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1 Introduction

Let $X$ be a Banach space with norm $||$ . $||$ and suppose that $A:D(A)¥rightarrow X$ is
the infinitesimal generator of a strongly continuous operator semigroup $T(t)$

defined on $X$. The objective of this work is to study the existence of solutions
and periodic solutions of a class of partial functional differential equations
with unbounded delay. Let $¥ovalbox{¥tt¥small REJECT}$ be an abstract phase space. We will consider
initial value problems which can be modelled as the abstract Cauchy problem:

(1.1) $¥dot{¥mathrm{x}}(t)=Ax(t)+F(t, ¥mathrm{x}_{t})$ , $t$ $¥geq 0$,

with initial condition

(1.2) $¥mathrm{x}_{0}=¥varphi¥in¥ovalbox{¥tt¥small REJECT}$ ,

where $F$ : $(-¥infty, a)¥times¥Omega¥rightarrow X$ , $a>0$, is a continuous function and $¥mathrm{x}_{r}$ represents
the function defined from ( $-¥infty$ , 0] into $X$ by $¥mathrm{x}_{t}(¥theta)=x(t+¥theta)$ , $-¥infty<¥theta¥leq 0$ .

Similar problems have been studied by several authors. We only mention
the works of Lightbourne [5], Travis and Webb [10] and recently, Shin
[9]. In [5] the existence of periodic solutions of a non-delayed equation was
established while in [10] it was obtained existence of solutions for an equation
with finite delay and Shin [9] considers the problem of existence of solutions
of equations where the function in the right member depends continuously on
$x_{¥mathrm{r}}$ .

Throughout this paper we will employ the phase space $¥ovalbox{¥tt¥small REJECT}$ introduced by
Hale and Kato [3], but defined as in the book [4]. Thus, $¥ovalbox{¥tt¥small REJECT}$ will be a linear
space of functions mapping ( $-¥infty$ , 0] into $X$ endowed with a seminorm
$||$ . $||_{¥ovalbox{¥tt¥small REJECT}}$ . We will assume that $¥ovalbox{¥tt¥small REJECT}$ satisfies the following axioms:

(A) If $x$ : $(-¥infty, ¥sigma+a)¥rightarrow X$, $a>0$, is continuous on [ $¥sigma$ , $¥sigma+a)$ and $x_{¥sigma}¥in¥ovalbox{¥tt¥small REJECT}$
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330 Hernan R. HENRIQUEZ

then for every $t$ in [ $¥sigma$ , $¥sigma+a)$ the following conditions hold:

(i) $¥mathrm{x}_{t}$ is in $¥ovalbox{¥tt¥small REJECT}$ .

(ii) $||¥mathrm{x}(t)||¥leq H||x_{t}||_{¥ovalbox{¥tt¥small REJECT}}$ .

(iii) $||x_{t}||_{¥ovalbox{¥tt¥small REJECT}}¥leq K(t-¥sigma)¥sup$ $¥{||¥mathrm{x}(s)||:¥sigma¥leq s¥leq t¥}+M(t-¥sigma)||¥mathrm{x}_{¥sigma}||_{¥ovalbox{¥tt¥small REJECT}}$ .

Where $H¥geq 0$ is a constant; $K$, $M:[0,$ $¥infty$ ) $¥rightarrow[0,$ $¥infty$ ), $K$ is continuous and
$M$ is locally bounded and $H$, $K$ and $M$ are independent of $x$ .

(AJL) For the function $x$ in (A), $¥mathrm{x}_{t}$ is a $¥ovalbox{¥tt¥small REJECT}$ -valued continuous function on
$[¥sigma$ , $¥sigma+a)$ .

(B) The space $¥ovalbox{¥tt¥small REJECT}$ is complete.

We will denote by $¥hat{¥ovalbox{¥tt¥small REJECT}}$ the quotient Banach space $¥ovalbox{¥tt¥small REJECT}/||$ . $||_{¥ovalbox{¥tt¥small REJECT}}$ . If $E$ is a
subset of $¥ovalbox{¥tt¥small REJECT}$ then we define E:= $¥{¥hat{¥varphi}:¥varphi¥in E¥}$ , where $¥hat{¥varphi}$ is the equivalence class
of $¥varphi$ .

Furthermore we will reserve the symbol $a$ to denote the Kuratowski’s
measure of non-compactness. Let $B$ a bounded set of a seminormed space
Y. The a-measure of $B$ is defined as the infimum of $¥epsilon>0$ such that $B$ has
a finite cover with sets of diameter less than $¥epsilon$ . For the properties of the
measure $a$ see Deimling [1]. We will represent with the symbol $B_{r}[y]$ the
closed ball centered at $y$ and of radius $r¥geq 0$ .

For the theory of strongly continuous semigroups we refer to Nagel
[7]. In particular, it is well known that there exist constants $¥tilde{M}¥geq 1$ and
$¥omega¥in R$ such that

(1.3) $||T(t)||¥leq¥tilde{M}e^{¥omega t}$ , $t¥geq 0$.

In section 2 we will establish a result of existence of solutions and some
of their properties while in section 3 we will study the existence of periodic
solutions. In the sequel we will assume that $¥ovalbox{¥tt¥small REJECT}$ satisfies axioms (A), $(A_{1})$ and
(B).

2 Existence of solutions

Henceforth we will assume that $F:[0,$ $a$) $¥mathrm{x}$
$¥Omega¥rightarrow X$ is a continuous func-

tion, where $¥Omega$ is a nonempty open subset of $¥ovalbox{¥tt¥small REJECT}$ .

