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1. Introduction

We study the linearized stability of an abstract quasilinear evolution
equation

Q) {du/dt—kA(u)u:f(u), 0<t< oo,
u(0) = uo,

of parabolic type in a Banach space X. Here, — A(u) are the generators of
analytic semigroups on X which are defined for u in K = {ueZ; |ull; < R},
0 < R < o0, Z being another Banach space continuously embedded in X with
l“llx <l-ll;. The domains 2(A(u)) (which may not be dense in X) are
allowed to vary with u. f(u) is an X-valued function defined for ue K such
that f(0) =0. And u, is an initial value in K.

The principle of linearized stability is well known as a fundamental
theorem in the theory of Dynamical System of differential equation. The
principle can be generalized to the abstract parabolic equations in Banach
spaces. Indeed, consider an equation

(1.1) {d”/dt+A“=f(u), 0<t< oo,

u(0) = u,
in a Banach space X, where — A4 is the generator of an analytic semigroup
on X and f is a Holder continuous function defined on the domain Z(A%)

of the fractional power A% 0 <a < 1. 1If 4 satisfies the spectral (or resolvent)
condition

(Sp) p(A) > {AeC; Re 1 < 6}, >0,
th IS ()l x

and if f vanishes at u =0 wi
I A%ullx

the O stationary solution to (1.1) is asymptotically stable (c.f. von Wahl [24],

— 0 as u— 0, then it is proved that
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Hoshino and Yamada [8] etc.).

This result can be generalized furthermore to the quasilinear equations.
Consider now an equation of the form (Q) described above. Potier-Ferry
[12] has first proved the asymptotic stability under the spectral condition that
the linearized operator A(0) of A(u)u at u = 0 satisfies (Sp); he handled the
case that A(u) have a constant definition domain. His result was refined
afterward by Lunardi [11]; among others, she removed a condition that A(u)
are densely defined operators.

When the domains of A(u) vary with u, the problem becomes more
difficult; we have to estimate, not only the difference of operators A(u) and
A(0), but also the difference of the domains 2(A(u)) and 2(A(0)). The first
result in this case was obtained by Drangeid [5]; according to Amann’s device
[1, 2, 3, 4], she reduced the problem to that of the constant domains of
operators by making an assumption that suitable interpolation and extrapola-
tion spaces of 2(A(u)) and X are independent of u. In this paper, however,
we would like to present an alternative technique for handling the problem
which is based on that introduced by the second author in the previous papers
[16, 18, 19].

Instead of independence of the interpolation or extrapolation spaces, we
shall assume simply some decay and Lipschitz condition on the resolvent
(A — A(u)~ ' (see (A.i) below), which is verified in application without much
effort by the theory of Function Spaces. The authors believe that in this
point our technique has an advantage, because, to characterize the interpolation
spaces of 2(A(u)) and X to verify the independence of u, we have to appeal
not only to the theory of Function Spaces but also to the Fourier Analysis.

Before announcing our assumptions precisely, we need to introduce two
more Banach spaces Y;,i =1, 2, such that Z < Y; « X. Then we shall make
the following Assumptions.

(A.i) The resolvent sets p(A(u)) of A(u), ueK, contain a sector 2 = {leC;
larg(A — w)| > 0, or A=w}, where — o0 <w <o and 0< 0, <n/2, and
there the resolvents satisfy:

(A — AW) Hew < M/(1A — o] + 1), leX, uek,

with some constant M.
(Aiil) For some O0<v;<1,i=1,2,
(@ — AW) (2 — 4wW) ™ {(@ — AW)™" — (@ — A0) "} ow

lu—vl
(A — o] + 1)’

A€, u,vek,
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with some constant N.
(Sp) The resolvent set p(A(0)) contains a half plane 4 = {1eC; Re 1 < §}
with some 6 > 0.

(Si) For some O <y, <1, [|-lly, < |- lI¥l-1z7", i=1,2, on Z.
(S.ii) There is some 0 < o < 1 such that the domains of the fractional powers
[A(u) — w]*, ue K, are contained in Z with continuous embeddmg -1z <

D |[A(u) — w]*- |y with some constant D.

(S.iii) There are some 0 < o; < 1 such that the domains of the fractional powers
[A(u)—w]™, ueK, are contained in Y, i =1, 2, with || - ||y, < D; [[[A(u)— 0] - ||x
with some constants D,.

(S.iv) The unit ball {ueZ; |ull, <1} of Z is a closed subset of X.

(f.1) lf(w) = fIlx <Llu—vly,, u, ve K, with some constant L.
1S ()1l x

Iz

(f.i1) —0 as u—0in Z.
(Ex) The exponents satisfy the relations: ay, +v;,> 1, i=1,2, and o, < v,.
(In) The ininial value u, belongs to Z([A4(uy)]*) (= Z).
(As will be noticed below, it can be assumed without loss of generality that
w=0)

The coming two sections will be devoted to some preparations. In Section
2, we shall consider some related linear equations and shall obtain by virtue
of (Sp) the exponential decay estimates for the fundamental solutions the way
of construction of which has been established in [16, 18]. In Section 3, the
local existence of solution to (Q) will be surveyed, which was obtained in [19]
under (A1, 11), (S.4, 11, 111, iv), (fi), (Ex) and (In). The main results will be proved
in Sections 4 and 5; first, the global existence of solution will be shown by
utilizing (f.i1) for sufficiently small initial value u,; then, their exponential decay
will be established.

