pf<wif N=1,2).
N-2
(2.4) o(v?) + 20’ (V¥)v? = 0 and sup{a(v?) + |0’ (v?)|v?} < 0. (i)
veR

Hyp.B. g(-) is a differentiable function on R and satisfies

(2.5) | lg(w)] < Kalul**!
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and .

(2.6) g W] < kaful®

with:

(2.7) 0<a<4“(;ﬂ(ﬁ):2) (O<a<ow if l<N<4).

Remark. (1) If ¢ = 1/+/1+ 02, we can take § = 1/2. Hence, (2.3) is valid
for 1 < N<5. (2) When =0, we can apply a usual stable set method. For
this, however, we must require, at least, HY = L**, ie, 0 <a <4/(N —2).
Our condition (2.7) is much weaker than thls which comes from considering
H>-solutions and utilizing a decay estimate. (3) We could replace (2.5) and (2.6)
by weaker ones

(2.5) lg(u)| < ki (Ju|**! + [u]*)
and -
(2.6) lg' (W) < ka(Jul™ + |u|™)

with 0 < oy < ap, ap satisfying (2.7).

Hyp.C. 0Q is C?-class and the mean curvature of %2 is nonpositive with
respect to the outward normal.

Our result reads as follows.

Theorem 1. Under the Hyp.A, B and C, there exists an open (unbounded)
set ¥ < HYN H, x HY including (0,0) such that if (uo,u;) € ¥, the problem (P)
admits a unique solution u(t) in the class

L*([0, 00); HY N Hy) N W2([0, 00); HY) N W= ([0, 00); L?),
satisfying the decay estimate

Cie™* for some A >0 if N=1,
Eo(t) <} C(L)(1+1)7 for any L>1 if N=2,
Ci(1+ t)‘(1+2/ﬂ(N—2)) if N> 3,

where C; denotes constants depending on ||uo| g2 + ||u1]|g and we set

Eo(t) = [u()* + jg o(IVu)Vuldx

(I || denotes L*-norm on ).
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Remark. If we assume further g(u)u >0 and 0 < « < 4/(N — 2)*, then we

can prove the global existence of an energy finite solution for all (uo,u1) €
H?NH, x HY (Cf. [27]).

Theorem 2 (Existence of strong solution). In addition to the assumptions
in Theorem 1 we let u; € HY x H,. Then, the solution u(t) in Theorem 1 belongs
to

C2([0, ©0); L*) N C1([0, 00); HY N Hy) N W22([0, 0); HY),
that is, u(t) is a strong solution in L? sense.

The precise definition of &, the set of initial data, will be given in the
course of the proof. ‘

3. A stable set

Here, we introduce a certain set in H? N H,, where the solutions are expected
to stay for all time if the initial data are small. For convenience we call it as
“stable set”.

Let us introduce some functionals defined on HYNH,. We set

31) F(Vu) = %L L')V“'Z o () dndsx,

(3.2) F(vu) = L o((Vul?) Vuldx,

(33) s = Fu)+ | 6war (66 = [ gan)
and

(3.4) ) = P + L) g(uudx.

The following lemma is proved in [19].
Lemma 3.1. Let 0<f<N/(N—-2) (0<pf< o0 if N=1,2) and set

_ N—B(N-2)
*TNTBAN-2)

and e=1if N=1. Theri, we have

if N> 3, & = arbitrary close to 1 if N=2

(3.5) IVull},, < CF(Vu)(1+ || 4u||*)

for ue HY N H;, where C = C(g) is a constant.
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Proof. For completeness we sketch the proof briefly. We consider the case
N > 3. Then,

Vu|1+8
Jg 7l a (1 + |vu?)Pi+e/2

|V |2 (1+e)/2

u 1+¢)

<C J ———— dx 1+ ||Vu| ¢

( e(l1+ |Vu|2)ﬂ ) A+ ”2/3(1+6)/(1—8))

< CF(Vu)M972(1 4 || 4u P09,

(1 + |Vu)?)PU+e/2 4

where we have used Hyp.A, (i) and the fact that 28(1 +¢&)/(1 —¢) < 2N/(N — 2).
QED.

Lemma 3.2. For any K >0, there exists ¢ = ¢o(K) > 0 such that if
|4u|| < K and ||Vul|,,, < &o, then

(3.6) J() = Co(K)|Vulll,, and  J(u) = Co(K)|IVuli,,
for some constant Cy(K) > 0.