We will say that a function $x$ : $(-¥infty, b)¥rightarrow X$ , $0<b<a$, is a mild solution
of the Cauchy problem (1.1)?(1.2) if $ x_{0}=¥varphi$ and the restriction $x:[0,$ $b)¥rightarrow X$

is continuous and satisfies the integral equation:

(2.1) $x(t)=T(t)¥varphi(0)+¥int_{0}^{t}T(t-s)F(s, x_{s})ds$ , $¥mathrm{o}¥leq t<b$ .
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In the rest of this work we will abbreviate our terminology calling
solutions to the mild solutions.

In this section we will use the Schauder’s fixed point theorem to obtain
the existence of solutions. In order to apply the Schauder’s theorem we will
introduce a compactness condition on the composition of the semigroup $T(t)$

and the function $F$ .

Theorem 1 Let $¥varphi¥in¥ovalbox{¥tt¥small REJECT}$. Assume that there exist positive constants $b_{¥varphi}$ and
$r_{¥varphi}$ such that $ B_{r_{¥varphi}}[¥varphi]¥subseteq¥Omega$ and for each $0<t¥leq b_{¥varphi}$ there is a compact set $W_{t}¥subset X$

such that $T(t)F(s, ¥psi)¥in W_{t}$, for every $¥psi¥in B_{r_{¥varphi}}[¥varphi]$ and $afl$ $0¥leq s¥leq b_{¥varphi}$ . Then there
exists a solution of (1.1)?(1.2) defined on $(-¥infty, b)$ , for some $0<b<b_{¥varphi}$ .

Proof. From the properties of strongly continuous semigroups we may
assume that $||T(t)||¥leq¥tilde{M}_{a}$ , for $0¥leq t¥leq a$ and for some constant $¥tilde{M}_{a}¥geq 1$ . Since
$F$ is a continuous function, there exist constants $0<b_{1}¥leq b_{¥varphi}$ , $0<r_{1}¥leq r_{¥varphi}$ and
$N¥geq 0$ such that $||F(s, ¥psi)||¥leq N$, for every $0¥leq s¥leq b_{1}$ and all $¥psi¥in B_{r_{1}}$ $[¥varphi]$ .

Let us define the function $y(t)=T(t)¥varphi(0)$ for $t¥geq 0$ and $ y_{0}=¥varphi$ . Then from
the properties of $¥ovalbox{¥tt¥small REJECT}$ we infer that $y_{t}¥in¥ovalbox{¥tt¥small REJECT}$ and that, for every $0<r_{2}<r_{1}$ , there
exists $b_{2},0<b_{2}¥leq b_{1}$ , such that $||y_{t}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}¥leq r_{2}$ , for all $0¥leq t¥leq b_{2}$ . We set
$K_{a}:=¥max¥{K(t):0¥leq t¥leq a¥}$ . Let $b$ be any constant such that $0<b<¥min¥{b_{2}$ ,
$(r_{1}-r_{2})/¥tilde{M}_{a}K_{a}N¥}$ . Let us introduce the space $¥swarrow^{¥Gamma}b$ of all functions $u$ : $(-¥infty,$ $b]$

$¥rightarrow X$ such that $u_{0}¥in¥ovalbox{¥tt¥small REJECT}$ and the restriction $u:[0, b]¥rightarrow X$ is continuous and let
$||$ . $||_{¥swarrow¥varpi}$ be a seminorm in $¥swarrow_{b}^{¥Gamma}$ defined by

$||u||_{¥swarrow¥varpi}=||u_{0}||_{¥ovalbox{¥tt¥small REJECT}}+¥sup$ $¥{||u(s)||:0¥leq s¥leq b¥}$ .

We write $u¥in¥swarrow_{b}^{¥varpi}(¥varphi)$ if $u¥in F_{b}$ , $||u_{0}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}=0$ and $||u_{t}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}¥leq r_{1}$ , for every
$0¥leq t¥leq b$ .

Clearly $¥ovalbox{¥tt¥small REJECT}_{b}(¥varphi)$ is a non empty, bounded, convex and closed subset of
$¥swarrow_{b}^{¥varpi}$ . The first assertion follows from $y¥in¥swarrow_{b}^{¥varpi}(¥varphi)$ . In order to show that $¥swarrow_{b}^{¥Gamma}(¥varphi)$

is bounded it is sufficient to observe that from axiom (Aii) follows that

$||u(t)||¥leq H||u_{t}||_{¥ovalbox{¥tt¥small REJECT}}¥leq H||u_{t}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}+H¥cdot||¥varphi||_{¥ovalbox{¥tt¥small REJECT}}$

$¥leq H(r_{1}+||¥varphi||)$ ,

for all $0¥leq t¥leq b$ . To prove $¥ovalbox{¥tt¥small REJECT}_{b}(¥varphi)$ is closed, we will consider a sequence $(u^{n})_{n}$

in $¥ovalbox{¥tt¥small REJECT}_{b}(¥varphi)$ , which converges to $u¥in J_{b}^{¥Gamma}$ . Then $||u_{0}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}=0$ and, it follows
from axiom (Aiii) that

$||u_{¥mathrm{r}^{n}}-u_{t}||_{¥ovalbox{¥tt¥small REJECT}}¥leq K(t)¥sup_{0¥leq s¥leq t}||u^{n}(s)-u(s)||+M(t)||u_{0}^{n}-u_{0}||$ .

Thus $u_{t}^{n}¥rightarrow u_{t}$ , $ n¥rightarrow¥infty$ , for $0¥leq t¥leq b$ , which in turn proves that $||u_{t}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}¥leq r_{1}$ .

