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1. Introduction

Let $K$ be an ordinary differential field of characteristic 0 with a single
differentiation $D$ , containing an element $x$ with $Dx$ $=1$ . Let $y$ denote a solu-
tion of the following Painleve’s first equation

(1) $D^{2}y=6y^{2}+X$

and $ R=K¥langle y¥rangle$ . Throughout this note we suppose that equation (1) has no
solution satisfying any algebraic differential equation of first order over $K$ and
the field of constants of $K$, say $C$, is algebraically closed. The linear differential
equation attached to equation (1) is defined by

(2) $z^{¥prime¥prime}=12yz$ .

Our objective is to prove the following.

Theorem. The Picard-Vessiot group $G$ for equation (2) over $R$ strictly
agrees with $SL_{2}(C)$ .

It is known already that $G$ is irreducible (cf. [4]). Our method is to
show that the Riccati equation deduced from (2) by $w=z^{¥prime}/z$

(3) $w^{¥prime}=12y-w^{2}$

has no solution algebraic over $R$ . Our assertion results from a well-known
fact about Picard-Vessiot theory (cf. Kaplanski [1]).

2. Decomposition

Let us conversely assume that equation (3) has a solution $w$ that is
algebraic over $R$ . Let the irreducible algebraic equation for $w$ over $R$ be
$F(w)=0$. Though the coefficients of $F$ are in $R$ , we may assume that those
are all in the polynomial algebra $K[y, y^{¥prime}]$ , and rewrite

$F(w, y, y^{¥prime})=0$ .
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Thus we think of $F$ as irreducible in $K[u, y, y^{¥prime}]$ , where $u$ is a new indeterminate.
The $¥mathrm{K}$-algebra $K[u, y, y^{¥prime}]$ turns out to be a differential one by defining
$Du=12y-u^{2}$ . Differentiating the above equation for $w$, we then have

$DF(w, y, y^{¥prime})=0$

Since $F$ is irreducible, there is a polynomial $A¥in K[u, y, y^{¥prime}]$ with

$DF$ $=AF$ .

The polynomial $A$ will be seen to be linear in $u$ .

To this end let us introduce thereupon the weight function, which is
defined as

$¥omega(u^{i}y^{j}y^{¥prime k})=i+2j+3k$

for power products. One remark that this extends the weight function ap-
peared in [3]. Now we have been given a weight function, as did in [3],
we decompose polynomials in $K[y, y^{¥prime}, u]$ into some isobaric polynomials. Any
nonzero polynomial $F¥in K[y, y^{¥prime}, u]$ thus has the decomposition

$F=¥sum_{h=0}^{p}F_{h}$ , $F_{p}¥neq 0$ , $F_{h}¥in V_{h}$ ,

where $V_{h}$ indicates the $¥mathrm{X}$-linear space spanned by power products of the same
weight $h$ . The number $p$ is called the weight of $F$ . It is easily seen that
$co(DF)$ $=¥omega(F)+1$ provided $DF$ $¥neq 0$ .

Now let us observe the weights of both sides of $DF$ $=AF$. If $F$ has
degree $m$ in $u$ , $DF$ has degree $m+1$ and weight greater by 1 than $F$. Therefore
$A$ is linear in $¥mathrm{w}$, and its coefficient of $u$ is $-m$, which is found from the
definition of $D$ . In what follows we set $A=-mu+a$, $a¥in K$, hence

(4) $DF$ $=(-mu+a)F$

To determine the isobaric components of $F$, it is required to divide the differen-
tiation $D$ in $K[u, y, y^{¥prime}]$ into three parts

$D=X+¥mathrm{Y}+Z$ ,

where

$X=(12y-u^{2})¥partial/¥partial u+y^{¥prime}¥partial/¥partial y+6y^{2}¥partial/¥partial y^{¥prime}$ , $Z=x¥partial/¥partial y^{¥prime}$ ,

and $¥mathrm{Y}$ indicates the differentiation obtained by applying $D$ to coefficients.
Clearly

$XV_{h^{¥_}l}¥subset V_{h}$ , $YV_{h}¥subset V_{h}$ , $ZV_{h+¥mathit{3}}¥subset V_{h}$ .
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By the use of the decomposition of $F$ we rewrite quation (4) as

$(^{*})$ $XF_{h}+YF_{h+l}+ZF_{h+¥mathit{3}}=(-mu)F_{h}+aF_{h+¥mathit{1}}$ .

