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1. Introduction

Let H be a Hilbert space over the reals. We shall consider an ordinary
differential equation in H:

(E) B% (t) + Au(t) > f(2), t>0,

together with the initial condition

(IC) B24(0) = B'/uj.

Here A is a nonlinear m-accretive operator in H and B is a nonnegative selfadjoint
operator in H.

Equations of the form (E) appear in various physical problems including the
propagation of long waves of small amplitude [3], the heat conduction involving
two temperatures [7] and soil mechanics [2] and are called pseudo-parabolic
equations (since they are parabolic equations when B =1I) or equations of
Sobolev type [12].

In the previous works, the authors have established the existence-uniqueness
theorem of strong solutions of the initial value problem for (E) under various con-
ditions on A and B:

i) D(B) = D(A) and B has the bounded inverse [13],

ii) D(B) = D(A) and B is not necessarily invertible [14],

iiif D(A) = D(B) and B has the bounded inverse [8].

The purpose of this paper is to construct a result for (E), (IC) under the case

iv) B is not necessarily invertible (and no inclusion relation between D(A)

and D(B) is assumed),
and apply it to the initial-boundary value problem for some nonlinear partial
differential equations.

The pseudo-parabolic equation is investigated, in the abstract frame work,
by many authors under various conditions on 4 and B which are different from
ours [5], [6], [9], [11], [15] (and the references therein).
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2. Notation and a result

Let H be a real Hilbert space, the inner product and the norm in H denoted
by (-,-) and | - | respectively.

Let A be a nonlinear multivalued operator from H into itself. An operator
A: H — H with domain D(A4) = {u; Au # ¢} and range R(A) = U{Au;u c D(A)}
is said to be accretive if

(v1 —va,u1 —uz) =0 for every vj € Au; (u;e D(A),j=1,2).

An accretive operator A is said to be m-accretive if R(I+ A) = H. For each
integer n > 0 the Yosida approximation A, of an m-accretive operator A is defined
by

Ay =n(I— (I +nta)™).

It is well known that A, is m-accretive on H and Lipschitz continuous with n as
Lipschitz constant. For brevity of notation, we shall denote (I +n'4)™"' by
JA4. From the definition

(1) Anue AJAu  for every ue H.

We shall denote by @ the set of all lower semicontinuous (l.s.c.) convex
functions from H into (—o0,+0o0], not identically +o00. For ¢ € &, let D(p) =
{ue H;p(u) < +o0} and denote by d¢ the subdifferential of g:

O0p(u) = {¢ € H;p(u) — 9(v) < (&,u —v) for every ve H}

with D(0¢p) = {u € H; 0p(u) # ¢}. It is well known that dp is m-accretive in
H and D(0p) is dense in D(¢). We refer to [1] and [4] for the properties of
m-accretive operators in a Hilbert space.

By AC([0, T]; H) we denote the space of all H-valued strongly absolutely
continuous functions on [0, T]. For other function spaces, we shall employ the
usual notation [10].

Definition 1. An H-valued function u(t) is called a strong solution of (E),
(IC) if "
1) ueAC([o, T|;H) (V6> 0), d—(t) e D(B) a.. (0,T),

2) u(t)e D(A) a.e. (0,T) and there exists a &(t) € Au(t) such that
du
BEW+E)=f() ae (O,T),
3) BY2ue AC([0,T]; H) and B'2u(t) satisfies (IC).
Remark 1. If in addition Bue AC([0, T]; H) then

2B =B20  ae 7).
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To establish the existence-uniqueness theorem for (E), (IC), we shall assume
the followings.
(A.1) A= 0¢p, where p € @ and for every u e D(p)

() Z allul* —a'  (a,d' >0).

(A.2) For every &€ Au and 5 € Av (u,v € D(A)) there exists a constant
d > 0 such that

(& —m,u—v) = dllu - o

(A.3) B is a nonnegative selfadjoint operator in H.
(A.4) For every u,ve D(B) and integer n > 0

(Apu — Anv, B(u — v)) > 0.
Remark 2. Note that
(¢—n,Blu—v)) =0 for every & € Au and #n € Av (u,v € D(A) N D(B))

implies (A.4) because
1
(Antt = Apv, B(u = v)) = — |BY2(Auu — A0)|)?