The convexity of $¥ovalbox{¥tt¥small REJECT}_{b}(¥varphi)$ is an immediate consequence of definitions.
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Now we define the map $J^{¥Gamma}$ on $¥swarrow^{a_{b}^{-}}(¥varphi)$ by the expression:

(2.2) $(J^{¥Gamma}u)(t)=T(t)¥varphi(0)+¥int_{0}^{t}T(t-s)F(s, u_{s})ds$,

for all $0¥leq t¥leq b$ , and $(J^{¥varpi}u)_{0}=¥varphi$ : It will be shown that $¥swarrow¥varpi$ is a continuous
map from $¥swarrow_{b}^{¥Gamma}(¥varphi)$ into $¥epsilon l_{b}^{¥varpi}(¥varphi)$ . It is clear that $v=J^{¥varpi}u$ is continuous on $[0, b]$

so that $v¥in A_{b}^{¥Gamma}$ . If we set $w=v-y$, then

$||v_{t}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}¥leq||y_{t}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}+||w_{t}||_{¥ovalbox{¥tt¥small REJECT}}$

$¥leq r_{2}+||w_{t}||_{¥ovalbox{¥tt¥small REJECT}}$ .

From axiom (Aiii) we obtain that

$||w_{t}||_{¥ovalbox{¥tt¥small REJECT}}¥leq K(t)¥sup$ $¥{||w(s)||:0¥leq s¥leq t¥}$

and since

$||w(t)||¥leq¥int_{0}^{t}¥tilde{M}_{a}¥cdot||F(s, u_{s})||$ $ds$

$¥leq¥tilde{M}_{a}Nb$

$¥leq¥frac{1}{K_{a}}(r_{1}-r_{2})$

we may conclude that

$||v_{t}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}¥leq r_{1}$ , $0¥leq t¥leq b$ ,

which shows that $v¥in l_{b}^{¥Gamma}(¥varphi)$ .

On the other hand, from axiom $(¥mathrm{A}_{1})$ we obtain immediately that the map
$[0, b]$ $¥times J_{b}^{¥varpi}¥rightarrow¥ovalbox{¥tt¥small REJECT}$ , $(s, u)¥rightarrow u_{s}$ , is continuous. If $(u^{n})_{n¥geq 1}$ is a convergent sequence
in $¥swarrow_{b}^{¥Gamma}(¥varphi)$ with limit $u$, then the set $¥{u, u^{n} : n¥geq 1¥}$ is compact in $¥swarrow_{b}^{¥Gamma}$ . Hence
the set $W=¥{(s, u_{s}), (s, u_{s}^{n}):n¥geq 1,0¥leq s¥leq b¥}$ is compact in $[0, b]$ $¥times¥ovalbox{¥tt¥small REJECT}$ and the
function $F$ is uniformly continous on $W$. Since $(u^{n})_{n}$ converges to $u$, we
conclude from (2.2) that $(J^{¥varpi}u^{n})_{n}$ converges to $J^{¥varpi}u$ , which proves that $J^{¥Gamma}$ is
continuous.

Next we will prove that the range of $J^{¥Gamma}$ is relatively compact. By Ascoli’s
theorem it is sufficient to show that the set $¥ovalbox{¥tt¥small REJECT}(J^{¥varpi})=¥{J^{¥varpi}u:u¥in¥swarrow^{¥tau_{b}^{-}}(¥varphi)¥}$ is
equicontinuous on $[0, b]$ and $¥ovalbox{¥tt¥small REJECT}^{d}(J^{¥Gamma})(t)$ is relatively compact in $X$ for each
$0¥leq t¥leq b$ . To prove the first assertion we consider $0<t_{0}<t¥leq b$ and
$0<¥epsilon<t_{0}$ . From the definition of $J^{a^{-}}$ it follows that
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$J^{¥varpi}(u)(t)-J^{¥varpi}(u)(t_{0})=[T(t)-T(t_{0})]¥varphi(0)$

$+¥int_{0}^{t_{¥mathrm{o}}-¥epsilon}[T(t-s)-T(t_{0}-s)]F(s, u_{s})ds$

$+¥int_{t_{0}-¥epsilon}^{t_{0}}[T(t-s)-T(t_{0}-s)]F(s, u_{s})ds$

$+¥int_{l¥mathrm{o}}^{t}T(t-s)F(s, u_{s})ds$

and this equality yields

(2. 3)
$||J^{¥varpi}(u)(t)-J^{¥varpi}(u)(t_{0})||¥leq||[T(t)-T(t_{0})]¥varphi(0)||+¥tilde{M}_{a}N(t-t_{0})+2¥tilde{M}_{a}N¥epsilon$

$+||¥int_{0}^{t_{¥mathrm{o}}-¥epsilon}[T(t-¥epsilon-s)-T(t_{0}-¥epsilon-s)]T(¥epsilon)F(s, u_{s})ds||$ .

Besides $T(¥epsilon)F(s, u_{s})$ is included in a compact set $W_{¥epsilon}$ , for all $0¥leq s¥leq b$ and
all $u¥in¥swarrow_{b}^{¥Gamma}(¥varphi)$ . Since the functions $T(¥cdot)x$, $x¥in W_{¥epsilon}$ , are equicontinuous, there
exists $¥delta>0$ such that

(2.4) $||T(t_{1})x-T(t_{2})x||¥leq¥epsilon$ , $x¥in W_{¥epsilon}$ ,

when $|t_{1}-t_{2}|¥leq¥delta$ . Consequently, if $|t$ $-t_{0}|¥leq¥delta$ , substituting (2.4) into (2.3) we
obtain

$||J^{¥varpi}(u)(t)-J^{¥varpi}(u)(t_{0})||¥leq||[T(t)-T(t_{0})]¥varphi(0)||$

$+¥tilde{M}_{a}N(t-t_{0})+2¥tilde{M}_{a}N¥epsilon+¥epsilon b$

which shows that $¥ovalbox{¥tt¥small REJECT}(J^{¥varpi})$ is equicontinuous from the right at $t_{0}$ . In the same
manner, we can prove that $¥ovalbox{¥tt¥small REJECT}(J^{¥varpi})$ is equicontinuous at any $t_{0}¥geq 0$ . We omit
the details.