Proof. Note that WhI*¢ < L*+2 if 1/(x+2) > 1/(1+¢) — 1/N. In this
case we see ' ‘

(3.7) lul 23] < C||Vul| {2,

In other case: 1/(x+2)<1/(1+¢)—1/N, we see by Gagliardo-Nirenberg
inequality,

: o 2(1-6) . o
(3.8) ull25 < Cllull 2 1 | 4] <+
< ClIVul| D0 | du)) o+
with
' 1 1 1 2 1 1 1\
(39) 0_(1_—!—8_N_m>(ﬁ+l—+s_—ﬁ__§) -
Here, we note that
‘ _(2(x+2) a\ (1 BN-2)\"
(3.10) (@ +2(1-0) = (T‘z) (‘ﬁ+—“z‘zv— |
4(x+2) — Na
= > 2,
C2+B(N-2) T

where we have used the assumption (2.7) on «. We set 8 =0 if 1/(ax+2) >
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1/(1+¢&) —1/N. Then, (3.8) holds in any case and we have, by Lemma 3.1,
(3.11)  J() = F(Vu) — kallull;2

C - —6
> C|\Vull2, (1 + [|4u|?) ™! — C||Vu|| EED0=0 | gy =42

> {C(1 + K*#)™! — C||vu) ($P0-0=2 g 420} gy 12

Thus, we can use (3.10) to define ¢ = go(K) by

(3.12) Cef -2 g0 - %6(1 +K?#) = Co(K)

and to get

(3.13) J(u) = Co(K)[Vulli,

if ||Vul|;,, <eo. It is clear that (3.13) remains valid for J(u). Q.ED.

Let us define our stable set #x, K > 0 in the following way:
Wx = {ue H) N H,|||4u|| < K and IVull,,. < &0}

Remark. If we assume g(u)u > 0, then we need not take &o(K), and #k is
replaced by #k = {u e HY N H,|||4u|| < K}.

4. A priori estimates

We shall derive some a priori estimates for an assumed strong solution
u(t) as in Theorem 2. The proof of Theorems will follow from these estimates
combined with standard compactness arguments.

Proposition 4.1. Let u(t) be a strong solution satisfying u(t) € Wx on [0, T)
for some K > 0. Then, it holds that
(@.1) E®) = 3wl +Jw(®) <gx(®)  on [0,T),
where gk(t) is defined by
ox(t) = {C(E(O))e"“ if N=1,
(B + Ci(K) e — 1)) if N22

withv =1+ 2/B(N — 2) (v is arbitrary large if N = 2). Here, C1(K) is a constant
such that C;(K) ~ CK%00+26(1-60) g5 K — o0.

(4.2)

Proof. Under the assumption u(t) € #k, J(u(t)) and J(u(t)) are both
equivalent to F(Vu) by Lemma 3.2. Thus, the estimate (4.2) follows from the
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argument in [19]. For convenience of the readers, however, we sketch it briefly.
We may assume T > 1.
Multiplying the equation by u; and integrating we have

(4.3) JM Vue(s)||’ds = E(t) — E(t + 1) = D(2)*
and

T
(4.4) J Vus(s)||%ds < E(0) < oo.

0

From (4.3), there exist t; € [t,t+ 1/4], t2 € [t+ 3/4,¢t+ 1] such that
|Vu:(t:)|| < 2D(t), i=12.

Next, multiplying the equation by u and integrating we see

(4.5) Jtz J(u(s))ds = —(ue(t2), u(t2)) + (ue(ta), u(tr))

+ Lz [[us(s)l|>ds — Lz(Vut(s)’ Vu(s))ds.

Here,

ts ts 1/2
ws) | |<Vut<s>,Vu<s>)|dss(j ||Vut<s)n2ds) sup [Vu(s)|

ty t t<s<t+l

< CD(t) sup |[Vu(s)||;72]du(s)|”

t<s<t+l

< C1(K)D(t)E(t)!~%/2

with

(4.7) C1(K) = CCo(K) (170028 — CKOo(1 + K%)(1-00)/2
and

(48) oo = LN =2

T BN=2)+2

(8 =0 if N =1 and arbitrary close to 0 if N = 2), where we have used the fact
J(u) = (1/2)F(Vu) by the way of the choice of g(K) (see (3.12)).
Similarly, we have

(4.9) |(ue(ts), u(t:)| < ClIVue () ||[|Va(:) |
< C1(K)D(t)E(t) /2,
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It follows from (4.4)—(4.6) and (4.9) that

1. (-
E(tz) < J E(s)ds
-ty

< CD(t)* + C1(K)D(t)E()1=%)/2,

Hence,
B0 = Be) + [ Vuo)lfds
< CD(t)? + CL(K)D(R)E(®)' %2 (€1(K) = CCi(K))
or
E(t)'*% < C}(K)D(r)* = C1(K)(E(r) - E(t + 1)),
which implies (4.2) (note that 1/0¢ = v). Q.ED.

