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Introduction

The configuration space $X$ of five distinct colored points on the complex
projective line is studied by various authors; most of them are complex-alge-
braic-geometry oriented. In [Sek] and [ST] however, they divided $X$ into
twenty simply connected parts, which are permuted by the symmetric group
$S_{5}$ , and studied their properties. The decomposition can be regarded as a
generalization of the phenomenon that the complex projective line $P^{1}$ is divided
into two parts by the real projective line living in $P^{1}$ . This paper makes a
thorough study on the adjacency of these twenty components to visualize the
space X. (The first half can be considered as a polished version of [Sek].)
In the text there are no proofs, because once the statements are well formulated
and presented one can prove anyway.

If the reader wonders why this combinatorial-topology-like paper was sub-
mitted to this journal specialized to functional equations, see [ST], in which
the connection problem for Appell’s hypergeometric differential equation $F_{1}$

defined on $X$ is solved in a neat way using the twenty simply connected
domains.

The second author is grateful to Professors K. Cho and M. Kato for
valuable discussions.

1. Preliminaries

The configuration space $X$ of five distinct colored points on the complex
projective line $P^{1}$ is defined by

$X=GL(2, C)¥backslash ¥{(P^{1})^{5}-¥Delta¥}$ ,

where the action is diagonal and
$¥Delta=$ { $(x_{1}$ , $¥ldots$ , $x_{5})¥in(P^{1})^{5}|x_{i}=x_{j}$ for some $i¥neq j$ }.

The symmetric group $S_{5}$ acts on $X$ as permutations of five points. A smooth
compactification of $X$ is given by
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$¥overline{X}=GL(2, C)¥backslash ¥{(P^{1})^{5}-¥Delta^{¥prime}¥}$ ,

where

$¥Delta^{¥prime}=$ { $(X_{1}$ , $¥ldots$ , $x_{5})¥in¥Delta|$ no three points coincide}.
It is isomorphic to the surface obtained by blowing up four points in general
position (i.e. no three points lie on a line) on the complex projective plane.
Thus there are ten rational curves with self-intersection number ? $1;$ let us
name them as follows:

$L(ij)=L(ji)=$ the orbit of $¥{¥chi_{i}=¥chi_{j}¥}$ , $1¥leq i$ , $j¥leq 5$ , $i¥neq j$ .

Two such distinct curves do not meet or meet normally at a point:

$L(ij)¥cap L(pq)=$ a point $¥Leftrightarrow¥{i,j¥}¥cap¥{p, q¥}=¥emptyset$ .

Notice that

$X=¥overline{X}-¥cup L(ij)$ .

The smooth action of $S_{5}$ on $¥overline{X}$ induces a transitive action on the set $¥{L(ij)¥}$ .
Let $X_{R},¥overline{X}_{R}$ and $L_{R}(ij)$ be the manifolds consisting of real valued points

of $X,¥overline{X}$ and $L(ij)$, respectively. They are the sets of fixed points of the
involution $c$ induced by the complex conjugation

$(X_{1^{ }},¥ldots, X_{5})¥mapsto(¥overline{X}_{1^{ }},¥ldots,¥overline{X}_{5})$ .

Let us consider an embedding $¥overline{X}¥rightarrow(P^{1})^{5}$ :

$(X_{1^{ }},¥ldots, X_{5})¥mapsto(¥varphi_{1}(¥mathrm{x}), ¥ldots, ¥varphi_{5}(x))$ ,

where $¥varphi_{j}(x)$ is a cross-ratio of four points $¥{x_{i}|1¥leq i¥leq 5, i¥neq j¥}$ . For four points
on the projective line, if no three points coincide, one can define six cross-ratios,
here we do not care which one we choose. One can readily check that this
is well-defined and gives an embedding.