Now we will prove that $¥ovalbox{¥tt¥small REJECT}(J^{¥varpi})(t)$ is a relatively compact set for each
$0¥leq t¥leq b$ . Since $T(t)¥varphi(0)$ does not depend on $u¥in¥swarrow_{b}^{¥varpi}(¥varphi)$ , it is sufficient to
prove that the set of all vectors $(J^{¥varpi}u)(t)-T(t)¥varphi(0)$ is relatively compact.

Clearly we may suppose that $t>0$. Let $0<¥epsilon<t$ .

Then

$¥int_{0}^{t}T(t-s)F(s, u_{s})ds$ $=¥int_{0}^{t-¥epsilon}T(t-s-¥epsilon)T(¥epsilon)F(s, u_{s})ds$

$+¥int_{t-¥epsilon}^{t}T(t-s)F(s, u_{s})ds$ .
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Let $W_{¥epsilon}$ be a compact set such that $T(¥epsilon)F(s, u_{s})¥in W_{¥epsilon}$ , for every $u¥in A_{b}^{¥varpi}(¥varphi)$

and all $0¥leq s¥leq t$. Then the set $V_{¥epsilon}:=¥{T(s)w:0¥leq s¥leq t-¥epsilon, w¥in W_{¥epsilon}¥}$ is compact.
By the mean value theorem for the Bochner integral ([6]) we may infer that

$¥int_{0}^{t-¥epsilon}T(t-s-¥epsilon)T(¥epsilon)F(s, u_{s})ds¥in(t-¥epsilon)¥overline{c(V_{¥epsilon})}$ ,

where $c(V_{¥epsilon})$ denotes the convex hull of $V_{¥epsilon}$ . Since $¥overline{c(V_{¥epsilon})}$ is compact (see [2],
Theorem V. 2.6) and

$||¥int_{t-¥epsilon}^{t}T(t-s)F(s, u_{s})ds||¥leq¥tilde{M}_{a}N¥epsilon$, $u¥in J_{b}^{¥Gamma}(¥varphi)$ ,

we conclude that $¥ovalbox{¥tt¥small REJECT}(J^{¥varpi})(t)$ is relatively compact.
Finally, the Schauder’s fixed point theorem asserts that $J^{¥varpi}$ has a fixed

point in $¥swarrow_{b}^{¥varpi}(¥varphi)$ , which is a solution of (1.1)?(1.2).
So far, we have only considered the abstract Cauchy problem (1.1)_(1.2)

with initial condition at $t=0$. Nevertheless, the same argument used in the
previous theorem allows us to establish the existence of local solutions of the
problem

(2.5) $¥dot{x}(t)=Ax(t)+F(t, x_{t})$ , $ t¥geq¥sigma$ ,

(2.6) $¥chi_{¥sigma}=¥varphi$ ,

where $0¥leq¥sigma<a$ .

Proposition 1 Suppose for every closed and bounded set $ B¥subseteq¥Omega$ and every
$0¥leq¥sigma<a$ , there is $b^{¥prime}>0$ such that, for all $0<t¥leq b^{¥prime}$ there exists a compact
set $W_{t}$ such that $T(t)F(s, ¥psi)¥in W_{t}$ , for every $¥psi¥in B$ and $afl$ $¥sigma¥leq s¥leq¥sigma+b^{¥prime}<a$ .

Then for every $¥varphi¥in¥Omega$ and $0¥leq¥sigma<a$ there exists a solution of $(2.5)-(2.6)$ defined
on $(-¥infty, ¥sigma+b)$ , for some $0<b¥leq b^{¥prime}$ .

Related with this result, it should be noted that it can be established, in
the usual form, that if $F$ satisfies a local Lipschitz condition then the solution
of (2.5)?(2.6) is unique. Furthermore, under the conditions of the preceding
proposition, for every $0<¥sigma<a$ and every $¥varphi¥in¥Omega$ there exists a maximal or
noncontinuable solution defined on an interval $(-¥infty, ¥sigma+b)$ .

Hereafter we will be interested in the existence of global solutions. Our
next two propositions are extensions of well known results [3].

Proposition 2 Assume $F$ satisfies the following condition: For every closed
and bounded set $ B¥subseteq¥Omega$ and every $t>0$ there exists a compact set $W_{t}$ such that
$T(t)F(s, ¥psi)¥in W_{t}$ for every $¥psi¥in B$ and $afl$ $0¥leq s<a$ . If $x:(-¥infty, ¥sigma+b)¥rightarrow X$ is
a maximal solution of $(2.5)-(2.6)$ and $W$ is a compact subset of [0, $a$) $¥times¥Omega$ then
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there exists $t_{W}$ such that $(t, ¥chi_{t})¥not¥in W$, for $t_{W}¥leq t<¥sigma+b$ .

We will omit the proof because the main part of the argument used in
the demonstration of Theorem 2.3 in [3] also serves in this case.

Corollary 1 Let $F:[0,$ $¥infty$ ) $¥times¥ovalbox{¥tt¥small REJECT}¥rightarrow X$ be a continuous function which
satisfies the following condition:
$(F_{1})$ . For every closed and bounded set $ B¥subseteq¥Omega$, and every $a$ , $t>0$ there exists

a compact set $W_{t}$ such that $T(t)F(s, ¥psi)¥in W_{t}$ , for all $¥psi¥in B$ and $afl$ $0¥leq s¥leq a$ .