The following estimate is the heart of this paper.

Proposition 4.2. Let u(t) be a strong solution satisfying u(t) € #x on [0, T)
for some K > 0. Then, we have

(4.10) | du(t)||* < IZ + q(K, E(0)) = Q*(K, Io, E(0))

forallt € [0, T), where q(K, E(0)) is a certain quantity such that limgg)_,0q(K, E(0))
=0and

1% = C(||duol|* + |(duo, u1)| + E(0)).
Proof. Multiplying the equation by —A4u we have

(4.11) % {% 14u()|? + (Vue(0), Vu(t))} + L div(oVu) dudx

= Vu ()| + j 9(u) duds.
(]
Here, by the Hyp.C we see ([19], [5])

(4.12) JQ div(o - Vu)dudx

= J (o + 20" |Vu*)|D?ul*dx — (N — 1)J oH(x)dI' > 0,
Q aQ

where H(x) is the mean curvature of 022 at x € Q. Thus, we have from (4.11)
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and (4.4) that

(@13) 2 14u)| — (Au(e),un(e)) < 5 |4uoll> + [(duo, )| + E(O)

+ki K L lu(s)|*|Vu(s)|Pdxds.

We shall show that the last term in the right-hand side of (4.13) is bounded. We
consider two cases 0 < a <4/(N —2) and 4/(N-2) <« separately Of course,
we assume o < (4 —28(N —2))/(N —4)" in any case.

The case: 0 <a<4/(N—-2) (0<a<oo if N=1 2).

In this case,

(4.14) j ||V
Q

(N—2)a/2N 1—(N—2)a/2N
< (J PN/~ 2)dx> (J qul4N/(zN_(N—_2)a)dx)
Q Q

< C|IVull*|IVullin/on-N-2)0)
< C||Vul 80| Aul|* V] 150 || Au) 2
< C(Cal(K)gK(t))(“(_l_gl)/z'i'l—ozKd01+292 = CZ(K)gK(t)a(l_al)/2+l_02

with
C2(K) = C(1 + KF)x1-00/2+1-0: g o6:426,
where
1 1\ /1 1 1\ (1—&N
(413 01—(1+8_5)(N+m_5) TAIN-(N-2)(1+9
and
1 2N-(N-2)a\ /1 1 1\
(4.16) 92‘(1+s— 4N )<N+1+s"§)

_ 4N — (2N — (N —=2)a)(1 +¢)
T 22N-(N-=-2)(1+¢)

We note that

(4.17) y = {EQ;—BQ+(1 —02)}v

=(4—N)oc+4

=2 -



302 Ryo IKEHATA, Tokio MATsuyaMa and Mitsuhiro NakAO

Therefore, recalling the definition of gk(t), we see
t e o]
(4.18) L JQ ju(s) [ |Vu(s) Pdxds < Ca(K) jo (EO)™" + CT(K)(t — 1)*} de

= ca() (B0 + S8 B )

= q(K, E(0)).

(4.10) follows immediately follows from (4.13) and (4.18). The case N=1,2
follows more easily' by modifying the above argument.

The case: 4/(N—-2)<a< (4—2B8(N—-2))/(N-4)" (4/(N—-2)<a< o
if N=3,4).

In this case we see

(4.19) [ul*|Vul*dx < ”“”7\705/2“7““51\1/(N—2)
Q
< ClVull{7% | dul || du?
with
2 1 1 1\
(420 5= (13 ‘N“Na)('frm‘ﬁ‘z)
2 N ——(a+2)(1+8)( 1)
T2 N+2-(N-2)e '
Hence
(4.21) L lul*|Vultdx < CK*0|vu(s)| (0
< CC3(K)g (2)1 =02
with

C3(K) = C(l + K2ﬁ)(1—03)°‘/2K2+03¢x'
We again note that

_ (1=63)av (4—N)a+4
- 2 28(N-2)

(4.22) > 1.
Therefore, we obtain as in (4.18)

(4.23) J; L) |u(s)|*|Vu(s)|*dxds < q(K, E(0))
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with C3(K) replaced by C3(K) in the definition of g(E(0),K). Thus, (4.10) is
proved also for the case a > 4/(N — 2). Q.ED.