As an application we shall handle in Section 6 a quasilinear parabolic
partial differential equation

6 LG ov
v_ Z ——{U(x V) — } f(x, v, V'v) in (0, o0) x Q,
a;;(x, v)v;(x) i + g(x, v)v=0 on (0, o0) x 02,
J
i,j=1 axj

in a bounded region 2 = R". For the stationary solutions u to (D), it will
be shown that the spectral condition {Sp) for the linearized operators at v = u
is sufficient in order that they are asymptotically stable in the LFP-space
(n < p < ). To authors’ knowledge there is very little literature, except
Drangeid [5], on the stability of differential equations of the form (D); when
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f =g =0, the asymptotic behavior of solution was studied by Kawanago
[9, 10].

As we are working in a general setting, our abstract results are equally
applicable to more general differential equations. For example, it is possible
to apply them to the strongly coupled parabolic system in Population
Dynamics presented by Shigesada et al. [13] the global existence for which
was recently studied in [20, 21] by the similar technique of utilizing the abstract
equations. :

Notations. The norm of a Banach space is denoted by |- |x. ZL(X,Y)
is, for two Banach spaces, the Banach space of all bounded linear operators
from X to Y with the uniform operator norm | - |l gx.y; Z(X, X) will be
abbreviated as Z(X). Let I = R be an interval; ¢(I; X), ¢"(I; X) (0 <n < 1)
~and €' (I; X) denote respectively the function spaces of continuous, of Holder
continuous with exponent # and of continuously differentiable functions defined
on I with values in a Banach space X. Z%(I; X) is the function space of
bounded functions on I with values in X. By C we denote a universal
constant which is determined in each occurrence by the quantities occurring
in the Assumptions (Ad, ii), (Sp), (S, ii, iii, iv), (fi, ii) and (In) in a specific
way. When the constant C depends on some parameter, say 6, it will be
denoted by C,.

We conclude by noting:

Proposition 1.1. The Condition (Sp) jointed with (A, 11) and (S.) implies
that, if 0 <r <R is sufficiently small, then p(A(u)) contain, for all |u|, <r,
the half plane A.

Proof. When 6 < w, there is nothing to prove; so let w <. For Ael,
the resolvent equation reads

(A—AwW) ™' = (A —=A40) ' = (0 — AW) (A — Aw)™ ' {(w — Aw)"* |
— (@ — A(0))" '} (w — A(0)) (4 — 4(0) ™.
After some calculation,
(4 —Aw) {1 + (4 — 0)DW) (0 — A(0)) (4 — 4(0))"*}
=(A—A40)"" + D(u)(w — A0) (2 — A(0))" 1,
where D(u) = (w — A(w)) ! — (v — A(0))"!. So that,
(1.2) (A—Aw) ™ ={l + (L~ o)D) (w — 4(0)) (2 — A(0)) "'} *
x {(A—A0)"! + D(w)(w — A(0)) (2 — 4(0)) "},

provided that
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(1.3) 1A — @)D () (@ — AO0) (2 — A(0)) 'lgm < 1.

On the other hand, since (A.ii) (A= w) and (Sp) yield that | D(u) |l ox) < Nllul,,
(1.3) can hold for all Ae 4 — X, provided that the norm ||ul|, < r is sufficiently
small. This then means that for such u the right hand term of (1.2) is analytic
in the triangle 4 — X'; that is, (1 — A(u))~! has an analytic continuation over
A -2 ‘

Since we are concerned only with solutions lying in the small
neighborhood of the zero solution, it is allowed to take K arbitrarily small
without loss of generarity. This then means that we can assume, and in fact
do assume, that

(Sp)
p(A(u)) > A for all ueK; and [|(A — AW) ™ ' gx) <M for e, uek.

Similarly, replacing 6, and some constants if necessary, we can and do

The authors would like to dedicate this paper to Professor Hiroki Tanabe
on the occasion of his 60th birthday who has impressed on them the breadth
and the depth of the study of Equations of Evolution by his introductive
lectures and by his book [22] which have occasioned them to find their
- standing points in the researches.

2. Related linear equations

In this section we shall consider a linear evolution equation

L) {du/dt + A =10, O0<t<T,
u(0) = u,

in X. Here, — A(t), 0 <t < T, are the generators of analytic semigroups on
X; f:[0, T]—> X is a Holder continuous function; and u,eX is an initial
value.

We shall assume the following Conditions.
(L.A.i) The resolvent sets p(A4(t)) (0 <t < T) of A(t) contain X' = {1eC; |arg 4|
>0}, 0 <0, <mr/2, and there the resolvents satisfy:

[(A—AO) Hexw <M/(Al+1), 262, 0<1 < T,

with some constant M.
(L.A.i) For some 0 < u, v < 1,

JAM (2~ A@) HAD ™ — A} |y < N A5

(12 + 1)¥’
AeX, 0<s, t<T,
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with some constant N. .
(L.Sp) p(A(t)) > A={ieC; Re A<d}, 6>0,for 0<t < T; and |[(A— A1) 'l ¢w
<M for Aed, 0<t<T
(L.Ex) The exponents satisfy a relation: pu + v > 1.
According to [16, 18], a fundamental solution U(t, 5), 0 < s <t < T, called

often evolution operator for A(t), can be constructed under these (L.A., ii)
and (L.Ex). And the formula

t .
u(t) = U(t, Oug + j Ut,f(ndr, 0<t<T,
o .
gives a unique X-valued %'-solution to (L).

