Cauchy Problem for Some Degenerate Abstract Differential Equations of Sobolev Type

By

Tomomi Kojo and Masayoshi Тsuтsuмі

(Shibaura Institute of Technology and Waseda University, Japan)

1. Introduction

Let H be a Hilbert space over the reals. We shall consider an ordinary differential equation in H:

(E)
$$B\frac{du}{dt}(t) + Au(t) \ni f(t), \qquad t \ge 0,$$

together with the initial condition

(IC)
$$B^{1/2}u(0) = B^{1/2}u_0.$$

Here A is a nonlinear m-accretive operator in H and B is a nonnegative selfadjoint operator in H.

Equations of the form (E) appear in various physical problems including the propagation of long waves of small amplitude [3], the heat conduction involving two temperatures [7] and soil mechanics [2] and are called pseudo-parabolic equations (since they are parabolic equations when B = I) or equations of Sobolev type [12].

In the previous works, the authors have established the existence-uniqueness theorem of strong solutions of the initial value problem for (E) under various conditions on A and B:

- i) $D(B) \subset D(A)$ and B has the bounded inverse [13],
- ii) $D(B) \subset D(A)$ and B is not necessarily invertible [14],
- iii) $D(A) \subset D(B)$ and B has the bounded inverse [8].

The purpose of this paper is to construct a result for (E), (IC) under the case

iv) B is not necessarily invertible (and no inclusion relation between D(A) and D(B) is assumed),

and apply it to the initial-boundary value problem for some nonlinear partial differential equations.

The pseudo-parabolic equation is investigated, in the abstract frame work, by many authors under various conditions on A and B which are different from ours [5], [6], [9], [11], [15] (and the references therein).

Notation and a result

Let H be a real Hilbert space, the inner product and the norm in H denoted by (\cdot, \cdot) and $\|\cdot\|$ respectively.

Let A be a nonlinear multivalued operator from H into itself. An operator $A: H \to H$ with domain $D(A) = \{u; Au \neq \emptyset\}$ and range $R(A) = \bigcup \{Au; u \in D(A)\}$ is said to be accretive if

$$(v_1 - v_2, u_1 - u_2) \ge 0$$
 for every $v_i \in Au_i$ $(u_i \in D(A), j = 1, 2)$.

An accretive operator A is said to be m-accretive if R(I+A)=H. For each integer n > 0 the Yosida approximation A_n of an m-accretive operator A is defined by

$$A_n = n(I - (I + n^{-1}A)^{-1}).$$

It is well known that A_n is m-accretive on H and Lipschitz continuous with n as Lipschitz constant. For brevity of notation, we shall denote $(I + n^{-1}A)^{-1}$ by J_n^A . From the definition

(†)
$$A_n u \in AJ_n^A u$$
 for every $u \in H$.

We shall denote by Φ the set of all lower semicontinuous (l.s.c.) convex functions from H into $(-\infty, +\infty]$, not identically $+\infty$. For $\varphi \in \Phi$, let $D(\varphi) =$ $\{u \in H; \varphi(u) < +\infty\}$ and denote by $\partial \varphi$ the subdifferential of φ :

$$\partial \varphi(u) = \{ \xi \in H; \varphi(u) - \varphi(v) \le (\xi, u - v) \text{ for every } v \in H \}$$

with $D(\partial \varphi) = \{u \in H; \partial \varphi(u) \neq \emptyset\}$. It is well known that $\partial \varphi$ is m-accretive in H and $D(\partial \varphi)$ is dense in $D(\varphi)$. We refer to [1] and [4] for the properties of m-accretive operators in a Hilbert space.

By AC([0,T];H) we denote the space of all H-valued strongly absolutely continuous functions on [0, T]. For other function spaces, we shall employ the usual notation [10].

Definition 1. An H-valued function u(t) is called a strong solution of (E), (IC) if

- 1) $u \in AC([\delta, T]; H)$ $(\forall \delta > 0)$, $\frac{du}{dt}(t) \in D(B)$ a.e. (0, T), 2) $u(t) \in D(A)$ a.e. (0, T) and there exists a $\xi(t) \in Au(t)$ such that

$$B\frac{du}{dt}(t) + \xi(t) = f(t) \quad \text{a.e. } (0,T),$$

 $B^{1/2}u \in AC([0, T]; H)$ and $B^{1/2}u(t)$ satisfies (IC).