5. Proof of theorems

On the basis of the inequality (3.11) and the estimate (4.10) we define

Sk = {(uo,ul) e H,NHY x HY|Q(K, I, E(0)) < K and 1/ Co(K) ' E(0) < 80}
and set |

& = Sk.
K>0

By (3.11) and (4.10) we conclude that if u(¢) is a strong solution with
(uo,u1) € Sk, then u(t) e #x for all t > 0 and all the estimates in the previous
section are valid for u(z) on [0, c0).

For the proof of Theorems we employ Galerkin method. Let {w;};2; be the
basis of HY consisted by the eigenfunction of —4 with the Dirichlet condition. We
define as is usual, the approximate solutions u,(t) = E]”;l l;”(t)wj, m=1,23,...,
by ‘

(5:1) (iim(®), W) + (Ve () )V (2), VW) — (At (8), w)) + (g(4m(1)), Wy) = O,

where u,(0) and #,(0) should be determined in such a way that

Um(0) — up in Hy N H? and m(0) — uy in HY

as m — oo.

By the theory of ordinary differential equations (5.1) has the unique solution
um(t). Suppose that (up,u;) € Sk for some K > 0. Then, (un,(0),#,(0)) € Sk
for large m. It is clear that the argument in the previous section can be applied
to u,(t) and, in particular, u,(t) exists on [0,00). Since all the assertions in
section 4 remain to hold for u,(t), we conclude that u,(t) € #x for all ¢t >0,
and all the estimates are valid for u,(t) in [0, ).

Thus, u,(t) converges along a subsequence to u(t) in the following way:

um(t) > u(t)  weakly® in L2 ([0, c0); HY N Hy),

um(t) = u(t)  weakly* in L2 ([0, 00); H?) N LP ([0, 00); L2).
Since

Lz.(0, 0); HY 1 Ha) N Wi2(0, o0); HY)
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is compactly imbedded in L% ([0, c0); H?), we know further
un(t) — u(t)  strongly in L2 ([0, 0); HY) and a.e. in [0, 0) X £,
and hence,
(Vi () *)Vutm(2) — o(IVu(®) ")Vu(t)  in Li((0, c0); L?).
Thus, the limit function u(t) is a required solution belonging to

L* ([0, c0); HY N Hy) N W([0, 00); HY) N W ([0, 00); L?).

Uniqueness follows from a similar argument as in [19]. Indeed, letting
u(t) and v(t) be two solutions and setting U =u;, V=v, and W=U -V, we
see

(5.2) W, — AW = div{e([Vu|>)Vu — a(|Vv[*)Vv} — g(u) + g(v).

Multiplying (5.2) by W and integrating we have
) t
(5:3) IW@I+2 | I7W(o)%ds
t t
= —ZJ J {o(|Vu*)Vu — a(|Vv|*)Vv}V Wixds — ZJ J (g(u) — g(v)) Wdxds
0le 0lJe

< C(K) | W= oW ds+C [ | (ur + o1l = ol W(s)ldxs

< C(K): [ IPWIPds +C(K) [ 17— o) lIvw(o)ds
< C(K)tJ; (VW (s)|2ds.

Hence, there exists Tp > 0 such that
wW(t) =0 on [0, Tp].

Repeating this argument we obtain W(t) = 0 on [0, o), i.e., u(t) = v(t) on [0, c0).
The proof of Theorem 1 is now completed.