+ (Apu — Apv, B(J2u — J40)) > 0.
Here we have used the selfadjointness of B, the indentity
(#) v=n"14,0+J% (ve H)
and (t).

Theorem 1. Assume that (A.1) ~ (A.4) are satisfied. Then for every 0 <
T < 40, f e W'2(0,T; H) and uo € D(A) N D(B) there exists one and only one
strong solution u(t) of (E), (IC) such that

u,&(e Au) € L*(0, T; H),

\/i(du/dt) € L2(0, T;H), (t>0)
and

B?y, Bue AC([0, T]; H), (d/dt)(B?u), (d/dt)(Bu) € L*(0, T; H).

3. Proof of Theorem 1

1°.  Uniqueness. From (A.2) and (A.3) uniqueness of solutions can be
obtained by the standard procedure.
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2°. Existence. Consider an approximate equation for (E):

(E,) (% -+ B) uy (t) + Agun(t) = f(2), t >0,
together with
(IC,) un(0) = uyp.

Here ' = d/dt and for each integer n > 0, A4, is the Yosida approximation of A.
Since the mapping v — (n~! + B)_IA,,v from H into H is Lipschitz continuous,
the theory of ordinary differential equations in Hilbert space yields that for every
0< T < +o0, feL?0,T;H) and integer n > 0 there exists a unique function
ua(-) € C1([0, T]; D(B)) which satisfies (E,) and (IC,). We shall prove that u,
converges to a solution u of (E), (IC) as n tends to infinity. To this end some a
priori estimates are necessary.

i) Taking the inner product of the both sides of (E,) by u,(tf) we have

1d
2ndt
For simplicity, for a function v(¢) € H we shall suppress a letter ¢t and denote by

v in several places below. Using the identity (#), (A.2) and () we can estimate
the terms in (3.1) as

G- [ )1 + 52 1B 0) [+ (A0, wn(8)) = (0, (0

1 1
(Anun, un) = n ”An“n”2 + (Antin, Jf“n) = n ”An“n”2 + d“Jrf“n”z,

and

1
() < 11| 5 e+

1 2, 1 2 dya 2
< (35 ) IA1P + 55 It + 51

Then we have

1d 2 1d ip 2, 1 2, d 4 2
2 3 14O + 5= 1B Zun (1) + o [ Anttn (07 + 5 [T un (D]

< (g5 ¢) s

Here and in the sequel of this paper, by ¢ we denote various positive constants
independent of n in a certain interval [N, +o00) (N > 0). Integrating both sides
of this inequality over (0,t) and taking the assumptions on u,(0) and f(¢) into
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account we see

(3.2) % lun(t)|| < c for every t e [0, T,
(3.3) 1B 2u,(t)|| < c for every t € [0, T,
(3.4) %IAnunIT <c

and

(3.5) |JAun|r < c.

Here |- | is the norm in L?(0, T; H).
i) Since u, belongs to C([0, T]; D(B)) for each integer n > 0

1
(3.6 (3:+ B)10) + 4a(@) =10
holds. Taking the inner product of the both sides of (3.6) by n='u/(0) we have
Luof +| = o) < 215 - awm@ip + 1 o)
n" Vn " 2 w 2|n "

which implies

(3.7) H% u;(O)H <c
and
(3.8) ” % Bl/Zu;(O)” <c.

iiij For every te[0,T], h > 0 and integer n > 0
69) (5 B) G+ ) = 0) + Awnlt +) — ) =16 + ) — (0

holds. Taking the inner product of the both sides of (3.9) by B(u,(t+ h)—
u,(t)) and using (A.3) and (A.4) we have

(310) 5 1B (un(t 4 h) — a0+ & [1Blan(e + ) — un(e) P

1

2n
< (f(t+h) —f (), B(un(t + h) — un(2))).

Dividing the both sides of (3.10) by h?, integrating it over (0,t) and letting h



220 Tomomi Koro and Masayoshi TsuTsumi

tends to zero we have

1 t t
LB + 1B < [ 17@1Pde+ e | 1Bu o)

1
+ [|Bu, Q)| + || B 2u, (0)

which implies

(3.11) |Bu,(t)|| <c  for every te |0, T]
and
(3.12) % |BY2u ()| <c  for every te|0, T].