Remark 1. If in addition $Bu \in AC([0, T]; H)$ then

$$\frac{d}{dt}(Bu)(t) = B \frac{du}{dt}(t) \quad \text{a.e. } (0,T).$$

To establish the existence-uniqueness theorem for (E), (IC), we shall assume the followings.

(A.1) $A = \partial \varphi$, where $\varphi \in \Phi$ and for every $u \in D(\varphi)$

$$\varphi(u) \ge a||u||^2 - a' \qquad (a, a' > 0).$$

(A.2) For every $\xi \in Au$ and $\eta \in Av$ $(u, v \in D(A))$ there exists a constant d > 0 such that

$$(\xi - \eta, u - v) \ge d||u - v||^2.$$

- (A.3) B is a nonnegative selfadjoint operator in H.
- (A.4) For every $u, v \in D(B)$ and integer n > 0

$$(A_n u - A_n v, B(u - v)) \ge 0.$$

Remark 2. Note that

 $(\xi - \eta, B(u - v)) \ge 0$ for every $\xi \in Au$ and $\eta \in Av (u, v \in D(A) \cap D(B))$ implies (A.4) because

$$(A_n u - A_n v, B(u - v)) = \frac{1}{n} \|B^{1/2} (A_n u - A_n v)\|^2 + (A_n u - A_n v, B(J_n^A u - J_n^A v)) \ge 0.$$

Here we have used the selfadjointness of B, the indentity

$$(\sharp) v = n^{-1}A_n v + J_n^A v \ (v \in H)$$

and (†).

Theorem 1. Assume that $(A.1) \sim (A.4)$ are satisfied. Then for every $0 < T < +\infty$, $f \in W^{1,2}(0,T;H)$ and $u_0 \in D(A) \cap D(B)$ there exists one and only one strong solution u(t) of (E), (IC) such that

$$u, \xi(\in Au) \in L^2(0, T; H),$$

$$\sqrt{t}(du/dt) \in L^2(0, T; H), \quad (t > 0)$$

and

$$B^{1/2}u, Bu \in AC([0,T];H), \qquad (d/dt)(B^{1/2}u), (d/dt)(Bu) \in L^2(0,T;H).$$

3. Proof of Theorem 1

1°. Uniqueness. From (A.2) and (A.3) uniqueness of solutions can be obtained by the standard procedure.

2°. Existence. Consider an approximate equation for (E):

$$\left(\frac{1}{n}+B\right)u'_n(t)+A_nu_n(t)=f(t), \qquad t\geq 0,$$

together with

$$(\mathrm{IC}_n) \qquad \qquad u_n(0) = u_0.$$

Here '=d/dt and for each integer n>0, A_n is the Yosida approximation of A. Since the mapping $v\mapsto (n^{-1}+B)^{-1}A_nv$ from H into H is Lipschitz continuous, the theory of ordinary differential equations in Hilbert space yields that for every $0< T<+\infty$, $f\in L^2(0,T;H)$ and integer n>0 there exists a unique function $u_n(\cdot)\in C^1([0,T];D(B))$ which satisfies (E_n) and (IC_n) . We shall prove that u_n converges to a solution u of (E), (IC) as n tends to infinity. To this end some a priori estimates are necessary.

i) Taking the inner product of the both sides of (E_n) by $u_n(t)$ we have

$$(3.1) \qquad \frac{1}{2n}\frac{d}{dt}\|u_n(t)\|^2 + \frac{1}{2}\frac{d}{dt}\|B^{1/2}u_n(t)\|^2 + (A_nu_n(t), u_n(t)) = (f(t), u_n(t)).$$

For simplicity, for a function $v(t) \in H$ we shall suppress a letter t and denote by v in several places below. Using the identity (\sharp) , (A.2) and (\dagger) we can estimate the terms in (3.1) as

$$(A_n u_n, u_n) = \frac{1}{n} ||A_n u_n||^2 + (A_n u_n, J_n^A u_n) \ge \frac{1}{n} ||A_n u_n||^2 + d||J_n^A u_n||^2,$$

and

$$(f, u_n) \le ||f|| \left\| \frac{1}{n} A_n u_n + J_n^A u_n \right\|$$

$$\le \left(\frac{1}{2n} + c \right) ||f||^2 + \frac{1}{2n} ||A_n u_n||^2 + \frac{d}{2} ||J_n^A u_n||^2.$$

