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A Note on the Nirenberg Example
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Haruki NINOMIYA
(Osaka Institute of Technology, Japan)

Let $X$ be a nowhere-zero $C^{¥infty}$ complex vector field in the plane. We
know that, by a smooth regular change of coordinates, the homogeneous
equation $Xu$ $=0$ in a neighborhood of a point $P$ in $R^{2}$ is transformed into the
form of $Lu$ $¥equiv¥partial ¥mathrm{u}/¥partial t+ia(t, x)¥partial u/¥partial x=0$ in a neighborhood of the origin, where
$a(t,x)$ is a real-valued $C^{¥infty}$ function. Does the $Lu$ $=0$ have a non-trivial
solution in a neighborhood of the origin? This is positive if $a(t, x)$ is real-
analytic with respect to the variable $x$ (due to Nagumo’s famous theorem [1])
or $a(0,0)¥neq 0$ holds; moreover we know that it is positive when, taken a
neighborhood $¥omega$ of the origin so small if necessary, the function $t¥rightarrow a(t,x)$

does not change sign in $¥{t;(t, x)¥in¥omega¥}$ for every $x$ in $R$ (see Treves [6]). The
last condition is a necessary and sufficient condition for the $L$ to be a solvable
operator at the origin, and hence it is the problem when $L$ is an unsolvable
operator. We are thus concerned with the operator $L$ satisfying ta(t, $x$) $>0$

for $t¥neq 0$.
Now Nirenberg [4] showed the complex vector field $L_{0}$ that any $C^{1}$ solu-

tion $u$ to the equation $L_{0}u=0$ in a neighborhood of the origin is identically
constant. The vector field $L_{0}$ has the form of $L_{0}=¥partial/¥partial t+it¥{l +t¥phi(t, x)¥}¥partial/¥partial ¥mathrm{x}$,
where $¥phi(t, x)$ is a non-negative $C^{¥infty}$ function having the following properties (1)
and (2):
(1) $¥phi(-t, x)=¥phi(t,x)$ .
(2) $¥phi(t, x)$ is positive inside a sequence of the discs $D_{j}^{m,n}$ and vanishes outside

their union.
where, for positive integers $m_{¥mathit{3}}n$, and $j$, $D_{j}^{m,n}$ denote non-overlapping closed discs
in the $(t,x)$ plane that satisfy the following for each fixed $(m, n)$ :

(i) The ordinates of the centers of $D_{j}^{m,n}$ equal $1/n$ .
(ii) $1/m<t<1/(m-1)$ for every $(t,x)$ in $D_{j}^{m,n}(j =1,2, ¥ldots)$ .
(iii) The abscissae of the centers of $D_{j}^{m,n}$ decrease to $1/m$ as $ j¥rightarrow¥infty$ .
In this note we shall show that, assuming ta(t, $x$) $>0$ for $¥neq 0$, the method

of the proof of Theorem A in my paper [2] can be applied to give a necessary
condition for the equation $Lu$ $=0$ to have a non-trivial solution or a non-
constant one in a neighborhood of a point $P$ on the $x$ axis.

To state our result we need a notion of flag domain ([2]):
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A domain $D$ in the $(t, x)$ plane is called a flag domain if $D¥subset¥{(t, x);t>0¥}$

and the boundary $¥partial D$ of $D$ is a simple closed curve such that $¥partial D¥cap¥{(t, x);t=0¥}$

is a line segment with positive length. Let us denote by $a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}¥{¥mathrm{t},¥mathrm{x}$ ) the even
part of $a(t, x)$ with respect to $t$ .

We obtain the following

Theorem. Iaet us assume that ta(t, $x$ ) $>0$ for $t¥neq 0$. $/n$ order that the
equation $Lu$ $=0$ has a non-trivial $C^{1}$ solution $u$ in a neighborhood of a point $P$

on the axis, it is necessary that every neighborhood $U$ of $P$ contains a flag
domain $D_{0}$ such that for every flag domain $D$ in $D_{0}$ either the boundary $¥partial[D¥cap$

$¥{a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t, x)>0¥}]$ of $D¥cap¥{a_{even}(t, x)>0¥}$ or the boundary $¥partial[D¥cap¥{a_{even}(t, x)<0¥}]$

of $D¥cap¥{a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t,x)<0¥}$ is not contained in $D$ or not a finite number of rectifiable
Jordan curves.