In order that this equation makes sense for any $h$ , we set $F_{h}=0$ for $h<0$

or $h>p$.

3. Properties of $X$

In this section we regard $R$ and $R(u)$ as differential fields with the differen-
tiation $X$ . Call in mind that

$Xu$ $=12y-u^{2}$ $Xy$ $=y^{¥prime}$ $Xy^{¥prime}=6y^{2}$

The field of constants of $R$ is known to be $L=K(¥gamma)$, $¥gamma=y^{;2}-4y^{3}$ , $R/K$ is
called a Poincare field (cf. [4]). We here however include the proof of this
fact in the extended form.

Proposition 1. If $f¥in R$ satisfies $Xf=a+b/y^{¥prime 2}$ , $a$ , $b¥in L$, then it lies in $L$ .

Proof. Writing $f=g+y^{¥prime}g$, $g$ , $h¥in L(y)$, we have

$Xf$ $=(4y^{3}+¥gamma)h_{y}+6y^{2}h+y^{¥prime}g_{y}$ .

By assumption $g_{y}=0$, hence $g¥in L$ . For $h$ , we have

$(4y^{3}+¥gamma)^{2}h_{y}+6y^{2}(4y^{3}+¥gamma)h=a(4y^{3}+¥gamma)+b$ .

Note here that polynomial $ y^{¥prime 2}=4y^{3}+¥gamma$ is irreducible in $L[y]$ . Suppose $h¥neq 0$.
By degree argument we know $h$ not be a polynomial. Let $k$ be a prime
divisor of the denominator of $h$ . It is seen that $k$ is nothing other than $y^{¥prime 2}$ ,
because the orders of $h_{y}$ and $¥cdot$ $h$ in $k$ do not agree. Hence we may set
$ k=4y^{3}+¥gamma$. Let $-r$ be the order of $h$ in $k$ and write $h=k^{-r}H$, $H¥in L[y]$

with $H$ and $k$ being coprime. Then the above equality implies

$(6 - 12r)y^{2}k^{-r+1}H+k^{-r+2}H_{y}=ak+b$ ,

and so $r=1$ . We have $kH_{y}-6y^{2}H=ak+b$ . This equation, however, has
no polynomial solution, yielding a contradiction.

Let us introduce two distinguished polynomials. Polynomial $y^{¥prime}u-6y^{2}$ is
denoted by $t$ , and polynomial $y^{¥prime}t$ is denoted by $s$ . These satisfy the following:

$Xt$ $=-ut$ , $Yt$ $=0$ , $Zt$ $=xu$ , $Xs^{-1}=1/y^{¥prime 2}$

Making use of these polynomials, we prove

Proposition 2. If $f¥in R(u)$ satisfies $Xf$ $=0$ then it lies in $L$ .
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Proof. Suppose conversely that there is an $f$ not contained in $L$ with
$Xf=0$. Since the field of constants of $R$ is the same as $L$, such $f$ is not
algebraic over $R$ . Hence /, $s$ depend algebraically over $R$ . This time, it is
known that there exists a $g$ algebraic over $R$ with $Xg$ $=1/y^{;2}$ . Taking its
$¥mathrm{t}¥mathrm{r}¥mathrm{a}¥mathrm{c}¥mathrm{e}$ over $R$ , if necessary, we may assume $g¥in R$ . This however contradicts
Proposition 1.

Proposition 3. If $f¥in R(u)$ satisfies $XfeL$ then it lies in $L$ .

Proof. If $f¥in R$ this results readily from Proposition 1. Assume $f¥not¥in R$ .