The goal of this section is then to establish various decay estimates for
U(t, s) which we need in the subsequent sections.

The following Proposition will be essential in our argument.

Proposition 2.1. Let ¢(t, s) be a real valued continuous function defined
for 0 <s <t < T which has a weak integrable singularity at t =s. And let ¢
satisfies an integral inequality either ‘

t
(2.1 o, ) < At — 5)* te 79 4 BJ‘ (t—1) e (1, s)dt -
or

t
(2.2) Pt 5) < At —5)* Te 70 ¢ B[ o(t, 7)(t —s) e 1T dy

for all 0<s<t<T, with some constants A, B>0 and some exponents
O<a b<1 and d >0. Then, ¢ is estimated by

(23) (p(t, S) < Ca,bA[(t _ S)a—le‘d(t~s)
+ (B (b)Y =9 exp ([{BI'(B)}/* — d](t —s))], O0<s<t<T,

with some constant C,, determined by a and b alone, here I'(-) is the gamma
Sfunction.

Proof. Since the proofs are quite analogous in both cases, we may
consider only the case when (2.1) is satisfied. By induction on n =0, 1, 2,---,
it is easily verified that (2.1) implies

L I'(a)I'(b)*

qp(t, S) < Z ABkM

k=0 I'(a + kb)

1 F(b)n+1 J*t
I'((n+ 1)b)

(t — S)a+kb—1e—d(t—s)

+ B (t — )t Db=1,=d0=D) (7, 5)d7.

N
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g

Since — 0 as ¢ > oo for any x > 0 (cf. (2.5)), the integral term is seen to

I'(o)
tend to 0 as n— co. So that, it follows that

(24) o(t, 5) < AI'(@)(t — 91 "V E({BI(h)}'/"(t — 9)),
© kb
where E(x) = ), _x is a function defined on [0, c0). While we observe:
k=0 F(a + kb)
Lemma 2.2.
E(x) < C, (1 + x' 7% for 0 <x < o0,

with some constant C,, > 0.

If this is observed to be true, we shall conclude from (2.4) the desired
estimate (2.3).

Proof of Lemma. Let ¢ > 1 denote any positive integer and ¢ any real
number such that £ <o </ + 1. Note first that

a—1 1 £—1 Z
2.5) X 3—{x +’i}, x>0,
o) Ty =D 21

with Iy = M>1{1 I'(6). Indeed, when ¢ =1, this is observed directly. If we

integrate (2.5) from 0 to x, then the same inequality for / + 1 <o </ + 2 is
obtained; so, for 7 > 2, it suffices to use the induction. Note next that the
number of k such that / <a+ kb </ + 1 does not exceed 1/b. Therefore,
writing :

kb 0 a+kb—1

X X

E(x) = — +x'7 PN
> a+kzl,:<1 I'(a + kb) ;;1 ¢<a+ib<¢+1 1'(a + kb)

we conclude the result.
Using the Proposition we establish:

Theorem 2.3. Let (L.Aj,ii), (L.Sp) and (L.Ex) be satisfied, and fix a p
such that 1 —u < p <v. Then, for any 0 < < d, the estimates:

(2.6) AU, )l g < Cs(t —5) % exp {(Cy N ®PHr=D _ 5 (t —5)},
0<0<1,

27 NA@°U(E, $)A(B) ™ o) < Cy exp {(Cs NVETHTD — 5 (1 — 5)},
0<0<1,
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28)  [{U(t ) =1} A6) e
< Cylt — 5)°[exp {(Cy NY®* =D _ 5yt —s)} + 1], 0<6<1,

29)  ADOU, s) — A@) exp (—(t — AW |
< Colt — 9" 2 exp {(Co NY@THD — §) (¢ — 5)},

hold for 0 < s <t < T with some Cs which is independent of N and T.

Proof. Let us first verity (2.6) with 8 = 0. It is known ([18, (3.2)]) that
U(t, s)A(s)* ?, 1 — u < p < v, is a solution to an integral equation

U(t, s)A(s)* =7 = A(s)! P exp (—(t — s)A(s))

+ ft U(t, ) A1) P AP {A)"! — A(s) "} A(s)* P exp (— (1t — 5)A(s))dr.

S

While (L.Sp) yields that, for any 0 < ¢’ < 6,
| A(s)? exp (— tA(S) | ox) < Cst %™, 7> 0, 0<60<2, 0<s<T,
C,; being independent of T. In addition, (L.A.ii) yields ([18, (2.2)]) that
IA@EY A6~ — A(S) "} lew <CNlt—sl*, 0<s ¢<T,

C being independent of N and T. Then, by virtue of Proposition 2.1, we
obtain that :

1T )AE) P lem < Colt — )~ exp {(Co NVOTHTD — §)(t — )},

C;s being independent of N and T. Since U(t, s) = U(t, s)A(s)* ~° x A(s)* "1,
this shows that (2.6), § =0, holds when t —s > 1; on the other hand, it is
nothing to speak of when ¢t —s < 1.

If t —s remains bounded, say <1, all the estimates to be shown are
already known by [19, Sec. 2] (indeed by [19; (2.5), (2.13), (2.11) and Theorem
247). So we have only to consider the case when t — s> 1. But then all
the estimates are obtained from the above particular estimate. For example,

[A@°UE, )| om < [AQ°UR t — Dilgw 1UE— 1, )| x,
< Cyexp {(Cs NV@re=D — §(t — 5)}, t—s>1.