The first author found that

$¥overline{X}-¥bigcup_{j=1}^{5}¥{x¥in¥overline{X}|¥tilde{s}¥varphi_{j}(x)=0¥}$ ,

where $s^{¥leftarrow}$ stands for imaginary part, is the disjoint union of twenty simply
connected open subsets (let us call them open chambers) of $¥overline{X}$, and that the
group $S_{5}$ acts transitively on the twenty open chambers. The authors must
confess that they do not know any intrinsic reason of these facts, which
can be shown by a brute computation; see [Sek]. Note that the set $¥{x$ $¥in$

$¥overline{X}|s^{¥leftarrow}¥varphi_{j}(x)=0¥}$ does not depend on the choice of a cross-ratio.

Proposition-Definition. For each curve $L(ij)$, there are exactly two open
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chambers that do not touch the curve, $i.e$ . their closures do not intersect $L(ij)$ .

The two open chambers are permuted by the involution $c$ . Let us call them
$C(ij)^{+}=C(ji)^{+}$ , $C(ij)^{-}=C(ji)^{-}$ , and put

$e$ $=¥{C(ij)^{+}, C(ij)^{-}|1¥leq i<j¥leq 5¥}$ .

2. The orbifold $¥overline{X}/¥langle c¥rangle$

In this section we study the quotient space $¥overline{X}/¥langle c¥rangle$ . Since $¥overline{X}_{R}$ is the set
of fixed points of $c$, we regard $¥overline{X}_{R}$ part of $¥overline{X}/¥langle c¥rangle$ . The configuration space

$X_{R}=¥overline{X}_{R}-¥cup L_{R}(ij)$

of five distinct points on the real projective line consists of twelve connected
components $D(J)$; each corresponding a juzu permutation $J$ of five letters.

Note. A juzu is a rosary used in Buddhism made by 108 beads, each
representing a human desire. We have only five desires, say, to

$1=$ sleep, $2=$ eat , $3=$ drink, $4=$ make love, $5=$ do mathematics.

A juzu permutation means a class of permutations such as

$¥{(12345), (23451), ¥ldots, (51234), (54321), (43215), ¥ldots , (15432)¥}$ ,

For example, $D(12345)$ is the set of configurations represented by $ x_{j}¥in R¥subset$

$P_{R}^{1}$ such that $x_{1}<¥cdots<¥chi_{5}$ ; it is an open pentagon in $¥overline{X}_{R}$ bounded by five
curves (see Figure 2.1)

$L_{R}(12)$ , $L_{R}(34)$ , $L_{R}(51)$ , $L_{R}(23)$ , $L_{R}(45)$ .

Denote by $¥overline{D}(J)$ the closure of $D(J)$ in $¥overline{X}_{R}$ . In Figure 2.2, disjoint four curves

$L_{R}(12)$ , $L_{R}(13)$ , $L_{R}(14)$ , $L_{R}(15)$

34

Fig. 2.1
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Fig. 2.2

are blown down, so that $¥overline{X}_{R}$ is transformed to a real projective plane, and
the pentagons $D(J)$ looks like triangles.

Let $¥pi$ be the projection $¥overline{X}¥rightarrow¥overline{X}/¥langle c¥rangle$ and

$C(ij):=¥pi C(ij)^{+}=¥pi C(ij)^{-}$ $¥underline{e}:=¥{C(ij)¥}$ .

We are going to construct a graph $¥underline{G}=G(¥underline{¥ovalbox{¥tt¥small REJECT}})$ whose vertices are the ten
elements of $¥underline{¥varphi}$, and two vertices are joined with an edge when the intersection
of their closures (in $¥overline{X}/¥langle c¥rangle$) is 3-dimensional.

Proposition [Sek, Lemma 2.2]. $C(ij)$ is connected with exactly three verti-
ces $C(pq)$, $C(qr)$ and $C(rp)$, where $¥{i,j, p, q, r¥}=¥{1, ¥ldots, 5¥}$ .