Then we have

$$\frac{1}{2n}\frac{d}{dt}\|u_n(t)\|^2 + \frac{1}{2}\frac{d}{dt}\|B^{1/2}u_n(t)\|^2 + \frac{1}{2n}\|A_nu_n(t)\|^2 + \frac{d}{2}\|J_n^Au_n(t)\|^2
\leq \left(\frac{1}{2n} + c\right)\|f(t)\|^2.$$

Here and in the sequel of this paper, by c we denote various positive constants independent of n in a certain interval $[N, +\infty)$ (N > 0). Integrating both sides of this inequality over (0, t) and taking the assumptions on $u_n(0)$ and f(t) into

account we see

$$(3.2) \frac{1}{\sqrt{n}} ||u_n(t)|| \le c \text{for every } t \in [0, T],$$

(3.3)
$$||B^{1/2}u_n(t)|| \le c$$
 for every $t \in [0, T]$,

$$\frac{1}{\sqrt{n}}|A_n u_n|_T \le c$$

and

$$(3.5) |J_n^A u_n|_T \le c.$$

Here $|\cdot|_T$ is the norm in $L^2(0,T;H)$.

ii) Since u_n belongs to $C^1([0, T]; D(B))$ for each integer n > 0

(3.6)
$$\left(\frac{1}{n} + B\right) u_n'(0) + A_n u_n(0) = f(0)$$

holds. Taking the inner product of the both sides of (3.6) by $n^{-1}u'_n(0)$ we have

$$\left\|\frac{1}{n}u_n'(0)\right\|^2 + \left\|\frac{1}{\sqrt{n}}B^{1/2}u_n'(0)\right\|^2 \le \frac{1}{2}\|f(0) - A_nu_n(0)\|^2 + \frac{1}{2}\left\|\frac{1}{n}u_n'(0)\right\|^2$$

which implies

$$\left\|\frac{1}{n}u_n'(0)\right\| \le c$$

and

(3.8)
$$\left\| \frac{1}{\sqrt{n}} B^{1/2} u_n'(0) \right\| \le c.$$

iii) For every $t \in [0, T]$, h > 0 and integer n > 0

(3.9)
$$\left(\frac{1}{n} + B\right) \left(u'_n(t+h) - u'_n(t)\right) + A_n u_n(t+h) - A_n u_n(t) = f(t+h) - f(t)$$

holds. Taking the inner product of the both sides of (3.9) by $B(u_n(t+h) - u_n(t))$ and using (A.3) and (A.4) we have

$$(3.10) \qquad \frac{1}{2n} \frac{d}{dt} \|B^{1/2}(u_n(t+h) - u_n(t))\|^2 + \frac{1}{2} \frac{d}{dt} \|B(u_n(t+h) - u_n(t))\|^2$$

$$\leq (f(t+h) - f(t), B(u_n(t+h) - u_n(t))).$$

Dividing the both sides of (3.10) by h^2 , integrating it over (0, t) and letting h

tends to zero we have

$$\frac{1}{n} \|B^{1/2}u'_n(t)\|^2 + \|Bu'_n(t)\|^2 \le c \int_0^t \|f'(t)\|^2 dt + c \int_0^t \|Bu'_n(t)\|^2 dt
+ \|Bu'_n(0)\|^2 + \frac{1}{n} \|B^{1/2}u'_n(0)\|^2$$

which implies

$$||Bu'_n(t)|| \le c \quad \text{for every } t \in [0, T]$$

and

(3.12)
$$\frac{1}{\sqrt{n}} \|B^{1/2} u'_n(t)\| \le c \quad \text{for every } t \in [0, T].$$

