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In [1], a sufficient condition is derived for the existence of a positive
nondecreasing solution of a class of nonlinear difference equation of the form

$¥Delta(¥Delta y_{k-1})^{¥sigma}+s_{k}y_{k}^{¥sigma}=0$ , $ k=1,2,3,¥ldots$

where $¥sigma>0$ (this will be assumed in the sequel). In this note, we are
concerned with a Hille-Wintner type comparison theorem for the existence of
a positive nondecreasing solution of a slightly more general equation

(1) $¥Delta(r_{k-1} (¥Delta z_{k1}¥_)^{¥sigma})+s_{k}z_{k}^{¥sigma}=0$, $ k=1,2,3,¥ldots$

where $r_{k}>0$ for $k¥geq 0$ . To be more precise, we shall assume that there is a
positive nondecreasing solution for a “majorant” equation of the form

(2) $¥Delta(R_{k-1} (¥Delta y_{k-1})^{¥sigma})+S_{k}y_{k}^{¥sigma}=0$, $k=1,2,3$, $¥ldots$ ,

and then show that (1) has a positive nondecreasing solution also. The full
conditions on $¥{R_{k}¥}_{0}^{¥infty}$ and $¥{S_{k}¥}_{1}^{¥infty}$ will be stated later, here we shall only assume
that $¥{R_{k}¥}$ is a positive sequence bounded by a positive constant $¥Gamma$. In case
$¥sigma=1$ , the corresponding equations reduce to linear difference equations and
a Hille-Wintner type comparison theorem for positive solutions (not positive
nondecreasing) of these equations has already been given by Hooker [3].

The following result (see for example [4, Theorem 41]) will be needed in
the sequel.

Lemma 0. If $x$ , $y¥geq 0$ and $p>1$ , then $x^{p}-y^{p}¥leq px^{p-1}(¥mathrm{x}-y)$ .

We begin our study by assuming that (2) has a positive nondecreasing
solution $¥{y_{k}¥}_{0}^{¥infty}$ . Then letting

(3.) $w_{k}=R_{k}(¥Delta y_{k})^{¥sigma}/y_{k}^{¥sigma}$ , $k¥geq 0$

we see that $w_{k}¥geq 0$ for $k¥geq 0$ and

(4) $¥Delta w_{k}+¥frac{w_{k}}{(w_{k}^{1/¥sigma}+R_{k}^{1/¥sigma})^{¥sigma}}¥{(w_{k}^{1/¥sigma}+R_{k}^{1/¥sigma})^{¥sigma}-R_{k}¥}+S_{k+1}=0$, $k¥geq 0$ .
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For convenience, we shall denote

$¥frac{X}{(x^{1/¥sigma}+t^{1/¥sigma})^{¥sigma}}¥{(x^{1/¥sigma}+t^{1/¥sigma})-t¥}$

by $F(t, x)$ . Then (4) can be rewritten as

(5) $¥Delta w_{k}+F(R_{k}, w_{k})+S_{k+1}=0$, $k¥geq 0$ .

Note that the function $F(t, x)$ is defined on the set

$¥Omega=¥{(t, ¥mathrm{x})|0<t<¥Gamma, ¥mathrm{x}^{1/¥sigma}+t^{1/¥sigma}>0¥}$ .

Note further that even though $F(t, 0)=0$, the general behavior of $F(t, x)$

depends on the value of $¥sigma$ and also varies on different portions of $¥Omega$ . There
are two different portions which are of interest, namely,

$¥Omega_{1}=¥{(t, x)¥in¥Omega|x¥geq 0¥}$

and

$¥Omega_{2}=¥{(t, x)¥in¥Omega|x^{1/¥sigma}+t^{1/¥sigma}>0, ¥mathrm{x} ¥leq 0¥}$

Since

?
$X^{1+¥sigma}$

$F_{t}(t, ¥mathrm{x})=¥overline{(¥chi^{1/¥sigma}+t^{1/¥sigma})^{1+¥sigma}}$
,

it is clear that $F_{t}(t, x)¥leq 0$ on $¥Omega_{1}$ and on $¥Omega_{2}$ when $¥sigma$ is a quotient of odd
positive integers. Since

$F_{x}(t, ¥mathrm{x})=¥frac{(¥chi^{1/¥sigma}+t^{1/¥sigma})^{1+¥sigma}-(t^{1/¥sigma})^{1+¥sigma}}{(¥chi^{1/¥sigma}+t^{1/¥sigma})^{1+¥sigma}}$ ,

it is also clear that $F_{¥mathrm{x}}(t, x)¥geq 0$ on $¥Omega_{1}$ , Furthermore, since

$(x^{1/¥sigma}+t^{1/¥sigma})^{1+¥sigma}-(t^{1/¥sigma})^{1+¥sigma}¥leq(1+¥sigma)(X^{1/¥sigma}+t^{1/¥sigma})^{¥sigma_{X}1/¥sigma}$

by Lemma 0, we see that $F_{x}(t, x)¥leq 0$ on $¥Omega_{2}$ when $¥sigma$ is a quotient of odd
positive integers.