Let us visualize $¥underline{G}$ by putting the vertices $C(ij)$ on the vertices of the
regular dodecahedron, same one on the two antipodal vertices; the edges of
$¥underline{G}$ is the edges of the dodecahedron. Then identify two antipodal points; the
graph is now drawn on the dodecahedral (real) projective plane. There are
two ways, up to the extended dodecahedral group $(¥cong S_{5})$, to do it (Figure

2.3); either will do. The difference is as follows: a pentagon realized as the
boundary of a pentagonal face is an equator in the other realization.

Notice that in this graph, one can find twelve pentagons: easy to see
boundaries of six faces of the dodecahedron, and six equators like

$C(14)-C(35)-C(12)-C(45)-C(23)-C(14)$ .
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23 15

23 14

Fig. 2.3

They correspond to the twelve juzu permutations (see Figure 2.1):

(12345) $¥Leftrightarrow C(12)-C(34)-C(15)-C(23)-C(45)-C(12)$ .

Proposition. Let $¥overline{C}(ij)$ denote the closure of $C(ij)$ in $¥overline{X}/¥langle c¥rangle$ . We have

$¥overline{C}(ij)¥cap¥overline{X}_{R}=¥bigcup_{J}¥overline{D}(J)$ ,

where $J$ runs through the six juzu permutations that $i$ and $j$ are not adjacent. In
Figure 2.4, when $(ij)=(12)$, outside of the hexagon (which looks like a triangle)
shows the union of the six pentagons (which look like triangles). Notice that it
is a Mobius strip.

Proposition. For $¥{i,j¥}¥cap¥{p, q¥}=¥otimes,¥overline{C}(ij)¥cap¥overline{C}(pq)$ is a simply connected 3-
dimensional object bounded by four

$ L(nm)/¥langle c¥rangle$ , $n¥in¥{i,j¥}$ , $m¥in¥{p, q¥}$

and four $¥overline{D}(J)$ where $i$ and $j$, as well as $p$ and $q$ , are not adjacent in J. The
union of the four $¥overline{D}(J)$ is simply connected. Figure 2.5 illustrates it when $(ij)=$

$(12)$, $(pq)=(34)$.

Proposition. For $¥{i,j, p, q, r¥}=¥{1, ¥ldots, 5¥}$,
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Fig. 2.4

Fig. 2.5

$¥overline{C}(qr)¥cap¥overline{C}(rp)=¥overline{C}(qr)¥cap¥overline{C}(rp)¥cap¥overline{C}(ij)=¥overline{D}(irjpq)¥cup¥overline{D}(irjqp)$ .

The set $¥overline{C}(12)¥cap¥overline{C}(14)=¥overline{D}(31524)¥cup¥overline{D}(31542)$ is shown in Figure 2.6.

Notice that
$¥overline{C}(ij)-C(ij)=¥{¥overline{C}(pq)¥cap¥overline{C}(ij)¥}¥cup¥{¥overline{C}(qr)¥cap¥overline{C}(ij)¥}¥cup¥{¥overline{C}(rp)¥cap¥overline{C}(ij)¥}$ .

Note. Two juzu permutations (ijklm) and (ikmjl) are said to be mutually

dual; see Figure 2.7.
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Fig. 2.5

Fig. 2.7
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Consider ajuzu permutation say, $J=$ (12345); note that there is a pentagon
$C(12)-C(34)-C(15)-C(23)-C(45)-C(12)$ in the graph $¥underline{G}$ , and that the
pentagon $D(J)¥subset¥overline{X}_{R}$ is bounded by $L_{R}(12)$, $L_{R}(34)$, $L_{R}(15)$, $L_{R}(23)$ , $L_{R}(45)$.