Here we have used (3.7), (3.8) and the identity Bu,,(0) = —n~1u/,(0) — A,u,(0) + £(0).
From (3.11) and the assumption uy € D(B) we also have

(3.13) |Bun(t)|| < c for every t € [0, T.

iv) Taking the inner product of the both sides of (E,) by u,(¢) and
integrating it over (0,t) we have

t
L,
— t
J, | 75w
Here ¢, is defined by ¢,(v) = (2n)'||4,0||> + ¢(JAv) (v € H) and we have used
the fact (A,v(¢),v'(t)) = (d/dt)e,(v(t)) ([4], Lemme 3.3). In order to get the

boundedness of |(1/4/n)u,|; we can estimate the right hand side of this equality
as

2 t t
g+ j 1BY24!(2)[2dt + 9, (un (1)) = 0 (t10) + j0<f<t), ul(0))dt.

Lt(f(t),u,’,(t))dt = (0 ~ (S0 u0) = [ (/@) un(0)dt

< [f@ll + [1£(O)[[f]uoll

1
‘ - Anun(t) + J,fun(t)

* Jt 1A @l 1 Anun(t) + Jrf“n(t) dt.
0 n

According to (A.1) the first term of the right hand side of this inequality can be
estimated from above by

1 1 c a
7] 3 A + 0| < 2 Wwil + S1SOIP + £ 1l + eSO

1/1 !
< 5 (35 1nnl + o m) ) + (E+ )OI +5

= 3 0alun(0) + 1) + .
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Combining them we get by (3.4) and (3.5)

|

1,
Wun(t)

T
se+ | 17wl

2 t
1
dt+ | 1B 01 dt + 3 py(un(0)
0

1
l; Antin(t) + J,f‘u,,(t)”dt

c b2 ¢ T 2 T4 2
st (G o)l e s [ Mm@ e | 1tuolr <

From this inequality and taking ¢(J4v) < ¢,(v) (ve H) into account, we see

(3.14) | JAus(t)| <c  for every tel0, T),
(3.15) '-1— u,| <c
vn tlr
and
(3.16) |BY2u! |, < c.

v) Taking the inner product of the both sides of (3.9) by t(u,(t + h) — un(t)),
(t > 0) we have

1d 1
2ndt VE(un(t + k) — un(0))|* - o lun(t + 1) — un(2)|I?

o VB un(t + ) — un() I 3 1B (un(t 4 ) — () P
+ t(Agun(t + h) — Apun(t), un(t + h) — un(t))

= t(f(t+h) —f(0), un(t + k) — un(1)).

Dividing the both sides of this equality by h?, integrating it over (0,T) and
letting h tends to zero, we see using (f), (A.2), (3.15) and (3.16) that

(3.17) [Viul|r < c.
vi) From (E,) and the estimates (3.11) and (3.15) we finally obtain

‘ 1
(3.18) | Aptin|r = ’f — Bu, — " u,| <c
T
and
(3.19) lun|r < c.

Here in (3.19) we have used (3.5), (3.18) and the identity (f).
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From these estimates obtained in the steps i) ~ vi) it follows that a
subsequence (denoted again by u,) can be extracted from {u,} such that as
n — 400,

U, — u in L2(0, T; H) weakly,

1

;u,', -0 in L2(0, T; H),

Vi, — i in L2(0, T; H) weakly,

B'?y, — B/?y in L*(0, T; H) weakly star,
- Bu, — Bu in L*(0, T; H) weakly star,

BY%y! — (BY?u)’  in L*(0, T; H) weakly,

Bu) — (Bu)' in L* (0, T; H) weakly star,
and

Au, — & in LZ(O, T; H) weakly.
Note that (Bu)'(t) = Bu/(t) holds a.e. (0,T) by means of Remark 1.

Now passing to the limit in (E,) as n — +o0 we see

B%(t) + &) =1(¢) ae. (0,T).

Thus for concluding the proof, we need only to show that &(t) € dp(u(z)) for a.a.
te (0,T) and B2u(t) satisfies (IC).
For every integer m,n > 0 we have

1 1 1d
(‘“"" Tt = “”) + 5 1Bt = ) |” + (At = Anit, s = up) = 0.