As a consequence, if $¥{(i_{n}, X_{n})¥}_{0}^{¥infty}$ is a sequence of points in $¥Omega_{1}$ such that
$x_{n}¥geq¥hat{¥mathrm{x}}>0$ , then

$F(t_{n}, ¥chi_{n})¥geq F(¥Gamma, ¥chi_{n})¥geq F(¥Gamma,¥hat{x})$ .

From this, we see that if $¥{(t_{n}, ¥chi_{n})¥}_{0}^{¥infty}$ is a sequence of points in $¥Omega_{1}$ such that
$F(t_{n}, ¥mathrm{x}_{n})¥rightarrow 0$ , then $X_{n}¥rightarrow 0$ . A similar conclusion also holds when $¥sigma$ is a quotient
of odd positive integers.
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Lemma 1. If $¥{(t_{n}, x_{n})¥}_{0}^{¥infty}$ is a sequence in $¥Omega_{1}$ such that $F(t_{n}, ¥chi_{n})¥rightarrow 0$ , then
$x_{n}¥rightarrow 0$ . If $¥sigma$ is a quotient of odd positive integers and $¥{(t_{n}, ¥chi_{n})¥}_{0}^{¥infty}$ is a sequence
in $¥Omega$ such that $F(t_{¥eta}, x_{n})¥rightarrow 0$ , then $X_{n}¥rightarrow 0$.

Lemma 2. Suppose the sequence $¥{S_{k}¥}_{1}^{¥infty}$ satisfies

(6) $¥sum_{k=1}^{¥infty}S_{k}<¥infty$ .

Then (2) has a positive nondecreasing solution $¥{y_{k}¥}_{0}^{¥infty}$ if and only if there is $a$

nonnegative sequence $¥{w_{k}¥}_{0}^{¥infty}$ which satisfies

(7) $w_{k}=¥sum_{i=k}^{¥infty}F(R_{i}, w_{i})+¥sum_{i=k}^{¥infty}S_{i+1}$ $k¥geq 0$ .

Proof. By summing (5) from $k=n$ to $N$ , we have

(8) $w_{N+1}-w_{n}+¥sum_{k=n}^{N}F(R_{k}, w_{k})=-¥sum_{k=n}^{N}S_{k+1}$ $n¥geq 0$ .

If

$¥sum_{k=n}^{¥infty}F(R_{k}, w_{k})=+¥infty$

then $w_{N+1}$ diverges to $-¥infty$ in view of (6). But this is impossible since
$w_{k}^{1/¥sigma}¥geq 0$ . Thus

$¥sum_{k=n}^{¥infty}F(R_{k}, w_{k})<+¥infty$

which implies $F(R_{k}, w_{k})$ converges to zero. Thus by Lemma 1, $w_{k}¥rightarrow 0$ so that
taking limit on both sides of (8) as $N$ approaches positive infinity, we obtain
(7) as required.

Conversely, if $¥{w_{k}¥}_{0}^{¥infty}$ is a nonnegative sequence which satisfies (7), then
taking difference of both sides of (7) leads immediately to equation (4). Writing
(3) in the form

$y_{k+1}/y_{k}=1+R_{k}^{-1/¥sigma}w_{k}^{1/¥sigma}$ $k¥geq 0$ ,

we may easily verify that the sequence $¥{u_{k}¥}_{0}^{¥infty}$ , defined by $u_{0}=1$ and
$u_{k+1}=u_{k}(1+R_{k}^{-1/¥sigma}w_{k}^{1/¥sigma})$ for $k¥geq 0$, is a positive nondecreasing solution of (2).
Q. E. D.

We are ready for the main theorem of our note.

Theorem 1. Suppose $0<R_{k}¥leq r_{k}$ and $ R_{k}¥leq¥Gamma$ for all $k¥geq 0$ and some
constant $¥Gamma$. Suppose further that
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(9) $ 0¥leq¥sum_{k=n}^{¥infty}s_{k}¥leq¥sum_{k=n}^{¥infty}S_{k}<¥infty$

for all sufficiently large $n$ . If equation (2) has a positive nondecreasing solution,
so does equation (1).