It is the same of (2.7), (2.8) and (2.9).

We shall conclude this section by observing an application of Theorem
2.3 to our original quasilinear problem.

Consider a function u: [0, T] — Z satisfying:
ywwhsn 0<t<T,

(2.10)
lu(t) —u@s) | x < k|t — s|", 0<s,t<T,
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with some O <r <R, k>0 and (1 —v,)/y, <n <oa From such a u, linear
operators A,(t) = A(u(t)), 0 <t < T, are defined. Then, (A.i)) implies that A,(z)
satisfy the Condition (L.A.i). Similarly, (A.ii) (i = 1) together with (S.i) (i = 1)
implies that

|t _ SIY!'I

4,0 = A0) A0 = Au(0)™ g < N2 @0 22

which shows that (L.A.ii) is valid with y=vy,%# and v =v,. Since (L.Ex) is
trivial, there exists an evolution operator U,(t, s) for A,(t). Moreover, since
(Sp) implies (L.Sp), we observe:

Corollary 2.4. Under (A.,ii), (Sp), (S.1) and (Ex), let u be a function
satisfying (2.10). Let 8’ be any number such that 0 < o' < 6. If r is sufficiently
small, then the estimates:

(2.11) AT UL 9o < Colt — 97729, 0<0<1,
(2.12) LA TP ULt OLA)] Ny < Cre ™29, 0<O<1,
(2.13) {0t ) = A o < Colt =5, 0<O<1,
(2.14) | A U2, 9) — A1) exp (—(t — ) A, 0) o en

S Cél(t - S)ym+v1—ze*5’(t—s)’

hold for 0 <s <t < T with some Cs independent of T.

3. Local existence of solutions to (Q)

~ In the paper [19] we studied the local existence of solution to (Q) under
the Assumptions (A., ii), (S., ii, iii, iv), (fi), (Ex) and (In). In this section we
shall survey the results with adding necessary modifications for the present
problem.

Let us first verify:

Proposition 3.1. Under (A4, ii), (S.4, 1i, iii, iv), (fi) and (Ex), let ', k' > 0 be
any positive numbers and let n' be any number such that (1 —v)/y, <y <a
(i=1,2). Then, there exist ¢, S > 0 such that, for any initial value u, satisfying
(In), if |[A(ug)1%uplix <€, then (Q) possesses a unique local solution
ue@((0, S1; X) on the interval [0, S] in the function space:

(3.1) | { ILA@E)Pu®)lx <7, 0<t<S,
| V) — @)y <Kt —sf',  0<st<S.

Proof. The proof will consist of five Steps.
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Step 1. Take an r such that O <r < R, and let |uy||; <r. For each
0<S < oo, we set:

Z(S)=%Us; Y,) and
Y(S) = {ueb"(Us; X)nB(ls; Z); u(0) = uo,
lu(t) —u(s)|lx < k|t —s|" for s, tels, (|u®)|, <r for telg},

where I = [0, S]. Then it is easily seen that #(S) is a closed subset of Z(S);
indeed, note from (S.iv) that if ||u,|l, <r and u,—>u in Y, (and hence in X)
as n— oo, then |ul, <r.

Step 2. Consider a family of linear operators A,(t) = A(u(t)), telg,
defined from ue#(S). Since ue%”'"(I5; Y,) by (S.), 4,(t) are shown to satisfy
the Conditions (L.A.i, ii) and (L:Ex) in Section 2 with v=v, and u = y,%’; so
that, there exists an evolution operator U,(t,s), 0 <s<t <S8, for 4,(t). By
using this, a mapping @: #(S) > €¢(I5; X) is defined by

(Pu)(t) = U,(t, O)uy + f U,(t, ©) f(u(r))dr, 0<t<S.
0

Step 3. By the same argument as in the proof of [19, Theorem 3.1], it
is verified that

32)  I(Pw®)llz < C{lI[Auo)I*uollx + S* 7%, 0<t<§,
HPw) (1) — (Pu)($)llx < C(t — {1 + [[AWo)"uollx}, 0<s<t<S.

Therefore, if ||[A(ug)]*uyllx and S are sufficiently small, then @ maps #(S)
into itself.

Step 4. Similarly, by the same argument as in the proof of [19, Theorem
4.1], it is verified that, for u, ve#(S),

| Pu — Pl g < C{S* 2771 ||[A(ug)1%uo x + S %2} u — vz

with some p such that Max {«,, 1 —y,%#'} <p <v,. This shows that, if
| [A(up)1*uollx and S are sufficiently small, then & is a contraction mapping
of Z(S). ’

Step 5. In this way we observe that @ has a unique fixed point ue#(S),
which gives a solution to (Q) on the interval Iy. Finally, it is verified as for
(3.2) that ' ‘

ILA@EO) T u@®) x < C{IILA@) 1 uolix + 8*7%},  0<t<S,

therefore (3.1) can be true provided that |[[A(uy)]*uyllx and S are sufficiently
small.