If $x$ : $(-¥infty, b)¥rightarrow X$ , $b>0$, is a maximal solution of problem (1.1)?(1.2) and
$¥{¥mathrm{x}_{t} : 0¥leq t<b¥}$ is relatively compact in $¥ovalbox{¥tt¥small REJECT}$ , then $ b=¥infty$ .

Proof. It is an immediate consequence of Proposition 2.

Proposition 3 Suppose $F$ satisfies the condition of Proposition 2 and takes
bounded and closed sets into bounded sets. If $x$ : $(-¥infty, b)¥rightarrow X$ is a maximal
solution of (1.1)?(1.2) and $U$ is a closed and bounded set included in [0, $a$) $¥times¥Omega$

then there exists a sequence $t_{k}¥rightarrow b^{-}$ such that $(t_{k}, ¥mathrm{x}_{t_{k}})¥not¥in U$. Further, if $F$ is
defined on [0, $¥infty$ ) $¥times¥ovalbox{¥tt¥small REJECT}$ then there is a $t_{U}$ such that $(t, x_{t})¥not¥in U$, for $t_{U}¥leq t<b$ .

Proof. Let us assume that $(t, ¥chi_{t})¥in U$ , for $0<t_{0}¥leq t<b$. By the
hypotheses we may write

$||F(t, x_{t})||¥leq N$, $0¥leq t<b$,

for some positive constant $N$ . Now we will prove that the restriction
$¥mathrm{x}:[t_{0},$ $b$) $¥rightarrow X$ is uniformly continuous. In fact, if $t_{0}¥leq t¥leq t^{¥prime}<b$ and
$0<¥epsilon<t_{0}$ , we can write

$¥mathrm{x}(t^{¥prime})-x(t)=T(t^{¥prime})¥varphi(0)-T(t)¥varphi(0)+¥int_{0}^{t-¥epsilon}[T(t^{¥prime}-s)-T(t-s)]F(s, x_{s})ds$

$+¥int_{t-¥epsilon}^{t}[T(t^{¥prime}-s)-T(t-s)]F(s, x_{s})ds+¥int_{t}^{t^{¥prime}}T(t^{¥prime}-s)F(s, x)ds$

and evaluating the right member as in the proof of Theorem 1 we can conclude
that $||x(t^{¥prime})-x(t)||$ tends to zero uniformly as $|t$ $-t^{¥prime}|$ tends to zero.

Therefore, the set $¥{x(t):t_{0}¥leq t<b¥}$ is totally bounded in $X$ . From these
properties we infer that there exists $¥lim_{t¥rightarrow b}¥_ x(t)=z$. If we define $¥mathrm{x}(b)=z$,
then the function $x(¥cdot)$ is continuous in $[0, b]$ and the axiom $(A_{1})$ implies that
$X_{t}¥rightarrow ¥mathrm{x}_{b}$ , as $t¥rightarrow b^{-}$ Since $(b, x_{b})¥in[0,$ $a$) $¥times¥Omega$ , from Proposition 1 we obtain
the existence of a solution of a problem $(2.5)-(2.6)$ with $¥sigma=b$ and $¥varphi=X_{b}$ ,
which is contrary to our assumption that $x$ is a maximal solution. Consequen-
tly, there exists a monotonically increasing sequence $(t_{k})_{k}$ which converges to
$b$ such that $(t_{k}, ¥chi_{t_{k}})¥not¥in U$ .
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The second assertion can be proved arguing in the same manner as in
the proof of Theorem 2.4 in [3].

Corollary 2 Let $F:[0,$ $¥infty$ ) $¥times¥ovalbox{¥tt¥small REJECT}¥rightarrow X$ be a continuous function which
satisfies $(F_{1})$ and takes bounded and closed sets into bounded sets. If
$x$ : $(-¥infty, b)¥rightarrow X$ is a maximal solution of (1.1)?(1.2) and the set $¥{x_{t} : 0¥leq t<b¥}$

is bounded, then $ b=+¥infty$ .

Proof. Let us assume that $ b<¥infty$ . We choose $a>b$ and we put $¥Gamma=$

$¥overline{¥{¥mathrm{x}_{t}..0¥leq t<b¥}}$ and $U=¥{(t, ¥psi):0¥leq t¥leq b, ¥psi¥in¥Gamma¥}$ . Then $U$ is a closed and
bounded set included in $¥Omega$ and $(t, ¥mathrm{x}_{t})¥in U$ for $0¥leq t<b$ . This is a contradiction
to Proposition 3. $¥square $

In the sequel we will assume that the solution $x(¥cdot, ¥varphi)$ of problem (1.1)?(1.2)
for all $¥varphi$ belonging to some subset $E$ of $¥ovalbox{¥tt¥small REJECT}$ is unique and defined on
[0, $¥infty$ ). For $¥tau>0$, we consider the map $P:E¥rightarrow¥ovalbox{¥tt¥small REJECT}$, defined by $P(¥varphi):=¥chi_{¥tau}(¥cdot, ¥varphi)$ .
Our results about periodic solutions depend on the continuity of $P$ .

Proposition 4 Suppose $F:[0,$ $¥infty$ ) $¥times¥Omega¥rightarrow X$ is a continuous function which
takes bounded sets into bounded sets and satisfies the condition $(F_{1})$ . If for
each $¥varphi¥in E$ there exists $r_{¥varphi}>0$ such that $¥{x_{t}(¥cdot, ¥psi):0¥leq t¥leq¥tau, ¥psi¥in B_{r_{¥varphi}}[¥varphi]¥}$ is
included in a bounded and closed subset of $¥Omega$ , then $P$ is a continuous map.

