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1. Introduction

Let K be an ordinary differential field of characteristic 0 with a single
differentiation D, containing an element x with Dx = 1. Let y denote a solu-
tion of the following Painlevé’s first equation

(1) D?*y = 6y* + x

and R = K{y)». Throughout this note we suppose that equation (1) has no
solution satisfying any algebraic differential equation of first order over K and
the field of constants of K, say C, is algebraically closed. The linear differential
equation attached to equation (1) is defined by

2) z" =12yz.
Our objective is to prove the following.

Theorem. The Picard-Vessiot group G for equation (2) over R strictly
agrees with SL,(C).

It is known already that G is irreducible (cf. [4]). Our method is to
show that the Riccati equation deduced from (2) by w = z'/z

(3) w =12y — w?

has no solution algebraic over R. Our assertion results from a well-known
fact about Picard-Vessiot theory (cf. Kaplanski [1]).

2. Decomposition

Let us conversely assume that equation (3) has a solution w that is
algebraic over R. Let the irreducible algebraic equation for w over R be
F(w) = 0. Though the coefficients of F are in R, we may assume that those
are all in the polynomial algebra K[y, y'], and rewrite

Fw,y,y)=0.
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Thus we think of F as irreducible in K[u, y, y'], where u is a new indeterminate.
The K-algebra K[u,y,y’] turns out to be a differential one by defining
Du = 12y — u®. Differentiating the above equation for w, we then have

DF(w, y,y)=0
Since F is irreducible, there is a polynomial A € K[u, y, y'] with
DF = AF .

The polynomial 4 will be seen to be linear in w.
To this end let us introduce thereupon the weight function, which is
defined as

ou'y’y™*) =i+ 2j + 3k

for power products. One remark that this extends the weight function ap-
peared in [3]. Now we have been given a weight function, as did in [3],
we decompose polynomials in K[y, y’, u] into some isobaric polynomials. Any
nonzero polynomial F € K[y, y’, u] thus has the decomposition

D
F=)Y F, F,#0, FeV,,
h=0

where Vj, indicates the K-linear space spanned by power products of the same
weight h. The number p is called the weight of F. It is easily seen that
o(DF) = w(F) + 1 provided DF # 0.

Now let us observe the weights of both sides of DF = AF. If F has
degree m in u, DF has degree m + 1 and weight greater by 1 than F. Therefore
A is linear in u, and its coefficient of u is —m, which is found from the
definition of D. In what follows we set A = —mu + a, a € K, hence

4) DF = (—mu + a)F

To determine the isobaric components of F, it is required to divide the differen-
tiation D in K[u, y, y'] into three parts

D=X+Y+Z,
where
X = (12y — u®)d/0u + y'd/0y + 6y?0/dy’, Z = x0/0y’,

and Y indicates the differentiation obtained by applying D to coefficients.
Clearly

XVeicV,  YWceW, ZVscV,.
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By the use of the decomposition of F we rewrite quation (4) as
*) XF, + YF,4y + ZFy 5 = (—mwF, + aF,,, .

In order that this equation makes sense for any h, we set F, =0 for h <0
or h > p.

3. Properties of X

In this section we regard R and R(u) as differential fields with the differen-
tiation X. Call in mind that

Xu =12y —u?, Xy=y, Xy =6y2.

The field of constants of R is known to be L = K(y), y =y’ —4y3, R/K is
called a Poincaré field (cf. [4]). We here however include the proof of this
fact in the extended form.

Proposition 1. If f e R satisfies Xf = a + b/y'?, a, b € L, then it lies in L.
Proof. Writing f=g + y'g, g, he L(y), we have
Xf=(4y*> +y)h, + 6y*h + y'g,.
By assumption g, =0, hence ge L. For h, we have
(4y® + y)*h, + 6y*(4y* + V)h = a@dy* +y)+b.

Note here that polynomial y'?> = 4y® + y is irreducible in L[y]. Suppose h # 0.
By degree argument we know h not be a polynomial. Let k be a prime
divisor of the denominator of h. It is seen that k is nothing other than y’2,
because the orders of h, and- h in k do not agree. Hence we may set
k=4y*>+7. Let —r be the order of h in k and write h = k"H, H € L[y]
with H and k being coprime. Then the above equality implies

(6 —12r)y*k™"'H + k"?H,=ak + b,

and so r=1. We have kH, — 6y*H = ak + b. This equation, however, has
no polynomial solution, yielding a contradiction.

Let us introduce two distinguished polynomials. Polynomial y'u — 6y? is
denoted by t, and polynomial y't is denoted by s. These satisfy the following:

Xt=—ut, Yt=0, Zt = xu, Xst=1/y2.
Making use of these polynomials, we prove

Proposition 2. If fe R(u) satisfies Xf =0 then it lies in L.
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Proof. Suppose conversely that there is an f not contained in L with
Xf=0. Since the field of constants of R is the same as L, such f is not
algebraic over R. Hence f, s depend algebraically over R. This time, it is
known that there exists a g algebraic over R with Xg = 1/y’2. Taking its
trace over R, if necessary, we may assume g € R. This however contradicts
Proposition 1.

Proposition 3. If fe R(u) satisfies Xf e L then it lies in L.

Proof. If fe R this results readily from Proposition 1. Assume f¢ R.
Since f, s~! depends algebraically over R this time, by a theorem of Ostrowski,
there exists an element b of L such that g=f+ bs"'e R. Hence Xg =
Xf + b/y’?, which implies Xf = b = 0 by Proposition 1.

4. Proof of Theorem

We shall attempt to determine F, step by step using the results in the
proceeding section. We first examine equation (*) for h=p

XF,= —muF, .

Using polynomial ¢, we can write this as X(F,/t™)=0. Hence F,= ct™ for
some ce L. Thus ¢ = ¢oy* and F, = ¢y*t™ for some ¢, € K and non-negative
integer k. We may assume c, =1 without loss of generality. Note that
p =6k + 4m > 4.

For h = p — 1 equation (*) reads

XF, ; = —muF,_; + aF,
This yields
X(F,—1/F,)=aeK c L,

which implies a =0 and F,_; = 0 by Proposition 3.
From equation (*) for h=p—2, p—3

XFp-Z = "'mqu_z s XFP_3 = _mqu_3 N

in the same way as above, it follows that F,_, = F, 3 =0.
For h = p — 4 equation (*) reads

XF, , + ZF, = —myF, .

The logarithmic derivative of F, with respect to Z is
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ZF,/F, = kZy/y + mZt/t
= 2kxy'[y + mxu/t
= X (2kxy/y + mx/t).
Hence
X (F,_4/F,) + X(2kxy/y + mx/t) =0,
and

F,_4 = —(2kxy/y + mx/t)F,,

in view of Proposition 2. Remark that p > 4. In fact, p =4 would implicate
FoeK, k=0, m=1 and F =t —x. This would make a contradiction.
Finally consider equation (*) for h=p — 5. ‘

XF, s — (2ky/y + m/t)F, = —muF,_s .
Then we have
X(F,-s/F,) = 2ky/y + mys™*.

Let the expansion of F,_s/F, in s be
Y a;st, a, #0, a;eR.

Then

Q0

Y (Xa;— (i — 1)y 2a;_y)s' = mys™ + 2ky/y .

i=r

If r < —2 then Xa,=0, Xa,,;, —ry'" 2a,=0 or my. These imply a, € L and
a contradiction in virtue of Proposition 1 or its proof. Hence r= —1,
Xa_, =my. Let y have only a pole P, whose order is known to be 2. It
is also the only pole of a_;, of which the order is seen to be 1. But such
an element does not exist in R. This completes the proof.
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