Proof. By Lemma 2, equation (7) has a nonnegative solution $¥{w_{k}¥}_{0}^{¥infty}$ . In
view of the same Lemma, to prove our theorem, it suffices to find a nonnegative
solution to

(10) $u_{n}=¥sum_{k=n}^{¥infty}F(r_{k}, u_{k})+¥sum_{k=n}^{¥infty}s_{k+1}$ , $n¥geq 0$ .

We shall use a successive approximation argument to accomplish this. Define
a sequence of successive approximation $¥{u^{j}¥}_{0}^{¥infty}$ as folows:

$u_{k}^{0}=w_{k}$ , $k¥geq 0$

(11) $u_{k}^{j+1}=¥sum_{i=k}^{¥infty}F(r_{i}, u_{i})+¥sum_{i=k}^{¥infty}s_{i+1}$ , $k¥geq 0$ , $j¥geq 0$ .

Since $F(r_{i}, u_{i}^{0})¥leq F(R_{i}, u_{i}^{0})$ by Lemma 1, thus

$0¥leq u_{k}^{1}=¥sum_{i=k}^{¥infty}F(r_{i}, u_{i}^{0})+¥sum_{i=k}^{¥infty}s_{i+1}¥leq¥sum_{i=k}^{¥infty}F(R_{i}, u_{i}^{0})+¥sum_{i=k}^{¥infty}S_{i+1}=w_{k}=u_{k}^{0}$ , $k¥geq 0$ .

Proceeding inductively, we assume that $0¥leq u_{k}^{j}¥leq u_{k}^{j-1}$ for $k¥geq 0$ . Then

$0¥leq u_{k}^{j+1}=¥sum_{i=k}^{¥infty}F(r_{i}, u_{i}^{j})+¥sum_{i=k}^{¥infty}s_{i+1}¥leq¥sum_{i=k}^{¥infty}F(R_{i}, u_{i}^{j-1})+¥sum_{i=k}^{¥infty}s_{i+1}=u_{k}^{j}$, $k¥geq 0$ .

Thus $u_{k}^{j}$ is nonnegative and nonincreasing in $j$ for each $k¥geq 0$ so that we may
define

$u_{k}=¥lim_{j}u_{k}^{j}$ , $k¥geq 0$ .

Since $¥mathit{0}¥leq u_{k}¥leq u_{k}^{j}¥leq u_{k}^{¥mathit{0}}=w_{k}$ for all $j¥geq 1$ and $k¥geq 0$ , and since

$F(r_{i}, u_{i}^{j})¥leq F(R_{i}, u_{i}^{j})¥leq F(R_{i}, u_{i}^{0})$

the convergence of the series in the first sum of (11) is uniform respect to
$j$ . Taking limit on both sides of (11), we then obtain (10) as required.
Q. E. D.

As an example, let us quote a result in [1] which states that equation
(2) has a positive nondecreasing solution when $R_{k}=1$ for $k¥geq 0$ and $S_{k}¥geq 0$

for $k¥geq 1$ and
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$¥sum_{k=n+1}^{¥infty}S_{k}¥leq¥frac{1}{e^{2¥sigma}2^{n¥sigma}}$ , $n¥geq 0$ .

Combining this and Theorem 1, we see that (1) has a positive nondecreasing
solution if $r_{k}¥geq 1$ for $k¥geq 0$ and

$¥sum_{k=n+1}^{¥infty}s_{k}¥leq¥frac{1}{e^{2¥sigma}2^{n¥sigma}}$ , $n¥geq 0$ .

Up to now we have assumed that $¥sigma$ is an arbitrary positive
number. Suppose $¥sigma$ is a quotient of two odd positive integers. Then a slight
variation of the proof of Lemma 2 leads readily to

Lemma 3. Suppose $¥sigma$ is a quotient of two positive odd integers. Suppose
further that (6) holds. Then (2) has a positive solution if and only if there
$e.x$ists a sequence $¥{w_{k}¥}_{0}^{¥infty}$ which satisfies $w_{k}^{1/¥sigma}+R_{k}^{1/¥sigma}>0$ for $k¥geq 0$ and equation
(7).

By means of Lemma 3, we can then obtain a generalization of the result
of Hooker mentioned earlier.

Theorem 2. Under the same assumptions of Theorem 1, suppose further
that $¥sigma$ is a quotient of two positive odd integers, then (1) has a positive solution
when (2) does.

Finally, we remark that when $¥sigma$ is a quotient of positive integers with
odd denominator and even numerator, our previous derivation still goes
through even if we do not assume $¥Delta y_{k}¥geq 0$ in (3). Consequently, Theorem 2
still holds when the value of $¥sigma$ is replaced by the above stated quotient.
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