Proof. Let us fix $¥varphi¥in E$ and let $(¥varphi^{n})_{n}$ be a sequence in $E$ convergent to
$¥varphi$ . Clearly we may assume that $||¥varphi^{n}-¥varphi||_{¥ovalbox{¥tt¥small REJECT}}¥leq r_{¥varphi}$ , for all $n¥in N$. Moreover,
the set $¥{¥varphi^{n}(0):n¥in N¥}$ is compact in $X$ . Proceeding as in Theorem 1 we can
prove that the set $¥{x(¥cdot, ¥varphi^{n}):n¥in N¥}$ is relatively compact in $C([0, ¥tau];X)$ . If
$(¥psi^{n})_{n}$ is a subsequence of $(¥varphi^{n})_{n}$ , then there exists a subsequence $(x(¥cdot, ¥psi^{n_{¥mathrm{k}}}))_{k}$ of
$(x(¥cdot, ¥psi^{n}))_{n}$ which converges to some function $u(¥cdot)¥in C([0, ¥tau];X)$ . Next, we
also represent by $u(¥cdot)$ the extension defined by $u(¥theta):=¥varphi(¥theta)$ , for $¥theta<0$ . From
our hypotheses and the axioms of space $¥ovalbox{¥tt¥small REJECT}$ , we obtain that $x_{s}(¥cdot, ¥psi^{n_{k}})¥rightarrow u_{s}$ , as
$ k¥rightarrow¥infty$ , and that $ u_{s}¥in¥Omega$ , for all $ 0¥leq s¥leq¥tau$ . Since $¥{x_{s}(¥cdot, ¥psi^{n_{k}}):0¥leq s¥leq¥tau, k¥in N¥}$

is a bounded subset of $¥Omega$ and $F$ takes bounded sets into bounded sets, using
the Lebesgue’s dominated convergence Theorem for the integration in the sense
of Bochner ([6]), we obtain that $u(¥cdot)=x(¥cdot, ¥varphi)$ , which shows that $ P¥psi^{n_{k}}¥rightarrow P¥varphi$ ,
as $ k¥rightarrow¥infty$ . Since $(¥psi^{n})_{n}$ was an arbitrary subsequence of $(¥varphi^{n})_{n}$ , this proves that
$P$ is a continuous map.

Essential for our results on periodic solutions it will be the existence of
a bounded, closed and convex set $E¥subseteq¥ovalbox{¥tt¥small REJECT}$ such that $P(E)¥subseteq E$. In the next
proposition we present a case where this occurs. In this result we will consider
as phase space $¥ovalbox{¥tt¥small REJECT}:=C¥times L^{1}(g)$ the space of functions $¥varphi$ : ( $-¥infty$ , $¥mathrm{O}]¥rightarrow X$ such
that $¥varphi$ is continuous on $[- r, 0]$ , for some $r>0$, Lebesgue-measurable and
$g$ .

$¥varphi$ is Lebesgue integrable on $(-¥infty, -r)$ , where $g$ : $(-¥infty, -r)¥rightarrow R$ is a
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positive Lebesgue integrable function. The seminorm in $¥ovalbox{¥tt¥small REJECT}$ is defined by

$||¥varphi||:=¥sup¥{||¥varphi(¥theta)||:-r¥leq¥theta¥leq 0¥}+¥int_{-¥infty}^{-r}g(¥theta)||¥varphi(¥theta)||d¥theta$.

We will assume that $g$ satisfies conditions $(g -5)$ and $(g -6)$ , in the
terminology of [4]. This means that $g$ is locally integrable on $(-¥infty, -r)$

and that there exists a nonnegative and locally bounded function $G$ on
( $-¥infty$ , ? $0$] such that

$g(¥xi+¥theta)¥leq G(¥xi)g(¥theta)$ ,

for all $¥xi¥leq 0$ and $¥theta¥in(-¥infty, -r)¥backslash N_{¥xi}$ , where $ N_{¥xi}¥subseteq$ $(-¥infty, -r)$ is a set with
Lebesgue measure 0. Therefore, $¥ovalbox{¥tt¥small REJECT}$ is a phase space which verifies axioms
(A), $(A_{1})$ and (B). Further, we will suppose that

$¥gamma(t):=¥sup_{¥theta¥leq-r}¥frac{g(¥theta-t)}{g(¥theta)}+¥gamma_{0}+¥int_{-t-r}^{-¥overline{t}}g(¥theta)d¥theta¥rightarrow 0$ , as $ t¥rightarrow¥infty$ ,

where $¥overline{t}=¥max¥{r, t¥}$ and $¥gamma_{0}:=1$ , when $t¥leq r$ and $¥gamma_{0}:=0$ , when $t>r$.
For example, a function $ g(¥theta)=¥exp$ $(¥mu¥theta)$ , $¥mu>0$, satisfies all the above

conditions, as well as the conditions imposed in the next result, at least for
$¥mu$ large enough.

Proposition 5 Let $F:[0,$ $¥infty$ ) $¥times¥ovalbox{¥tt¥small REJECT}¥rightarrow X$ be a continuous function which
satisfies $(F_{1})$ , a local Lipschitz condition and

(2.7) $||F(t, ¥varphi)||¥leq N_{1}||¥varphi||+N_{2}$ , $¥varphi¥in¥ovalbox{¥tt¥small REJECT}$,

for some constants $N_{1}$ , $N_{2}¥geq 0$ . If there exist $¥omega>0$ and $K_{0}>0$ for which
the following conditions hold:

$a)$ $||T(t)||¥leq¥tilde{M}e^{-¥omega t}$ , $t¥geq 0$,

$b)$ $¥int_{0}^{t-r}g(s-t)e^{¥omega(t-r-s)}ds¥leq K_{0}$ ,

and

$c)$ $¥tilde{M}N_{1}e^{¥omega r}(1+K_{0})<¥omega$ .