Since $f$, $s^{-1}$ depends algebraically over $R$ this time, by a theorem of Ostrowski,
there exists an element $b$ of $L$ such that $g=f+bs^{-1}¥in R$ . Hence $Xg$ $=$

$Xf+b/y^{¥prime 2}$ , which implies $Xf=b$ $=0$ by Proposition 1.

4. Proof of Theorem

We shall attempt to determine $F_{h}$ step by step using the results in the
proceeding section. We first examine equation $(^{*})$ for $h=p$

$XF_{p}=-muF_{p}$ .

Using polynomial $t$ , we can write this as $X(F_{p}/t^{m})=0$ . Hence $F_{p}=ct^{m}$ for
some $c¥in L$ . Thus $c=c_{0}¥gamma^{k}$ and $F_{p}=c_{0}¥gamma^{¥mathrm{k}}t^{m}$ for some $c_{0}¥in K$ and non-negative
integer $k$ . We may assume $c_{0}=1$ without loss of generality. Note that
$p=6k+4m¥geq 4$.

For $h=p-1$ equation $(^{*})$ reads

$XF_{p^{¥_}1}=-muF_{p^{¥_}1}+aF_{p}$

This yields

$X(F_{p^{¥_}1}/F_{p})=a¥in K¥subset L$ ,

which implies $a=0$ and $F_{p^{¥_}1}=0$ by Proposition 3.
From equation $(^{*})$ for $h=p-2$, $p-3$

$XF_{p^{¥_}2}=-muF_{p^{¥_}2}$ , $XF_{p^{¥_}3}=-muF_{p^{¥_}3}$ ,

in the same way as above, it follows that $F_{p^{¥_}2}=F_{p^{¥_}3}=0$ .

For $h=p-4$ equation $(^{*})$ reads

$XF_{p^{¥_}4}+ZF_{p}=-myF_{p}$ .

The logarithmic derivative of $F_{p}$ with respect to $Z$ is
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$ZF_{p}/F_{p}=kZ¥gamma/¥gamma+mZt/t$

$=2kxy^{¥prime}/¥gamma+mxu/t$

$=X(2kxy/¥gamma+mx/t)$ .

Hence

$X(F_{p^{¥_}4}/F_{p})+X(2k¥mathrm{x}y/¥gamma+mx/t)=0$ ,

and

$F_{p^{¥_}4}=-(2kxy/¥gamma+m¥mathrm{x}/t)F_{p}$ ,

in view of Proposition 2. Remark that $p>4$. In fact, $p=4$ would implicate
$F_{0}¥in K$ , $k=0$, $m=1$ and $F=t-x$. This would make a contradiction.

Finally consider equation $(^{*})$ for $h=p-5$:

$XF_{p^{¥_}5}-(2ky/¥gamma+m/t)F_{p}=-muF_{p^{¥_}5}$ .

Then we have

$X(F_{p^{¥_}5}/F_{p})=2ky/¥gamma+mys^{-1}$

Let the expansion of $F_{p^{¥_}5}/F_{p}$ in $s$ be

$¥sum_{i=r}^{¥infty}a_{i}s^{i}$ , $a_{r}¥neq 0$ , $a_{i}¥in R$ .

Then

$¥sum_{i=r}^{¥infty}(Xa_{i}-(i-1)y^{¥prime-2}a_{i-1})s^{i}=mys^{-1}+2ky/¥gamma$ .

If $r¥leq-2$ then $Xa_{r}=0$, $Xa_{r+1}-ry^{¥prime-2}a_{r}=0$ or my. These imply $a_{r}¥in L$ and
a contradiction in virtue of Proposition 1 or its proof. Hence $r=-1$ ,

$Xa_{¥_}1=my$. Let $y$ have only a pole $P$, whose order is known to be 2. It
is also the only pole of $a_{¥_}1$ , of which the order is seen to be 1. But such
an element does not exist in $R$ . This completes the proof.
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