Proof. We shall prove that the contraposition holds. We may assume
that there is a neighborhood $U$ of $P$ such that for every flag domain $D_{0}$ in
$U$ there exists a flag domain $D$ in $D_{0}$ having the property that $¥partial[D¥cap$

$¥{a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t, x)>0¥}]$ is a finite number of rectifiable Jordan curves in $D$ . Assuming
that $Lu$ $=0$ has a non-trivial $C^{1}$ solution $u$ in a neighborhood Vof $P$, we show a
contradiction. Without loss of generality, we may assume that the neighborhood
$V$ is equal to $U$ . First, assume that $u_{¥chi}(0, x)¥equiv 0$. Set $v¥equiv u_{X}$ . Note that $u$ and
hence $v$ is infinitely many times differentiable in $t¥neq 0$, since $L$ is elliptic for
$t¥neq 0$ . Then $v$ is a $C^{1}$ solution of $Lv+ia_{X}v=¥mathit{0}$ in $U_{¥pm}=U¥cap¥{t¥neq 0¥}$ with the
initial data 0 on $t=0$. Applying uniqueness theorem (see [3] or [5]), we see
that $v$ vanishes identically in $U$ because of the ellipticity of $L$ in $t¥neq 0$ . But this
contradicts the fact that $u$ is not a constant. Thus there exists a real value $x_{0}$

such that $u_{X}(0, x_{0})¥neq 0$. Then there is a flag domain $D_{0}$ in $U$ such that $u_{X}¥neq 0$

in a neighborhood $U_{0}¥equiv D_{0}¥cup¥{(t, x);(-t, x)¥in D_{0}¥}¥cup[¥overline{D}_{0}¥cap¥{t=0¥}]$ of $P_{0}(0, x_{0})$ .
From our assumption, there is a flag domain $D$ in $D_{0}$ such that $¥partial[D¥cap$

$¥{a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t, x)>0¥}]$ is a finite number of rectifiable Jordan curves in $D$ . Hereafter
the same method of the proof of Theorem A in Ninomiya [2] can be applied to
get a contradiction. The proof is as follows:

First we can assume that both of $¥mathrm{R}¥mathrm{e}$ $¥partial u/¥partial x$ and $¥mathrm{I}¥mathrm{m}$
$¥partial u/¥partial x$ are positive in

$U_{0}$ . Furthermore we can assume that $D¥cap¥{a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t,x)>0¥}$ is an open set $¥omega$ in
$U_{0}$ obtained by removing a finite number of simply connected domains or
that of multiply connected domains that are disjoint each other from a simply
connected domain $¥Omega$ surrounded by a rectifiable Jordan curve.

Let us denote by $a_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}$ , $u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}$ , and $u_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}$ the odd part of $a(t, x)$ with respect to
$t$ , that of $u(t, x)$ with respect to $t$ , and the even part of $¥mathrm{u}(t, x)$ with respect to $t$ ,
respectively. From $Lu$ $=0$, we have

(1.1) $¥partial u_{odd}/¥partial t+ia_{odd}(t, x)¥partial u_{odd}/¥partial x=-ia_{even}(t, x)¥partial u_{even}/¥partial x$
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in $U_{0}$ . Hence, it follows that

(1.2) $¥partial u_{odd}/¥partial t+ia_{odd}(t,x)¥partial u_{odd}/¥partial x=¥mathit{0}$ in $D¥cap¥Omega^{c}$

By our assumption ta(t, $x$) $>0$ for $t¥neq 0$, we see that $a_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}(t,x)>0$ for $t>0$.
Now we note that $u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}(0,x)¥equiv 0$. Therefore, applying uniqueness theorem

(see [3] or [5]) to (1.2), we see that $u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}(t,x)$ vanishes identically in $D¥cap¥Omega^{c}$ .
Now we know that there exists a $C^{1}$ solution $v=v(t,x)$ of

(1.3) $¥partial v/¥partial t+ia_{odd}(t, x)¥partial v/¥partial x=0$

in a neighborhood of $P_{0}$ such that $¥partial v/¥partial x¥neq 0([2])$. Then, we can assume that $v$

satisfies (1.3) in $U_{0}$ and that both of $¥mathrm{R}¥mathrm{e}$
$¥partial v/¥partial x$ and $¥mathrm{I}¥mathrm{m}$

$¥partial v/¥partial x$ are positive in
$U_{0}$ . From (1.1), we have

(1.4) $(¥partial v/¥partial x)¥{¥partial u_{odd}/¥partial t+ia_{odd}(t,x)¥partial u_{odd}/¥partial x¥}=$ $(¥partial v/¥partial x)¥{-ia_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t, x)¥partial u_{even}/¥partial x¥}$

in $U_{0}$ . Hence we have

(1.5) $¥int_{¥Omega}(¥partial v/¥partial x)¥{¥partial u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}/¥partial t+ia_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}(t,x)¥partial u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}/¥partial x¥}dtd¥mathrm{x}$

$=¥int_{¥Omega}$ $(¥partial v/¥partial ¥mathrm{x})¥{-ia_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t,x)¥partial u_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}/¥partial x¥}dtdx$ .