Then there exist $R>0$ and $¥tau>0$ such that $P(B_{R}[0])¥subseteq B_{R}[0]$ and the set
$¥{x_{t}(¥cdot, ¥varphi):¥varphi¥in B_{R}[0], 0¥leq t¥leq¥tau¥}$ is bounded in $¥ovalbox{¥tt¥small REJECT}$ .

Proof First we will prove that the solution $¥mathrm{x}(¥cdot, ¥varphi)$ is defined on [0, $¥infty$ )
for all $¥varphi¥in¥ovalbox{¥tt¥small REJECT}$ . In fact, if we use the abbreviated notation $x(¥cdot)$ instead of
$x(¥cdot, ¥varphi)$ then from (2.1) we obtain
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(2.8) $||x(t)||¥leq¥tilde{M}e^{-¥omega t}||¥varphi(0)||+¥int_{0}^{t}¥tilde{M}e^{-¥omega(t-s)}(N_{1}||¥mathrm{x}_{s}||+N_{2})ds$

$¥leq¥tilde{M}e^{-¥omega t}||¥varphi||+¥frac{¥tilde{M}N_{2}}{¥omega}+¥tilde{M}N_{1}¥int_{0}^{t}e^{-¥omega(t-s)}||x_{s}||ds$ .

On the other hand, the definition of seminorm in $¥ovalbox{¥tt¥small REJECT}$ yields

$||x_{t}||=¥sup_{-r¥leq¥theta¥leq 0}||x(t+¥theta)||+¥int_{-¥infty}^{-r}g(¥theta)||x(t+¥theta)||d¥theta$.

If $t¥leq r$, then

$||x_{t}||=¥sup_{0¥leq s¥leq t}||x(s)||+¥sup_{-r¥leq¥theta¥leq-t}||¥varphi(t+¥theta)||+¥int_{-¥infty}^{-r}g(¥theta)||¥varphi(t+¥theta)||d¥theta$

(2.9) $¥leq¥tilde{M}||¥varphi||+¥frac{¥tilde{M}N_{2}}{¥omega}+¥tilde{M}N_{1}¥int_{0}^{t}e^{¥omega s}||¥mathrm{x}_{s}||ds+¥gamma(t)||¥varphi||$

$¥leq¥tilde{M}e^{-¥omega(t-r)}||¥varphi||+¥gamma(t)||¥varphi||+¥frac{¥tilde{M}N_{2}}{¥omega}+¥tilde{M}N_{1}e^{¥omega r}¥int_{0}^{t}e^{-¥omega(t-s)}||X_{S}||ds$

whereas, when $t$ $¥geq r$,

$||¥chi_{t}||¥leq¥sup_{t-r¥leq s¥leq t}||¥mathrm{x}(s)||+¥int_{-¥infty}^{-t}g(¥theta)||¥varphi(t+¥theta)||d¥theta+¥int_{-t}^{-r}g(¥theta)||¥mathrm{x}(t+¥theta)||d¥theta$

and substituing (2.8) into the above expression we obtain

(2. 10)

$||¥mathrm{x}_{t}||¥leq¥tilde{M}e^{-¥omega(t-r)}||¥varphi||+¥frac{¥tilde{M}N_{2}}{¥omega}+¥tilde{M}N_{1}e^{¥omega r}¥int_{0}^{t}e^{-¥omega(t-s)}||x_{S}||ds+¥gamma(t)||¥varphi||$

$+¥int_{0}^{t-r}g(s-t)[¥tilde{M}e^{-¥omega s}||¥varphi||+¥frac{¥tilde{M}N_{2}}{¥omega}+¥tilde{M}N_{1}e^{¥omega r}¥int_{0}^{s}e^{-¥omega(s-¥xi)}||X_{¥xi}||d¥xi]ds$ .

Hence, from (2.9), (2.10) and Fubini’s theorem we infer that

$||x_{t}||¥leq(¥tilde{M}e^{-¥omega(t-r)}+¥gamma(t)+¥tilde{M}K_{0}e^{-¥omega(t-r)})||¥varphi||+¥frac{¥tilde{M}N_{2}}{¥omega}(1+K_{0})$

$+¥tilde{M}N_{1}e^{¥omega r}(1+K_{0})¥int_{0}^{t}e^{-¥omega(t-s)}||¥mathrm{x}_{s}||ds$,

for each $t¥geq 0$ . Now, a simple calculation using the Gronwall’s lemma shows
that
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$||x_{t}||¥leq¥tilde{M}(1+K_{0})e^{¥omega r}(e^{-¥omega t}+e^{-(¥omega-¥mathrm{v})t})||¥varphi||+¥gamma(t)||¥varphi||$

$+v$ . $||¥varphi||¥int_{0}^{t}e^{-¥omega(t-s)}¥gamma(s)ds+¥frac{¥tilde{M}N_{2}}{¥omega}(1+K_{0})(1+e^{-(¥omega-¥mathrm{v})t})$

where $v=¥tilde{M}N_{1}e^{¥omega r}(1+K_{0})$ . Consequently, we can write

$||X_{t}||¥leq C_{t}||¥varphi||+C$ ,

where $C$ is a constant and $C_{t}¥rightarrow 0$, as $ t¥rightarrow¥infty$ . Then Corollary 2 implies that
$x(¥cdot)$ is defined on [0, $¥infty$ ). Furthermore, if we choose $R¥geq 2C$ and $¥tau>0$ such
that $C_{¥tau}¥leq 1/2$, we obtain the assertion.