Proposition. We have

$¥overline{C}(12)¥cap¥overline{C}(34)¥cap¥overline{C}(15)¥cap¥overline{C}(23)¥cap¥overline{C}(45)=¥overline{D}(J^{¥prime})$ ,

there $J^{¥prime}$ is a juzu permutation dual to $J$, $i.e$. $J^{¥prime}=$ (13524). See Figure 2.8.
Since the chambers and the intersection of any members of the above

closed chambers are connected and simply connected, the union
$¥overline{C}(12)¥cup¥overline{C}(34)¥cup¥overline{C}(15)¥cup¥overline{C}(23)¥cup¥overline{C}(45)$

is contractible.
Let us see the intersections of a curve $ L(pq)/¥langle c¥rangle$ and the above five closed

chambers. There are two kinds of curves say, $ L(35)/¥langle c¥rangle$ and $ L(12)/¥langle c¥rangle$ . The
intersections of $ L(35)/¥langle c¥rangle$ and $¥overline{C}(12),¥overline{C}(34),¥overline{C}(15),¥overline{C}(23),¥overline{C}(45)$ are

a segment in $L_{R}(35)$ , $ L(35)/¥langle c¥rangle$ , $ L(35)/¥langle c¥rangle$ , $ L(35)/¥langle c¥rangle$ , $ L(35)/¥langle c¥rangle$ .

Fig. 2.8
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Fig. $ 2¥theta$

The intersections of $ L(12)/¥langle c¥rangle$ and the above five closed chambers are
$¥emptyset$ , a segment in $L_{R}(12)$ , $ L(12)/¥langle c¥rangle$ , $ L(12)/¥langle c¥rangle$ , a segment in $L_{R}(12)$ .

For each $C(ij)$ there are six vertices $C(ab)$, $a¥in¥{i,j¥}$ , $b¥in¥{p, q, r¥}$ which
are not adjacent to $C(ij)$; they form a hexagon:

$C(ip)-C(jq)-C(ir)-C(jp)-C(iq)-C(jr)-C(ip)$ .

Proposition. We have

$¥cap¥{¥overline{C}(ab)|a¥in¥{i,j¥}, b¥in¥{p, q, r¥}¥}=L(ij)/¥langle c¥rangle$ .

Figure 2.9 illustrates, when $(ij)=(12)$, the cycle

$C(13)-C(24)-C(15)-C(23)-C(14)-C(25)-C(13)$ .

3. The graph $G$

We study a graph $G=G(q)$ whose vertices are the twenty elements of
$q$, and two vertices are joined with an edge when the intersection of their
closures (in $¥overline{X}$) is 3-dimensional.
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We are going to construct a double cover of the projective plane branching
at six points. Since six is an even number, such cover exists and as a
topological manifold, it is unique. As a covering however, it is not uniquely
determined, i.e. between two such covers, there does not necessarily exist a
homeomorphism which are equivariant with the projections. Compare this
fact with the double cover of the complex projective line branching on even
number of points, a hyper-elliptic curve. At any rate, in order to specify a
double cover of the projective plane, branching at six points, one must give
extra data: slits cutting the six pentagons. The double cover is obtained by
gluing two copies of the slitted projective plane along the slits, by the standard
way which can be found in any elementary book on Riemann surfaces.

Proposition. The graph $G$ is the double cover of $¥underline{G}$ drawn on the dodeca-
hedral projective plane, branching at the barycenters of the six pentagons, with
the five slits cutting the five edges in Figure 3.1.

23 15

Fig. 3.1

23 15

Fig. 3.2
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Fig. 3.3

Slits are not uniquely determined. In fact, the three slits cutting the three
edges 14-35, 13-45, 15-34 work as well, while the three slits cutting the three
edges 15-23, 14-25, 15-23, for example, give a different covering (see Figure
3.2); in fact, the inverse image of the pentagon 14-35-12-45-13-14 consists of
two copies of the pentagon on this covering, while it is a lO-gon in $G$.

The graph $G$ is given in Figure 3.3.

4. A presentation of the fundamental group of $X$

Each loop in $X$ is expressed by a cycle in $G$ .