Let us now consider an intial value problem
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du/dt + A(wyu = f(u), o<t< oo,
u(o) = u,,

Q) {

with a general initial point ¢ > 0 and an initial value u,e K. As the equation
is autonomus, the same assertion as the Proposition 3.1 is then true
independently of ¢. That is, we have proved:

Theorem 3.2. Under (Ad, ii), (S4, ii, iii, iv), (fi) and (Ex), let v', k' and n’
be as in Proposition 3.1. Then, there exist ¢, S >0 such that, for any initial
value u, satisfing (In), if |[Au,)]%u,llx < ¢, then (Q,) possesses a unique local
solution ue €' ((o, o + S1; X) on the interval [o, ¢ + S] in the function space:

(3.3) {Mummrmmusw, c<t<o+S,
' lu(t) —u@)|x <Kt —s", o<st<o+S,

in particular, ¢ and S being independent of the initial point o.

4. Global existence of solutions to (Q)

On the basis of the results in the previous two Sections we shall here
establish the global existence of solution to (Q) for sufficiently small initial
values u,.

We begin with verifying an a priori estimate for (Q):

Proposition 4.1. Under (A1, ii), (Sp), (Si, ii, iii, iv), (fi, ii) and (Ex), one can
choose numbers R”, K" >0 and n" such that (1 —v)/y, <n" <a (i=1,2) as
the following statement holds. For any ", k" > 0, there exists &' > 0 such that,
if the initial value u, satisfies (In) and |[[A(ug)]1*uylx < &”, then every local
solution ue6*((0, T]; X) to (Q) lying in the function space:

{ ILA@@)u@)llx < R”, 0<t<T,

(4.1) ,
lu@) —u@)lx <K't =s", 0<s,t<T,

must actually satisfy:

{ ITA@E) Fu@)llx <7, 0<t<T,

(4.2) ,
fu(t) —u(s)llx < k"t —s|", 0<s5t<T,

¢" being independent of T.

Proof. Choose a K”>0 and an #” such that (1 —v)/y, <y' <a
(i =1, 2) arbitrarily. Then, for any solution u to (Q) satisfying (4.1), the
evolution operator U,(t, s) for A4,(t) = A(u(t)) exists, because (4.1) implies that
(L.A4, ii)) and (L.Ex) in Section 2 are fulfilled by A,(t) with y=1v,%#" and
v=v,. In addition, if R” > 0 is chosen sufficiently small, then by virtue of
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Corollary 2.4 U,(t, s) satisfies (2.11) and (2.12) with some ¢’ > 0. Therefore,
since

Cu(t) = U,(t, O)ug + J Ut 1) fuk)d, 0<t<T,

it follows that
(4.3) LA ()T u(®) l x
< Ca'{e“’" | LA (uo) Juo [l x + JI (t—1)" e ¢70 ||f(u(f))llxdf}

0

<Cy {e_‘” I LA (uo) I 1o Il x + Df(DRN)J (t — 1) e "7 [A,(1) J"u(r) def}
[¢]

< Cy{II[A(uo)*tuollx + D;(DR") sup [|[Au(@))]*u(0)lx}

O<t<t

here we used a notation D (r) = sup {l|f(w)lx/llull;}, Cs being independent

lullz<r
of . As D,(r)— 0 as r - 0 from (fii), this yields that, if R” > 0 is sufficiently
small,

(4.4) sup [|[A4.(O) T u(®) | x < Cy [ [A(uo) I*uo llx>

O0<t<T
which then shows the first result of (4.2). On the other hand, since

u(t) — u(s) = {U,(t, s) — 1} u(s) + f Ut 1) fu@)de, 0<s t<T,

S

it follows from (2.11) and (2.13) that

lut) = u(s)x < Cs [(f — )" NLAT ™" g | LA T u(s) [ x

+ {Jt e“’""”dr} Sup | [Au(r)]“u(r)llx}

N

So that, in view of (4.4),

lu(®) —u(@)llx < Cst — 9" I[AWU) I uollx, O0<s, t<T,

which then shows the second result of (4.2).
We can now prove:

Theorem 4.2. Assume (A, ii), (Sp), (S, ii, iii, iv), (fi, ii) and (Ex). Then,
there exists ¢ >0 such that, if the initial value u, satisfies (In) and
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| LA (o)1 uo |l x < &, then (Q) possesses a unique global solution ue €*((0, c0); X)
on [0, o0) in the function space:

45) {n [Aw®)) T u@®) |y <1, 0<t< o,
' lut) — u(s)|x < kit —s|", 0<s, t< o0,

with some r, k >0 and n such that (1 —v)/y, <y, <n<a (i=1,2).

Proof. Let R”, K” and n” be the numbers determined in the Proposition
4.1. Setr, k' and ' in the Theorem 3.2 as ¥ = R", k' = k”/2 and ' = 5" ; and,
in addition, " =¢ and k" = K”/2. Then the theorem is proved with
¢ =Min {¢, "}, r=Min {r", R"}, k=K"/2 and n = #'. In fact, let u, satisfy
[[[A(uo)]*uollx < e By Proposition 3.1 there exists a solution ue¢*((0, S]; X)
on [0, 8] with [[[Au(t))]*u(t)|lx <¥ =R" and |u(t) —u(@s)|x <Kt —s|" <
K" |t — s|""; but, since ||[[A(uo)]*uollx < &”, Proposition 4.1 then implies that
u satisfies actually (4.5) on [0, S]. Assume next that there exists a solution
ue®'((0, T]; X) satisfying (4.5) on an interval [0, T]. We then use Theorem
32 with 0 =T —8/2 and u, = u(o); since ||[A(u,)]*u,lx < ¢, there exists a
solution u,e%*((g, 6 + S]; X) with (3.3) on [0, 0 +S]. But, by the uniqueness
of solution to (Q,), u(t) = u,(t) on [0, T]; therefore, u has been extended to
a solution 7e€%*((0,06 + S]; X) on [0, 0 + S]. It is immediate to see that
this u really satisfies (4.1) on [0, o + S]; then, Proposition 4.1 again implies
that # satisfies actually (4.2) and hence (4.5). Thus we have verified that the
solution on [0, T] can be always extended to a solution on [0, T+ S/2] in
the function space (4.5). Repeating this procedure, we shall obtain the desired
result, since S was independent of T.