For the proof of Theorem 2 we shall derive further a priori estimates.
Differentiating the equation we have

(5.4) e — div{a(|Vu*)Vu; + 26’ (|Vul>) (Vu, - Vu)Vu} — duy = g'(w)u;.
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Then, multiplying the equation (5.4) by u, we have
55 2L ue@I? + Vua I
. 3dt Uyt Une\l

< J (o + 20’||Va2) |V |V dx + cj | [t e
Q Q

< P IIvuel + (| |u|2°‘|u42dx)l/2nuu<t>n.
Here, by a similar argument as in (4.14) and (4.18) we can prove
(5.6) L ] e dx < Cllu(t)llﬁ‘zll\?ut(t)ll2 < C(K)[Vur(2)I1*.
Thus, we obtain

d
(5.7) 7 e + IVua(0)|> < CK)Vue(0)I,
which implies

(58)  llua(®)|”+ j: Ve (5) s < Q)1 + C(K) j: IVuc(s)|*ds
< C([[4uoll, || 4u1]]) < eo.
Further, returning to the equation we have easily
(5.9) [ du ()|l < llua (D)l + [|div{e - Vu}]| + [lg(u)]l
< C([|4uoll, [|4u1]]) < co.

It is clear that the estimates (5.8) and (5.9) can be applied to the approximate
solution u,(t). Thus, we see

m(t) — u(t)  weakly* in L ([0, c0); HY N H,)
and |

ﬁﬁ(t) — Ug(t) weakly* in L ([0, 00); L) N L ([0, o0); HY).

loc

Hence, the solution u(t) in Theorem 1 further satisfies

(5.10) e € L([0, 00); L?) N L2([0, 0); HY)
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and
(5.11) ue € L™ ([0, 0); HY N Hy) N I2([0, 0); HY),

and the estimates (5.8) and (5.9) remain to hold for u(z).
To prove that u, € C([0, 00); L?) and u, € C([0, 0); H? N H,) we first note
(Cf. [20]) that o -

u, € L% ([0, 00); L*) N L*([0, 00); HY) = Cy([0, 00); L?).
Then, by a standard argument (see Strauss [26]) we can prove

(512)  Jua(®)I* = llua(s)®

t
+ 2J J (G(VuP)Vue + 26/ ((Vul’) (Ve - Vi) Vui} - Visgdxd
R ‘

S

t
+2 J ”V“tt(r) ”2dT

t
:J J g,(ut)ututthdT
Q

N
for all t>s=0.

The identity (5.12) easily implies that ||u,(t)| is continuous in ¢, and we
conclude that u, € C([0, 0); L?). Finally, returning to the equation we easily
see ' -

Auy = uy — div{oVu} + g(u) € C([0, 0); L?).

The proof of Theorem 2 is completed.

Remark. 1If we assume g(u)u > 0, then Sk can be replaced by
Sk = {(uo,u1) e HyNHY x HY|Q(K, Io, E(0)) < K}.

In particular, if g(u)u >0 and:limg ,,Q(K,Io, E(0))/K =0, then we see
& = Hanlo X H?

6. Another typical equation

In this section we consider the problem (P) with a(v?) like o = |v|f, p > 0.
More precisely, we make the following assumptions instead of Hyp.A and
Hyp.B. '

Hyp.A'. o(-) is continuous on R*, differentiable on (0,00) and satisfies
the following conditions. ' '

2

(6.1) koo(0)o? < | atn)dn < luo(6?)e? 0
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and
(6.2) kolv|? < a(v?) < ky(Jv]? + 1)
with some ko, k; > 0, where we assume
4
6.3 O<p<gq<———=
(6.3) PEA< N o
(6.4) o(v?) + 20’ (v¥)v? = 0,u % 0 and lim o (1*)v? = 0. i
Hyp.B'. g(-) is a differentiable function on R and satisfies
(6.5) lg(w)] < Ky |ul**!
and
(6.6) g’ ()| < ki|ul*

with k; > 0 and o such that

8 + (N —2)p? 4 7
7 << e (<)

Our result reads as follows.

Theorem 3. Under the hypotheses Hyp.A', Hyp.B' and Hyp.C, there exists
a certain open (unbounded) set & in HyNHY x HY including (0,0) such that if
(uo,u1) € &, the problem (P) admits a -solution u(t) in the class

L= ([0, 00); Hy N HY) N W2([0, 0); HO) N W([0, 00); L),
satisfying a decay estimate
Cie™* | for some 4> 0 if p=0,
Eo(t) = —(p+2)/ +
Ci(l+)™ "™/ if 0<p<4/(N-2)".

Remark. (1) When g(u) =0 we can take'&”:HzﬂH? x HY. (2) Our
result is new even for the case « < (N+2)p+4)/(N—-p—-2)", because our
solutions are more regular with respect to x than usual ones. (Cf. [21, 28])

Outline of the proof of Theorem 3.