Here we have used (3.7), (3.8) and the identity $Bu'_n(0) = -n^{-1}u'_n(0) - A_nu_n(0) + f(0)$. From (3.11) and the assumption $u_0 \in D(B)$ we also have

$$||Bu_n(t)|| \le c \quad \text{for every } t \in [0, T].$$

iv) Taking the inner product of the both sides of (E_n) by $u'_n(t)$ and integrating it over (0,t) we have

$$\int_0^t \left\| \frac{1}{\sqrt{n}} u_n'(t) \right\|^2 dt + \int_0^t \left\| B^{1/2} u_n'(t) \right\|^2 dt + \varphi_n(u_n(t)) = \varphi_n(u_0) + \int_0^t (f(t), u_n'(t)) dt.$$

Here φ_n is defined by $\varphi_n(v)=(2n)^{-1}\|A_nv\|^2+\varphi(J_n^Av)\ (v\in H)$ and we have used the fact $(A_nv(t),v'(t))=(d/dt)\varphi_n(v(t))$ ([4], Lemme 3.3). In order to get the boundedness of $|(1/\sqrt{n})u_n'|_T$ we can estimate the right hand side of this equality as

$$\int_{0}^{t} (f(t), u'_{n}(t))dt = (f(t), u_{n}(t)) - (f(0), u_{0}) - \int_{0}^{t} (f'(t), u_{n}(t))dt$$

$$\leq ||f(t)|| \left\| \frac{1}{n} A_{n} u_{n}(t) + J_{n}^{A} u_{n}(t) \right\| + ||f(0)|| ||u_{0}||$$

$$+ \int_{0}^{t} ||f'(t)|| \left\| \frac{1}{n} A_{n} u_{n}(t) + J_{n}^{A} u_{n}(t) \right\| dt.$$

According to (A.1) the first term of the right hand side of this inequality can be estimated from above by

$$||f(t)|| \left\| \frac{1}{n} A_n u_n + J_n^A u_n \right\| \le \frac{1}{4n} ||A_n u_n||^2 + \frac{c}{n} ||f(t)||^2 + \frac{a}{2} ||J_n^A u_n||^2 + c ||f(t)||^2$$

$$\le \frac{1}{2} \left(\frac{1}{2n} ||A_n u_n||^2 + \varphi(J_n^A u_n) \right) + \left(\frac{c}{n} + c \right) ||f(t)||^2 + \frac{a'}{2}$$

$$= \frac{1}{2} \varphi_n(u_n(t)) + c ||f(t)||^2 + c.$$

Combining them we get by (3.4) and (3.5)

$$\int_{0}^{t} \left\| \frac{1}{\sqrt{n}} u'_{n}(t) \right\|^{2} dt + \int_{0}^{t} \left\| B^{1/2} u'_{n}(t) \right\|^{2} dt + \frac{1}{2} \varphi_{n}(u_{n}(t))
\leq c + \int_{0}^{T} \left\| f'(t) \right\| \left\| \frac{1}{n} A_{n} u_{n}(t) + J_{n}^{A} u_{n}(t) \right\| dt
\leq c + \left(\frac{c}{n} + c \right) |f'|_{T}^{2} + \frac{c}{n} \int_{0}^{T} \left\| A_{n} u_{n}(t) \right\|^{2} dt + c \int_{0}^{T} \left\| J_{n}^{A} u_{n}(t) \right\|^{2} dt \leq c.$$

From this inequality and taking $\varphi(J_n^A v) < \varphi_n(v)$ $(v \in H)$ into account, we see

$$||J_n^A u_n(t)|| \le c \quad \text{for every } t \in [0, T],$$

$$\left| \frac{1}{\sqrt{n}} u_n' \right|_T \le c$$

and

$$(3.16) |B^{1/2}u_n'|_T \le c.$$

v) Taking the inner product of the both sides of (3.9) by $t(u_n(t+h) - u_n(t))$, (t > 0) we have

$$\frac{1}{2n} \frac{d}{dt} \| \sqrt{t} (u_n(t+h) - u_n(t)) \|^2 - \frac{1}{2n} \| u_n(t+h) - u_n(t) \|^2
+ \frac{1}{2n} \frac{d}{dt} \| \sqrt{t} B^{1/2} (u_n(t+h) - u_n(t)) \|^2 - \frac{1}{2} \| B^{1/2} (u_n(t+h) - u_n(t)) \|^2
+ t (A_n u_n(t+h) - A_n u_n(t), u_n(t+h) - u_n(t))
= t (f(t+h) - f(t), u_n(t+h) - u_n(t)).$$