5. Asymptotic stability of zero solution

Under the Assumptions announced Introduction the asymptotic exponen-
tial stability is true for the zero solution to (Q). In fact, we prove:

Theorem 5.1. Assume (A., ii), (Sp), (S., ii, iii, iv), (fi, ii) and (Ex). Then,
there exists &> 0 such that, if the initial value u, satisfies (In) and
| LA(uo)]*uo |l x < &, then the global solution u to (Q) in the space (4.5) in Theorem
4.2 decays as, for any 0 < f <6,

(.1 lu@llz + | A@)u@)llx < Cpe™ [[Auo) P uollx, 1 <t< o0,
Cy being independent of u,.

Proof. The proof will be accomplished by three Steps.
Step 1. Let us first prove that |u(f)|,—>0 as t - oco. As was verified
above, the solution u lies in (4.1) in Propositin 4.1. So that, by (4.3) we have:
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ITA@O T u@)x < C,sf[e“‘” I LA (uo) I uo Il x
+ Df(fgg lu(t)[l2) J (t — 1) *e "V [4,(0)]"u() ilxdf]

with some ¢ >0, where A,(t) = A(u(t)) and D (r)= sup {|lf(w)llx/Null;}.
lullz<r

By the Proposition 2.1 it then follows that

ILA.() Ju®)llx < Cs exp [{Cafo(fl:Ig fu(@) )™ — '} e] (| LA(uo) T uo l1x-

On the other hand, from Proposition 4.1 it is verified that sup ||u(t)||, < Dr >0
>0
provided &¢—0. In other words, there exists some &>0 for which

| [A(ug)1*uo |l x < & imlpies that
(5.2) ILA@@)) 1" u@)|lx < Cse” @2 [A(ug)*uollx, 0<t< c0.

Step 2. Let f <6” <. Then, from Corollary 2.4, if T;. is sufficiently
large, then the evolution operator U,(t, s), T <s <t < oo, for A,(t) satisfies
(2.11) and (2.12) with ¢ = ¢”. Therefore, repeating the same argument as
above on an interval [T, o0) with T;. < T < oo, we similarly obtain that

ILAL(@) I u(®) [l x
< C; exp [{Cé”Df(fl;lIT) lu@ )™ = AT u(T)lx,  T<t<oo.

This shows similarly that, if T is sufficiently large, then
ILAOTu®)lx < Cyre P I LA(D T u(T)lx, T<t< .

This jointed with (5.2) then yields the first estimate of (5.1).
Step 3. Let again  <J6” <o6. We have now proved that

(5.3) ITAOTu@) I < Core™ [ [AW) Ptplly,  0<t < o0,
Let T;. be as above. Then we verify:

Lemma 5.2. The solution u satisfies:

lu(®) — us)x < Coult — 5™ | [Ao)Puolly, Ty <5<t < c0.

Proof of lemma. Since

u(t) = u(s) = {U,(¢, 5) — 1} [A.(5)]"*[A,(9)]"u(s) + j U,(t, 7) f (u(r))dr,
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it follows from (2.11), (2.13) and (5.3) that

lu(t) —u()llx < Ca'{(t — 5 | [4,(5)1°u(s) |

+ ft e T [A,(0) ] u(r) lxdf}

< Co{(t —5)e™ " + (¢t — s)e™ "} || [A (o) I*uo | x-
For t > T;., write A,(t)u(t) in the form

A, Ou(t) = 4,0 U, Ty)u(T;)

+ f AU D) {f (@) — fu@)}d

Tsr

+ J {4, U 1) — 4,(t) exp (— (¢ — 1) A, (1)) }dzf (u(r))
Ton
+ {1 —exp(—(t — Ty)A,(t)} f(u(®) =T + IT + III + IV.
Then, from (2.11) and (5.3),
IHlx < Cort — To) " Le™ " [[A) g x>, Ty <t < o0.

By (f.i) and (S.) (i = 2), we have:

t

thscyf(wwr%*%ﬂwm—mwywm—MMWW@

Ton

the above lemma together with (5.3) yields here that

< Ca“e_aut {J (t — T)wzld‘f} | LA (o) 1%uo [l x

Ton
< Corlt — Ty ) e 7 | [AWwo) Ptip lys Ty <t < o0.

On the other hand, (2.14) yields that

t
ITIL [y < Ca'f (& —onm T 2e ™0 de u(r) ||,

Tsn

< Coe” " [AW) T uolly, Ty <t < 0.

Finally, it is clear that
ITVx < Cllu@®)llz < Csre™ [[AW) 1 uo Iy,  Tpr <t < 0.

Thus we have verified that the second estimate of (5.1) for large ¢, say, for
T, + 1 <t<oo. Forl<t<T;. + 1, however, the proof is more immediate.
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Indeed, by a similar argument we easily verify that
[A,@Qu@®)llx < Cs [ [AWo) P uolly, 1 <t<Ty + 1.

In this way we complete the proof.