Proposition (cf. [Sek, Lemma 8.4]). The twelve pentagons in $¥underline{G}$ coded by
juzu permutations like

$J=$ (12345): $C(12)-C(34)-C(15)-C(23)-C(45)-C(12)$

are lifted to 10-gons in G. For each lO-gon, the closure of the ten chambers
have $D(J^{¥prime})$ in common, where $J^{¥prime}$ is a juzu permutation dual to $J=$ (12345). Thus
the union of the closures in $X$ of the ten chambers is contractible in $X$.

The complex projective line is divided into two parts by the real projective
line; there are no ways a priori to distinguish them. So let us call each of
them a half of the line. The curve $L(ij)$ is divded by $L_{R}(ij)$ into two halves,
which will be denoted by $L(ij)/2$; when one of them is called so then the
other will be called $2¥backslash L(ij)$ .
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Let us see the intersections of a curve $L(pq)$ and the ten closed chambers
above. There are two kinds of curves say, $L(35)$ and $L(12)$. The intersections
of $L(35)$ and the ten closed chambers are

a segment in $L_{R}(35)/2$ , $L(35)/2$ , $L(35)/2$ , $L(35)/2$ , $L(35)/2$ ,

a segment in $L_{R}(35)$ , $2¥backslash L(35)$ , $2¥backslash L(35)$ , $2¥backslash L(35)$ .

The intersections of $L(12)$ and the ten closed chambers are

$¥emptyset$ , a segment in $L_{R}(12)$ , $L(12)/2$ , $L(12)/2$ , a segment in $L_{R}(12)$ ,

$¥emptyset$ , a segment in $L_{R}(12)$ , $2¥backslash L(12)$ , $2¥backslash L(12)$ , a segment in $L_{R}(12)$ .

Proposition. The ten hexagons in $¥underline{G}$ coded by $¥{i,j¥}$ like

{1, 2}: $C(13)-C(24)-C(15)-C(23)-C(14)-C(25)-C(13)$

are lifted to two hexagons in G. The corresponding loops in $X$ are homotopic;
they correspond to a loop around $L(ij)$.

In fact the following figure shows that the two hexagons coded by {1, 2}
are homotopic, by using two 10-gons coded by (13524) and (15324).

25----------------------- 13

$1||||||||||4--35$

$--211|||||||5-----233-----254¥{1, 2¥}1^{1}4--35--2|4||||$

(13524)

$|||||$

(15324)
23----------------------- 15

Fig. 4.0

By permuting {3, 4, 5}, one can take pairs of 10-gons coded by (13425)
and (14325), as well as those coded by (14523) and (15423). See Figure 4.1.

So far our argument was always symmetric under $S_{5}$ ; now we are going
to destory the symmetry, but keep the story symmetric under cyclic permuta-
tions of 1, 2, 3, 4, 5.

Around a lO-gon coded by the dual of (12345), make a maximal tree $B$

in $G$ by the ten edges issuing from the vertices of the 10-gons, as is shown
in Figure 4.2. The vertices of the lO-gon are printed by Helvetica-Bold, while
those of the complementary lO-gon are printed by Times-Bold. The edges of
the tree are thick, and the remaining ones (the sides of the complementary
lO-gon) are doted. We shall regard this tree, representing a simply connected
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Fig. 4.1

$¥{2,3)1....2$

Fig. 4.2
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domain in $X$, as a base, and consider the fundamental group $¥pi_{1}(X, B)$. One
finds ten hexagons each of which has five thick edges and one doted edge.
They are two by two coded by

{1, 2}: $h(12)=15-24$ $-13$ $-25$ $-14$ $-23¥cdots 15$ ,

{4, 5}: $h(45)=34-25-13$ $-24$ $-35$ $-12¥cdots 34$ ,

{2, 3}: $h(23)=12-35$ $-24$ $-13$ $-25$ $-34¥cdots 12$ ,

{1, 5}: $h(15)=45-13$ $-25$ $-14$ $-35$ $-12¥cdots 45$ ,

{3, 4}: $h(34)=45-13$ $-24$ $-35$ $-14$ $-23¥cdots 45$ .