Dividing the both sides of this equality by h^2 , integrating it over (0, T) and letting h tends to zero, we see using (\sharp) , (A.2), (3.15) and (3.16) that

$$(3.17) |\sqrt{t}u_n'|_T \le c.$$

vi) From (E_n) and the estimates (3.11) and (3.15) we finally obtain

$$(3.18) \left| A_n u_n \right|_T = \left| f - B u'_n - \frac{1}{n} u'_n \right|_T \le c$$

and

$$(3.19) |u_n|_T \leq c.$$

Here in (3.19) we have used (3.5), (3.18) and the identity (\sharp) .

From these estimates obtained in the steps i) \sim vi) it follows that a subsequence (denoted again by u_n) can be extracted from $\{u_n\}$ such that as $n \to +\infty$,

$$u_n \to u$$
 in $L^2(0, T; H)$ weakly,
 $\frac{1}{n}u'_n \to 0$ in $L^2(0, T; H)$,
 $\sqrt{t}u'_n \to \sqrt{t}u'$ in $L^2(0, T; H)$ weakly,
 $B^{1/2}u_n \to B^{1/2}u$ in $L^\infty(0, T; H)$ weakly star,
 $Bu_n \to Bu$ in $L^\infty(0, T; H)$ weakly star,
 $B^{1/2}u'_n \to (B^{1/2}u)'$ in $L^2(0, T; H)$ weakly,
 $Bu'_n \to (Bu)'$ in $L^\infty(0, T; H)$ weakly,

and

$$A_n u_n \to \xi$$
 in $L^2(0, T; H)$ weakly.

Note that (Bu)'(t) = Bu'(t) holds a.e. (0, T) by means of Remark 1. Now passing to the limit in (E_n) as $n \to +\infty$ we see

$$B\frac{du}{dt}(t) + \xi(t) = f(t) \quad \text{a.e. } (0, T).$$

Thus for concluding the proof, we need only to show that $\xi(t) \in \partial \varphi(u(t))$ for a.a. $t \in (0, T)$ and $B^{1/2}u(t)$ satisfies (IC).

For every integer m, n > 0 we have

$$\left(\frac{1}{m}u'_m-\frac{1}{n}u'_n,u_m-u_n\right)+\frac{1}{2}\frac{d}{dt}\|B^{1/2}(u_m-u_n)\|^2+(A_mu_m-A_nu_n,u_m-u_n)=0.$$

We see from (3.15) and (3.19) that

$$\left| \int_0^T \left(\frac{1}{m} u_m' - \frac{1}{n} u_n', u_m - u_n \right) dt \right| \le c \left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right)$$

and from (A.2) and (3.18) that

$$\int_{0}^{t} (A_{m}u_{m} - A_{n}u_{n}, u_{m} - u_{n})dt = \int_{0}^{t} \left(A_{m}u_{m} - A_{n}u_{n}, \frac{1}{m} A_{m}u_{m} - \frac{1}{n} A_{n}u_{n} \right) dt$$

$$+ \int_{0}^{t} (A_{m}u_{m} - A_{n}u_{n}, J_{m}^{A}u_{m} - J_{n}^{A}u_{n}) dt$$

$$\geq -c \left(\frac{1}{m} + \frac{1}{n} \right) + d \int_{0}^{t} ||J_{m}^{A}u_{m} - J_{n}^{A}u_{n}||^{2} dt.$$

Hence combining them we have

$$\frac{1}{2} \|B^{1/2}(u_m(t) - u_n(t))\|^2 + d \int_0^t \|u_m(t) - u_n(t)\|^2 dt \le c \left(\frac{1}{m} + \frac{1}{n}\right)$$

which follows

$$(3.20) u_n \to u \text{in } L^2(0,T;H) \text{ strongly}$$

and

(3.21)
$$B^{1/2}u_n \to B^{1/2}u$$
 in $C([0, T]; H)$ strongly.