The proof is given in a parallel way to the one of Theorem 1, and we
sketch outline. o -
First, we note that

2)(1-6



308 Ryo IkeHATA, Tokio MATSUYAMA and Mitsuhiro NAKAO
with

5 2AN@=p) = (2 +2)(p+2)"*
T G- (N-2)p)

(<1).
Therefore, if ||dul| < K, we have

(69) J(w) = ko7l ~ CK 27wl 00

ko 2
> 5y

provided that

CK(“+2)9||Vu||l(,i’;2)(1_9)‘p_2 < %g

Then, let us define a stable set #k by
(6.10) Wi = {ue HyNHY|||4u|| < K and [[Vu|,,, < &},
where gy = ¢9(K) is taken as

(6.11) : CK(@+20 8E)a+2)(1—0)—~p—2 _ %9 .

We may assume J(u) also satisfies (6.9). Thus, if u(t) is an assumed local
strong solution and u(t) e #x for 0 <t < T with T > 1, we can derive the
difference inequality (see [18])

E(t) < C(D(ME®)""*? + D(1)")
or |
(612)  E@XV < o1+ B/ (E(R) - E(e+ 1)),

where ‘we recall

Jm |Vu:(s)||*ds = E(t) — E(t + 1) = D().
(6.12) implies | |
(6.13) E(t) < g(t) = {E(O)“”/(”+2) +Ccl+ E(O))—Zp/(p+2)(t _ 1)+}—(P+2)/p

for 0<t<T.
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To estimate ||4u(t)|| we can utilize again the inequality (4.13). Further, in
the case p < a < (2p+4)/(N — P —2)*, we see

(N—=p—2)e/(p+2)N
(6.14) J |u|a|VuIde < (J 'ul(p+2)N/(N_p_.2)dx)
@ Q

1—(N-p-2)a/(p+2)N
X (J |Vu|2("”)”/((”2)”*(N~p—2)a)dx) p—2)a/(p+2)
Q

2(1-6 /]
< C||Vull2, IV ul25 % || du)**

S CKZG] E(t) (a+2(1_01))/(p+2)

with
0_( 1 _(p+2)N—(N—p—2)a)+(l+ 1 _1)‘1
T \r+2 2(p + 2)N N p+2 2
=((1\,’—,1’*—2)oc—~pN)+<1
2p+4—pN

(Some modification is needed if 0 < N < p+ 2). Since

oH—2(1—01).p+2_p+2’oz(4—N)—|-4>1
p+2 P p 4-(N-2)p~ 7

b
we have

(6.15)
t o0
JO L |u|*|Vu|*dxds < CK* JO g(s) @ 21-00)/(p+2) g

< CK? (E(O)py/(l’+2) +(1+ E(O))ZP/(P+2)E(O)P(l—?)/(P+2))
= q(K, E(0)).

When o > (2p+4)/(N —p—2)*, we see

(6.16) jg IV uPdx < [[ull% 2 IVil2n 02

1-6 ] 2
< C|[Vull {572 4u)|® | 4ul|

< CK2+02ag(t)(1‘02)“/(P+2),
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where
1 1 2\/2 1 1 1\
OHh=|—m—-"——-— ===
p+2 N No/\N'p+2 N 2
_ 2(Na— (a+2)(p+2))
a(2(p+2) — Np)
Since
y=(l—Hz)a.p+2_p+2_oz(4—N)+4>1
 p+2 p p 4-(N-2)p" "~
we conclude again (6.15). Thus, we obtain
(6.17) l4u(®)|)? < I§ + q(K, E(0)) = Q*(K, Io, E(0)).

Now, defining
Sk = {(uo,u1) € H'N Hy x HY|Q(K, Ip, E(0)) < K and (2k3'E(0))"/ P2 < £y(K)}

and taking (uo,u1) € Sk, an assumed local strong solution u(t) with u(0) = u,
u:(0) = uy exists in fact globally and u(t) e # for all t > 0.

Let u,(t) be the approximate solutions as in Theorem 1. Then, all the
estimates in the above are still valid for un(t), m large. Noting that if
qg< 4/(N - 2)+>

Lfgc([()? OO)aH? nHz) N I/Vlz)’cz([o, OO), H?)

is compactly imbedded in LL *([0, 00); W,"4*?), we conclude that a subsequence

of the approximate solutions u,(tf) converges in an appropriate sense to the
desired solution u(z) if (uo,u1) € Sk. & is defined of course by & = | ). Sk.
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