We see from (3.15) and (3.19) that

JT lu'——l—u’u —u)dt <c —£—+—1—
o\m ™ p om0 T \Wm  /n
and from (A.2) and (3.18) that

t t 1 1

t
+ J (Amtim — Apuy, J,‘:um - J,fun)dt
0

1 1 t )
> — c(ﬁ—'-;) + dJO |, — Jup||*dt.
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Hence combining them we have

1B un) — )1 +4 [ une) — a0t < (% +)

which follows

(3.20) u, —»u in L*(0, T; H) strongly
and
(3.21) By, — B2y in C([0, T]; H) strongly.

Then in virtue of (3.20) and demiclosedness of A, we see u(t) € D(A4) and &(¢) €
Au(t) for a.a. t € (0, T). Finally B/2u(t) satisfies (IC) by means of (3.21). This
completes the proof of Theorem 1.

4. Application

We shall apply Theorem 1 to the initial-boundary value problem for some
nonlinear partial differential equations.

Let Q2 be a bounded domain in RN with smooth boundary 6Q2. We shall
denote 4 the Laplacian in RY and 8/dn the outward normal derivative at 0Q.

Example 1. Consider an initial-boundary value problem

' —A@‘% + (I = Au(x, 1) = f(x, 1) in @ x (0, T),
)9 a”—g’;ﬂ e —B(u(x, 1)), ;% (au((; ”) —0  on @ x (0,T),
(=) u(x, )| —g = (—=4)"uo(x) in Q.

Here xe 2,te(0,T), 0 < T < +o0 and S is an m-accretive operator in R such
that D(p) is dense in R. (Then there exists a ls.c. convex function j: R —
(—o0,4+o0] such that j# +oo and dj =B, [1].)

Let B= —A4p = —4 with D(B) = {u € H?(Q); (0u/dn)|,o = 0}, then B is a
nonnegative selfadjoint operator in H = L*(Q). Let ¢: L?(Q) — (—00,+0] be
a function defined by

1 , . ,
(1) = { EL(lu(x)I2 + [Vu(x)[})dx + Lg}(u)da if ue HY(Q), j(u) e L'(0R)
+00 otherwise.

Then it is well known [1] that d¢(u) = (I — 4)u, u € D(dp), where D(d¢) =
{ue H%(Q); du/one —P(u) a.e. 0Q}. Set A= 0p. We denote Ay =1—0p =
I-A.
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Then applying Theorem 1 to (*) we have the following.

Theorem 2. Assumej(u)>0a.e.ondQ. Then forevery feW'2(0, T; L*(Q))
and ug € D(A) N D(B) there exists a unique function u(x,t) which satisfies (x) such
that

ou

u, (I—Ads)uel?0,T;L*Q)), \/ia

e L*(0, T; L*(R2)),
and
(—48)"?u, —d4pue AC([0, T}; L)),
2 (a5, 2 () € 120, T; @),

Proof. (A.1), (A.2) and (A.3) are clear. Then in order to apply Theorem 1
we only show that (A.4) holds. For every u,v e D(A) N D(B), we have

(Au — Av,B(u — v)) g
= JQ{(I — Ag)u(x) — (I — 44)v(x) H{—4p(u(x) — v(x)) }dx
= J IV (u(x) — v(x)))?dx + J A u(x)Apu(x)dx + J A40(x)Apv(x)dx
Q Q Q
— J A4u(x)Agv(x)dx — J A4v(x)Apu(x)dx
Q Q
> | W) - o@)Pax> o,
Q

which means (A.4) by taking Remark 2 into account.

Example 2. Let e(x) be an element of L* (L) such that e(x) > 0 a.e. in Q.
Consider an initial-boundary value problem

( e(x )6u(x ,t)

() T aig:;—t) e — f(u(x,t)) on 02 x (0,T),

Lvex)u(x, t)|,_o = ve(x)uo(x) in Q.

Let Bu = e(x)u with D(B) = L?(Q) = H and let ¢ : L>() — (— o0, +o0] be
a function defined as in Example 1. Set A = dp. Then B is a (bounded) non-
negative selfadjoint operator in L?(Q2) and 4 = I — 4 with D(A) = {u e H*(Q);

+ (I — Au(x,t) = f(x,t) in Qx (0,T),
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Ou/0n € —p(u) a.e. 02} is an m-accretive operator in L?(2) which satisfies (A.1)
and (A.2). Then Theorem 1 is applicable to (xx). Note that, in this case, the
assumption (A.4) is not necessary because |BY/2u}|; < ¢ implies |Bu|; < c.
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