6. Application

As an application model of the abstract result obtained in the previous

sections, let us consider the following quasilinear parabolic differential
equation:

ov/ot + A(x, v; D)v = f(x, v, V'v) in (0, o0) x Q,
(D) B(x,v; D)v =0 on (0, c0) x 012,
v(0, X) = vo(x) in Q,

in a bounded region 2 < R". Here,

Ax, v; D)w = — i d {aij(x, U)Z—W}
X

i,j=1 axl j
is a differential operator in € with real valued functions a;; on Q x C.

B(x, v; D)w =) a;(x, v)vi(x)a—w + g(x, v)w
iLj=1 axj

is a boundary differential operator on 02 with a real valued function g on
02 x C, v(x)=(v(x),--,v,(x)) being the outer normal vector at xedQ.
f(x, v, q) is a complex valued function on @ x C x C". v, is an initial function
in 2. And v =(t, x), (¢, x)€(0, o0) x Q, is an unknown function.

We shall assume the following Conditions:
(2) Q is a bounded region in R" of #*-class;
(a.l) a;€e6*( QxR+ iR)), 1 <i, j<n;
(@2) a;=a; (1 <i, j<n), and there exists some ¢ > 0 such that

Z aij(xa u)qiqj = 81q|2, qeR",
ij=1

for each (x, u)eQ x C;
(f) fe€*(Q x(R+iR) x (R + iR)"); and
(g) ge¥?(02 x (R + iR)).

We are concerned with seeking a sufficient condition for the stationary
solutions to (D) in order that they become asymptotically stable in the space
I7(Q2), n<p<oo. The initial functions v, will be taken in W (),
1+n/p<a
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Notations. W, (£2) (resp. W;/(022)), o > 0, denotes the Sobolev space in 2
(resp. on 9€); in particular, W () = L*(Q) (resp. W2(0Q) = L*(0Q)). €™(Q2)
(resp. €™(0R2)), m=0, 1, 2,---, denotes the space of m-times continuously
differentiable functions on Q (resp. on 92). %™(Q2 x (R + iR)*) (resp. €™ (02 x
(R+iR", m,k=0,1,2,---, denotes the space of functions defined on Q x C*
(resp. 0Q x C*) which are m-times continuously differentiable in the sence of
real variables. By C we shall denote a universal constant which is determined
in each occurrence by the quantities occurring in (£2), (a.1, 2), (f) and (g).

Let u = u(x) be a stationary solution

{A(x,ﬁ;D)zZ=f(x, u, Vu) in Q,
B(x,u; D)yu=20 on 0%,

to (D) such that ue4?(Q). We rewrite the equation (D) around this solution
u by changing the unknown function from v to u = v — u. Then,

A(x, u+u; D)(u+u) — A(x, u; D)u
= A(x, u + u; D)u + A,(x, u; D)(u, u)

+ Jl {A,(x, Ou + u; D) — A,(x, u; D)}dO(u, u),

0

where
" 0 (0da; 0
A% w3 D) (wy, wp) = — 3. —«{ % (x, uyw, W}
iji=1 0x; ( Ou 0x;
Similarly,
B(x, u +u; D)(u + u) — B(x, u; D)u
1
= B(x,u + u; D)u + J B,(x, Ou + u; D)dO(u, u),
where 0

" Oa;; 0 0
B,(x, u; DY(wi, wo) = Y T (x, uhvi()wy - 2 + Y (e, wyw, w,.
ij=1 O0u ox; Ou

On the other hand,
f(xs u+ ﬁa V(u + a)) _f(x’ TZ, Vﬁ)

=g(x, u, Vi)u + V, f (x, u, Vﬁ)-Vu—i—Jl {a—f(x, Ou + u, V(Ou + u))
ou ou

0

) 1
— 5£(x, i, Vﬁ)}dﬁu +j Vof (x, Outa, V (Ou+a)—V, f(x, 4, Vi) d6 - Vu.

0
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Therefore, (D) is rewritten as:
ou/ot + o (x, u; Dyu = Ax, u, Vu) in (0, o0) x Q,
(6.1) B(x,u; D)u=20 on (0, o0) x 022,
u(0, x) = uqy(x) in Q.

Here,

o (x, u; D)w = A(x, u + u; Dyw + A,(x, u; D)(w, u)

0
-a—f(x, u, Vay)w —V, f(x, u, Vu) - V'w
u

"0 ow " ow
i’jzzl axi{ i u) ,} i; (x) ox, c(x)
is a diferential operator in Q with functions
Y Oay; ou 0
bi(x) = - Z aU (xb I/_l) l - 7*f (X, 127 Vﬁ)a
j=1 Ou ox; 0q;
"0 |da;, _ ou of  _ __
= — X, U)— p — —(x, u, Vu).
€=-2 8xi{ 3 ¢ )axj} ou >V

Similarly,

' 1
B(x, u; D)w = B(x, u + u; D)w + f B,(x, Ou + u; D)dO(w, u)
0 .

n

- 0
= Z a;;(x, u + u)vi(x)—w + g(x, uyw
i,j=1 5xj

is a boundary operator on 02 with a function

. i} V(o dan oa g
G, u):g(x,u+u)+J { 5 aa’(x,u—l—ﬂu)vi(x)é—u— +a£(x,u+0u)ﬁ}d9.
i u ; u

o (i,j=1 X;

£(x, u, Vu) is given by

(62)  A(x, u, Vu)= — Z 4 [ J {aaa; (x, it + Ou) — Oay (x, a)}daugﬂ]

i,j=1 5Xi 0 6” X ;

J

+

jl {if(x, i+ Ou, V(i + Ou)) — avf(x, u, Vﬁ)}dﬁu
o Lou ou

+J Vo f(x, u+ 6u, V(a+ 60u)—V,f(x,u, Vi) dO - Vu.
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And, uy, = vy — u is an initial function.
Then, the abstract formulation of (6.1) in the underlying spaces

X=1"Q), Y,=W1Q), Y,=WNQ), Z=W}Q),
where n < p < o and 1+ n/p < h < Min {a, 2}, is the following:

(6.3) {d”/dt + A@Wu = f), 0<t<oo,
u(0) = u,.