Then in virtue of (3.20) and demiclosedness of A, we see $u(t) \in D(A)$ and $\xi(t) \in Au(t)$ for a.a. $t \in (0, T)$. Finally $B^{1/2}u(t)$ satisfies (IC) by means of (3.21). This completes the proof of Theorem 1.

4. Application

We shall apply Theorem 1 to the initial-boundary value problem for some nonlinear partial differential equations.

Let Ω be a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$. We shall denote Δ the Laplacian in \mathbb{R}^N and $\partial/\partial n$ the outward normal derivative at $\partial\Omega$.

Example 1. Consider an initial-boundary value problem

$$\begin{cases} -\Delta \frac{\partial u(x,t)}{\partial t} + (I - \Delta)u(x,t) = f(x,t) & \text{in } \Omega \times (0,T), \\ \frac{\partial u(x,t)}{\partial n} \in -\beta(u(x,t)), & \frac{\partial}{\partial n} \left(\frac{\partial u(x,t)}{\partial t}\right) = 0 & \text{on } \partial\Omega \times (0,T), \\ (-\Delta)^{1/2} u(x,t)|_{t=0} = (-\Delta)^{1/2} u_0(x) & \text{in } \Omega. \end{cases}$$

Here $x \in \Omega$, $t \in (0, T)$, $0 < T < +\infty$ and β is an *m*-accretive operator in **R** such that $D(\beta)$ is dense in **R**. (Then there exists a l.s.c. convex function $j: \mathbf{R} \to (-\infty, +\infty]$ such that $j \not\equiv +\infty$ and $\partial j = \beta$, [1].)

Let $B = -\Delta_B = -\Delta$ with $D(B) = \{u \in H^2(\Omega); (\partial u/\partial n)|_{\partial\Omega} = 0\}$, then B is a nonnegative selfadjoint operator in $H \equiv L^2(\Omega)$. Let $\varphi: L^2(\Omega) \to (-\infty, +\infty]$ be a function defined by

$$\varphi(u) = \begin{cases} \frac{1}{2} \int_{\Omega} (|u(x)|^2 + |\nabla u(x)|^2) dx + \int_{\partial \Omega} j(u) d\sigma & \text{if } u \in H^1(\Omega), j(u) \in L^1(\partial \Omega) \\ +\infty & \text{otherwise.} \end{cases}$$

Then it is well known [1] that $\partial \varphi(u) = (I - \Delta)u$, $u \in D(\partial \varphi)$, where $D(\partial \varphi) = \{u \in H^2(\Omega); \ \partial u/\partial n \in -\beta(u) \text{ a.e. } \partial \Omega\}$. Set $A = \partial \varphi$. We denote $\Delta_A = I - \partial \varphi = I - A$.

Then applying Theorem 1 to (*) we have the following.

Theorem 2. Assume $j(u) \ge 0$ a.e. on $\partial \Omega$. Then for every $f \in W^{1,2}(0, T; L^2(\Omega))$ and $u_0 \in D(A) \cap D(B)$ there exists a unique function u(x,t) which satisfies (*) such that

$$u$$
, $(I - \Delta_A)u \in L^2(0, T; L^2(\Omega))$, $\sqrt{t} \frac{\partial u}{\partial t} \in L^2(0, T; L^2(\Omega))$,

and

$$(-\Delta_B)^{1/2}u, \quad -\Delta_B u \in AC([0,T]; L^2(\Omega)),$$

$$\frac{\partial}{\partial t}((-\Delta_B)^{1/2}u), \quad \frac{\partial}{\partial t}(-\Delta_B u) \in L^2(0,T; L^2(\Omega)).$$

Proof. (A.1), (A.2) and (A.3) are clear. Then in order to apply Theorem 1 we only show that (A.4) holds. For every $u, v \in D(A) \cap D(B)$, we have

$$(Au - Av, B(u - v))_{H}$$

$$= \int_{\Omega} \{ (I - \Delta_{A})u(x) - (I - \Delta_{A})v(x) \} \{ -\Delta_{B}(u(x) - v(x)) \} dx$$

$$= \int_{\Omega} |\nabla (u(x) - v(x))|^{2} dx + \int_{\Omega} \Delta_{A}u(x)\Delta_{B}u(x) dx + \int_{\Omega} \Delta_{A}v(x)\Delta_{B}v(x) dx$$

$$- \int_{\Omega} \Delta_{A}u(x)\Delta_{B}v(x) dx - \int_{\Omega} \Delta_{A}v(x)\Delta_{B}u(x) dx$$

$$\geq \int_{\Omega} |\nabla (u(x) - v(x))|^{2} dx \geq 0,$$

which means (A.4) by taking Remark 2 into account.