From (1.3), we see that the left-hand side of (1.5) $=$

$¥int_{¥Omega}¥{¥partial u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}/¥partial t¥cdot¥partial v/¥partial x-¥partial u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}/¥partial x¥cdot¥partial v/¥partial t¥}dtd¥mathrm{x}=¥int_{¥Omega}d¥{u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}(t, x)dv(t, x)¥}$

$=¥int_{¥partial¥Omega}u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}¥{(¥partial v/¥partial t)dt+(¥partial v/¥partial x)dx¥}$

$=0$

because of $u_{¥mathrm{o}¥mathrm{d}¥mathrm{d}}¥equiv 0$ on the boundary of $¥Omega$ .
Therefore, we have

$¥int_{¥Omega}(¥partial v/¥partial x)¥{a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t, x)¥partial u_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}/¥partial x¥}dtdx=0$ .

But this contradicts the fact that

$¥mathrm{I}¥mathrm{m}[(¥partial ¥mathrm{v}/¥partial ¥mathrm{x})¥{¥mathrm{a}_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}¥partial ¥mathrm{u}_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}/¥partial ¥mathrm{x}¥}]=¥mathrm{a}_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(¥mathrm{t}, x)¥cdot¥{¥mathrm{R}¥mathrm{e}¥partial ¥mathrm{u}_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}/¥partial ¥mathrm{x}¥cdot ¥mathrm{I}¥mathrm{m}¥partial ¥mathrm{v}/¥partial ¥mathrm{x}$

$+¥mathrm{I}¥mathrm{m}¥partial u_{even}/¥partial x¥cdot Re¥partial v/¥partial x¥}$

is positive in $¥omega¥subset¥Omega$ . Q.E.D.Q.E.D.
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Remark 1. We can easily verify that the Nirenberg example does not
satisfy the necessary condition stated in the above Theorem, if we take $P$ as the
origin.

Remark 2. When $a(t,x)$ is real analytic with respect to $t$ and $x$ or
$¥mathrm{s}¥mathrm{u}¥mathrm{p}¥mathrm{p}$

$¥mathrm{a}_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}=¥otimes$ , namely, $a_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}(t,x)$ vanishes identically, we know that the
necessary condition in Theorem is satisfied and that there exists a non-trivial
$C^{1}$ solution $u$ of the equation $Lu$ $=0$ in a neighborhood of $P$ . Hence the
interesting case is that $a(t, x)$ belongs to $C^{¥infty}¥backslash ¥mathrm{C}^{¥omega}$ and $¥mathrm{s}¥mathrm{u}¥mathrm{p}¥mathrm{p}$

$¥mathrm{a}_{¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}}¥neq¥emptyset$ . I tried
in vain to find an interesting example in such a function class that satisfies the
necessary condition in Theorem and that there exists a non-trivial $C^{1}$ solution
$u$ of the equation $¥partial u/¥partial t+ia(t, x)¥partial u/¥partial x=0$ in a neighborhood of $P$ .

Remark 3. Let $¥mathrm{Y}_{a}$ denote a $C^{¥infty}$ complex vector field in $R^{2}$ such that
$L_{¥alpha}¥equiv¥partial/¥partial t+ia(t, ¥mathrm{x})¥partial/¥partial ¥mathrm{x}$, where $a(t,x)$ is a real-valued $C^{¥infty}$ function. Then
there is a question: does there exist an equation $L_{a}u=0$ such that the equation
$L_{a}u=0$ has a non-trivial $C^{1}$ solution $u$ in a neighborhood of the origin and
any $C^{1}$ solution $u$ of the $L_{a}u=0$ in a neighborhood of the origin satisfies
$du=0$ at the origin? This is negative if $¥alpha(t,x)$ is real analytic or
$¥alpha(0,0)¥neq 0$ . It is generally yet open to be solved.
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