Here, A(u) denote linear operators determined by

{@(A(u)) = {(we W (Q); #(x, u; D)w =0 on 02}
Aww = o (x, u; D)w

for ueK = {ueZ; |ul; < R} with some 0 < R < o0. And, f(u) = Ax, u, Vu)
for ue kK.

In order to apply the Theorems 4.2 and 5.1, let us first verify that the
Conditions (A., ii), (S.i, i, iii, iv), (fi, i) and (Ex) (except (S.p) and (In)) are all
fulfilled under the Assumptions (), (a.1, 2), (f) and (g) announced above. But,
as such verification has been already done in the previous paper [19, Sec. 5],
we may here content ourselves with making a brief sketch only.

From (a.1) and (g), if ueK < ¥1(Q), then a;(x,u +u)e%'(2) and
§(x, e €' (0€2); in addition, because of ue%?(Q), b; and ce%(2). Then it
is known that the strong ellipticity (a.2) implies (A.i)) with some 0 < 0, < /2
and sufficiently large w.

Let u, ve K. According to the proof of [19, Proposition 5.17, we have:

ILAW) — 0] {(@ — AW) ™ — (@ — A®) " }lew

< C{Z I aij(x> u+u)— aij(x’ u+ U)”LP(Q) + 1g(x, w) — g(x, U)HLP(a.Q)}

for any 0 <v, < 1/2. Similarly,
I[A@W) — 0T {(@ — AW) ™ — (@ — AW) "} lew

< C{Z la;;(x, u + u) — a;(x, u + v) Hw;,(m + [1g(x, u) — G(x, )| Lo}
i,Jj

for any 0 <v, <(p + 1)/2p. Then we easily verify that (A.i) is valid with
any 0 <v, <1/2 and any 0 <v, <(p + 1)/2p.

It is known that (S.i) holds with y; = 1/h and with any 0 <y, < (h — 1)/h.
As was shown in [19, Appendix], we can estimate the domains of the fractional
powers [A(u) — w]?, 0 < 6 < 1; according to this, (S.ii) and (S.iii) are the case
provided h/2 <a<1,(h —1)/2<a; <1 and 1/2 <a, <1 respectively. Finally,
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(S.v) is seen from the fact that the closed unit ball of a reflexive Banach
space is sequentially weakly compact.

(fi) and (f.i1) are verified directly from (6.2).

Finally, (Ex) is now evident from the above; especially, we can and in
fact do take « so that h/2 < a < a/2 (remember that a was an exponent for
which v, € W} (Q)).

At this moment it is thus sufficient to verify (S.p) and (In). For this,
however, we have to make further more essential assumptions.

(u) The operator A(0) determined by /(x,0; D) and %(x, 0; D), more
precisely by

"0 0 n 0
A(x,0; Dw=— ) — {aij(x, &)—W} + ) bi(x)*W + c(x)w
iLj=1 6xi axj i=1 0 i
and
n _ ow _
B(x, 0;D)yw =Y a;(x, w)v;(x) — + g(x, @)w + h(x)w
i,j=1 axj
with
" 0d; ; ou 0
W)= Y S8 (i) o + 2 (x, i),
i,j=1 6u axj au

possesses the resolvent set containing a half plane {AeC; Re A < §} for some
0>0.

(vo) The initial function v,e W (2) (a>h>1+n/p) lies in the ball:
lvg — ull; < R, and satisfies the compatibility condition:

n

0
(6.4) Z a;;(X, vo)v;(x) (%)Q + g(x, v5)vy =0 on 0%.

Li=1 Xj

We are now ready to apply the Theorems 4.2 and 5.1 and to state the
main result of this section.

Theorem 6.1. Under (£2), (a.l, 2), (f) and (g), let the stationary solution
ue%*(Q) to (D) satisfy (W). Then, there exists some neighborhood V of u in
W (2), where n <p < o0 and 1 + n/p < a, such that, if the initial function v,
lies in V and satisfies (v,), then (D) possesses a global solution v such that, for
any 0 < <9,

(6.5) lo() — tllwz o) < Cpe™ " llvg — dllwa)y  1<t< o0,

with some constant C, independent of v,.
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Proof. The only thing to be noticed here is that (v,) implies (In) for
Uy = vy — u. Indeed, (6.4) means that B(x, vy; D)v, = 0; so that, it follows
that %(x, uy; D)ug = 0; then, since a > 2a, (In) is verifed by [19, Theorem
A.2]. Thus the Theorem 4.2 provides the global existence of solution to (6.3);
obviously, v = u + u is a solution to (D). (6.5) follows from the Theorem 5.1
and from the well known estimate

IWlwz@ < C{lA@WIx + Iwlx},  weZ(AW), wekK.
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