Example 2. Let e(x) be an element of $L^{\infty}(\Omega)$ such that $e(x) \geq 0$ a.e. in Ω . Consider an initial-boundary value problem

$$\begin{cases} e(x)\frac{\partial u(x,t)}{\partial t} + (I - \Delta)u(x,t) = f(x,t) & \text{in } \Omega \times (0,T), \\ \frac{\partial u(x,t)}{\partial n} \in -\beta(u(x,t)) & \text{on } \partial\Omega \times (0,T), \\ \sqrt{e(x)}u(x,t)|_{t=0} = \sqrt{e(x)}u_0(x) & \text{in } \Omega. \end{cases}$$

Let Bu = e(x)u with $D(B) = L^2(\Omega) \equiv H$ and let $\varphi : L^2(\Omega) \to (-\infty, +\infty]$ be a function defined as in Example 1. Set $A = \partial \varphi$. Then B is a (bounded) nonnegative selfadjoint operator in $L^2(\Omega)$ and $A = I - \Delta$ with $D(A) = \{u \in H^2(\Omega);$

 $\partial u/\partial n \in -\beta(u)$ a.e. $\partial \Omega$ is an *m*-accretive operator in $L^2(\Omega)$ which satisfies (A.1) and (A.2). Then Theorem 1 is applicable to (**). Note that, in this case, the assumption (A.4) is not necessary because $|B^{1/2}u'_n|_T \le c$ implies $|Bu'_n|_T \le c$.

References

- [1] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
- [2] Barenblatt, G. I., Zheltov, I. P. and Kochina, I. N., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
- [3] Benjamin, T. B., Bona, J. L. and Mahoney, J. J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London, Ser. A, 272 (1972), 47-78.
- [4] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contraction dans les espace de Hilbert, Math. Studies 5, North-Holland, Amsterdam, 1975.
- [5] Brill, H., A semilinear Sobolev equation in a Banach space, J. Differential Equations, 24 (1977), 412-425.
- [6] Carrol, R. W. and Showalter, R. E., Singular and Degenerate Cauchy Problems, Academic Press, New York/London, 1976.
- [7] Chen, P. J. and Gurtin, M. E., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
- [8] Kojo, T. (formerly Matahashi) and Tsutsumi, M., Initial value problem for an abstract differential equation in a Hilbert space, Bull. Sci. Eng. Res. Lab., Waseda Univ., 87 (1979), 64-69.
- [9] Lagnese, J. E., General boundary value problems for differential equations of Sobolev type, SIAM J. Math. Anal., 3 (1972), 105-119.
- [10] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
- [11] Showalter, R. E., Degenerate parabolic initial-boundary value problems, J. Differential Equations, 31 (1979), 296-312.
- [12] Sobolev, S. L., Some new problems in mathematical physics, Izv. Akad. Nauk, SSSR, 18 (1954), 3-50 (Russian).
- [13] Tsutsumi, M. and Kojo, T. (formerly Matahashi), On some nonlinear pseudo-parabolic equations, J. Differntial Equations, 32 (1979), 65-75.
- [14] Tsutsumi, M. and Kojo, T. (formerly Matahashi), A certain class of singular nonlinear pseudo-parabolic equations, Funkcialaj Ekvacioj, 22 (1979), 313-325.
- [15] Zaidman, S., Topics in abstract differential equations, Pitman Research Notes in Math., 304, Longman, 1994.

nuna adreso:

Tomomi Kojo
Faculty of Systems Engineering
Shibaura Institute of Technology
Fukasaku, Omiya
Saitama 330
Japan

Masayoshi Tsutsumi
Department of Applied Physics
School of Science and Engineering
Waseda University
3-4-1 Okubo, Shinjuku-ku
Tokyo 169
Japan

(Ricevita la 26-an de februano, 1996)