Notice that the hexagon $h(i, i+1)$ is obtained from $h(i-1, i)$ by operating
the cyclic permutation $1¥rightarrow 2¥rightarrow¥cdots¥rightarrow 5¥rightarrow 1$ .

In Figure 4.2, one finds a subgraph given in Figure 4.0, which is shown
again in Figure 4.3 now with extra information. A close look at the figure
(notice that the lO-gon coded by (14325) is contractible) implies that the two
oriented edges $15¥rightarrow 23$ , representing a loop around $L(12)$, are inverse each
other as elements of $¥pi_{1}(X, B)$; let us call them $¥gamma(12)$ and $¥gamma(12)^{-1}$ . By cyclic
permutations of 1, 2, 3, 4, 5, one gets the corresponding facts for the other
four cases, and gets $¥gamma(45)$, $¥gamma(23)$ , $¥gamma(15)$, $¥gamma(34)$. We take them as a set of
generators of $¥pi_{1}(X, B)$. The proposition in the beginning of this section implies
that after suitably fixing the orientations of the $¥gamma(ij)’ ¥mathrm{s}$ , we have the pentagonal
relation

$¥gamma(12)¥gamma(45)^{-1}¥gamma(23)¥gamma(15)^{-1}¥gamma(34)¥gamma(12)^{-1}¥gamma(45)¥gamma(23)^{-1}¥gamma(15)¥gamma(34)^{-1}=1$ .

It is easy to check the commutation relations

$¥gamma(ij)¥gamma(pq)=¥gamma(pq)¥gamma(ij)$ if $¥{i,j¥}¥cap¥{p, q¥}=¥emptyset$ ;

for instance $¥gamma(12)¥gamma(45)=¥gamma(45)¥gamma(12)$ can be derived by the fact that the lO-gon

1325

$|$

(13425)

$1|3$ $2|5$

$|$

$21|-¥ldots.(..1.4¥ldots 3.2..5.)35¥ldots¥ldots¥ldots¥ldots¥ldots|_{¥dot{(}1,2¥}}¥ldots¥ldots¥ldots¥ldots-.¥ldots..¥cdots¥cdots¥sim¥cdots¥cdots 23|¥cdots¥cdots¥cdots-¥ldots¥cdots¥cdots 3¥cdots 5154-24143-_{¥dot{¥iota}1,2¥}}¥cdots¥cdots¥cdot-¥ldots¥cdot¥cdot 21|54$

Fig. 4.3
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coded by (15234) is contractible. These relations are exactly the same to
those obtained in [Yos2]. Thus the commutation relations and the pentagonal
relation generate the relations of the five generators of $¥pi_{1}(X, B)$ .

5. A representation of the braid group $B_{5}$ in the graph $G$

Fix a configuration x $¥in C(st)^{+}¥cup C(st)^{-}$ as in Figure 5.1.

. .$¥blacksquare$

$X_{l}$ $<$ $x_{¥mathit{2}}$ $<¥cdots<$ $x_{¥mathit{5}}$

Fig. 5.1. Base configuration

It is a small perturbation of a configuration in $D(12345)$. It follows from
a proposition in Section 2 that the allowable values of $st$ are {13, 14, 24, 25, 35}.
In order to fix the idea we choose $(st)=(24)$.

Let $b_{i}$ $(j =1, ¥ldots, 4)$ be the move of $x_{i}$ and $x_{i+1}$ in $P^{1}$ shown in Figure 5.2.

. .
Fig. 5.2. Move $b_{i}$

One can think that it is a half of a loop around $L(i, i+1)$, which is
represented by a hexagon $h(i, i+1)$ in $G$ in the previous section. Actually
we have

Proposition. The move $b_{i}$ in $X$ can be expressed by a subchain $s_{i}$ of
the hexagon $h(i, i+1)$ starting 24 and ending at (24)$(i,i+1)$ as follows:

$s_{1}=24-13$ $-25$ $-14$ , $s_{1}^{-1}=24-15$ $-23$ $-14$ ,

$s_{2}=24-35$ $-12$ $-34$ , $s_{2}^{-1}=24-13$ $-25$ $-34$ ,

$s_{3}=24-13$ $-45$ $-23$ , $s_{3}^{-1}=24-35$ $-14$ $-23$ ,

$s_{4}=24-35$ $-14$ $-25$ , $s_{4}^{-1}=24-15$ $-34$ $-25$ ,

where 24 stands for the chamber $C(24)^{+}$ or $C(24)^{-}$ to which the base configura-
tion $x$ belongs, other $ij$ stands for $C(ij)^{+}$ or $C(ij)^{-}$ , which is determined inductively
by adjacency.

Let us compose the moves: the product $b_{i}b_{j}$ means performing $b_{i}$ first and
then $b_{j}$ ; let $B_{5}$ be the group generated by $b_{1}$ , $¥ldots$ , $b_{4}$ (it is called the braid
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group); there is a natural homomorphism

$B_{5}¥ni b_{i}¥mapsto¥beta_{i}=(i, i+1)¥in S_{5}$ .

The group $S_{5}$ acts on chains of chambers in an obvious way; for instance,

$s_{1}^{¥beta_{1}}=14-23$ $-15$ $-24$ ,

we just exchanged 1 and 2 in the sequence $s_{1}$ ;

means $(s^{¥beta_{¥mathrm{i}}})^{¥beta_{j}}$ .$s^{¥beta_{¥mathrm{i}}¥beta_{j}}$

Now we are going to express the product $b_{i}b_{j}$ of moves by a chain of chambers.
After the move $b_{i}$ , the points $x_{i}$ and $x_{i+1}$ are exchanged, so the move should be
traced by the chain $s_{J}^{¥beta_{¥mathrm{i}}}$ , i.e.

$b_{i}b_{j}¥leftrightarrow s_{i}-s_{J}^{¥beta_{¥mathrm{i}}}$ ;

in general we have

Proposition. Product of moves can be expressed by a chain of chambers
as follows:

$ b_{i}b_{j}b_{k}b_{l}¥cdots¥leftrightarrow s_{i}-s_{j}^{¥beta_{¥mathrm{i}}}-s_{k}^{¥beta_{j}¥beta_{i}}-s_{l}^{¥beta_{k}¥beta_{i}¥beta_{i}}¥_¥cdots$

Let us paraphrase braid relations in $B_{5}$ in terms of chains of chambers.
For example, a braid relation

$b_{1}b_{2}b_{1}=b_{2}b_{1}b_{2}$

is expressed by

$24$ ? $13$ ? $25$ ? $14$ ? $35$ ? $24$ $¥sim 24$ $-35$ $-14$ $-25$ $-13$ $-24$ ,

which means
$24$ ? $13$ ? $25$ ? $14$ ? $35$ ? $24$ ? $13$ ? $25$ ? $14$ ? $35$ ? $14$ is homotopically 0;

this is nothing but the lO-gon coded by (24135).
A braid relation

$b_{1}b_{3}=b_{3}b_{1}$

is expressed by

$24$ ? $13$ ? $25$ ? $14$ ? $23$ ? $45$ ? $13$ $¥sim 24$ $-13$ $-45$ $-23$ $-14$ $-25$ $-13$ .

Drop the first 24, then you get again the lO-gon coded by (13254).
Notice that

$b_{1}^{2}=24-13$ $-25$ $-14$ $-(24 -13 -24 -14)^{(12)}$

$=24-13$ $-25$ $-14$ $-14$ $-23$ $-15$ $-24$ ;
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that is, $b_{1}^{2}$ corresponds to the loop $h(12)$ around $L(12)$ given in the previous
section, as we wanted.
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