For example, if we choose $g(¥theta)=e^{¥mu¥theta}$ , with $¥mu>¥omega$ then we can take
$K_{0}=e^{-¥mu r}/(¥mu-¥omega)$ and the condition c) is obained if

$r¥tilde{M}N_{1}(1+¥frac{e^{-¥mu r}}{¥mu-¥omega})<1/e$ .

$¥square $

3 Existence of periodic solutions

Let $¥tau>0$ and suppose that the function $F:[0,$ $¥infty$ ) $¥times¥Omega¥rightarrow X$ is $¥mathrm{r}$ -periodic
in $t$ .

In this section, we consider the following condition:

$(F_{2})$ . There exists a closed, bounded and convex subset $ E¥subseteq¥Omega$ such that for
all $¥varphi¥in E$ there exists a unique solution $¥mathrm{x}(¥cdot, ¥varphi)$ of problem (1.1)?(1.2)
defined on [0, $¥infty$ ) such that $x_{¥tau}(¥cdot, ¥varphi)¥in E$ and the set $¥{x_{t}(¥cdot, ¥varphi):0¥leq t¥leq¥tau$ ,
$¥varphi¥in E¥}$ is included in a bounded and closed set in $¥Omega$ .

We will represent by $P$ the map defined on $E$ by $P¥varphi=¥chi_{¥tau}(¥cdot, ¥varphi)$ .
Let $¥mathrm{x}$ $=x(¥cdot¥varphi)$ be the solution of (1.1)?(1.2) with initial condition

$ x_{0}=¥varphi$ . We observe that $ x_{¥tau}=¥varphi$ implies that $x$ is a $¥mathrm{i}$-periodic function. In
fact, if we define $y(t)=x(t+¥tau)$ , for $t¥in R$, then for each $t¥geq 0$,

$y(t)=T(t+¥tau)¥varphi(0)+¥int_{0}^{t+¥tau}T(t+¥tau-s)F(s, x_{s})ds$

$=T(t)[T(¥tau)¥varphi(0)+¥int_{0}^{¥tau}T(¥tau-s)F(s, x_{s})ds]$

$+¥int_{0}^{t}T(t-s)F(s+¥tau, x_{s+¥tau})ds$

$=T(t)x(¥tau)+¥int_{0}^{t}T(t-s)F(s, y_{s})ds$,
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which yields that $y(¥cdot)$ is a solution of equation (1.1) and since $ y_{0}=x_{¥tau}=¥varphi$ ,
by the uniqueness of solution, we obtain that $y(t)=x(t+¥tau)=x(t)$ , for all
$t¥geq 0$. Therefore, in order to obtain a periosic solution it is sufficient to prove
the existence of a fixed point of the map $P$ and for this purpose we will
employ the Sadovski’s fixed point theorem ([8]) in the seminormed space $¥ovalbox{¥tt¥small REJECT}$ .

Let $Z$ be a Banach space and $B_{0}¥subset Z$ . We recall that a continuous
function $f:B_{0}¥rightarrow Z$ is said to be condensing if $¥alpha(f(B))<a(B)$ , for each bounded
set $B¥subset B_{0}$ with $a(B)>0$. If $B_{0}$ is a closed, bounded and convex set and
$f:B_{0}¥rightarrow B_{0}$ is condensing then from the Sadovski’s theorem we may assert
that $¥{z¥in Z:f(z)=z¥}$ is non-empty and compact.

Now we are in conditions to establish our main result.

Theorem 2 Assume that $T$ is a compact semigroup and $F$ is a $x$-periodic

function which satisfies $(F_{2})$ and takes bounded subsets of [0, $¥infty$ ) $¥times E$ into
bounded subsets of X. Moreover, suppose $¥ovalbox{¥tt¥small REJECT}$ satisfies axioms (A), $(A_{1})$ and (B),
and the following condition $s$

(3. 1) $¥inf_{0<¥sigma<¥tau}M(¥tau-¥sigma)[HK(¥sigma)¥sup_{0¥leq t¥leq¥sigma}||T(t)||+M(¥sigma)]<1$ .

Then the set of $¥varphi¥in E$ such that the solution $x(¥cdot, ¥varphi)$ is $¥tau$ -periodic is non-empty
and compact.

Proof. Since $T$ is compact then $F$ satisfies condition $(F_{1})$ and by
Proposition 4, $P$ is a continuous map. Therefore, there exists an induced map
$¥hat{P}$ : E→ E which satisfies the condition $¥hat{P}¥hat{¥varphi}=P(¥varphi)$ , for all $¥hat{¥varphi}¥in E$ and every
$¥varphi¥in¥hat{¥varphi}$ . We will prove that $¥hat{P}$ is condensing. It is clear that for every subset
$C$ of E there exists $D¥subset E$ such that $C=¥hat{D}$ and $a(C)=¥alpha(D)$ . Consequently
we may restrict us to consider a subset $¥hat{D}$ of E with $a(D)>0$ . If we denote
by $D[¥sigma, ¥tau]$ , $ 0¥leq¥sigma¥leq¥tau$ , the set defined as

$D[¥sigma, ¥tau]:=¥{x(¥cdot, ¥varphi)|_{[¥sigma,¥tau]} : ¥varphi¥in D¥}$

then from Theorem 2.1 in [9] we obtain that

(3.2) $a(¥hat{P}(¥hat{D}))¥leq K(¥tau-¥sigma)a(D[¥sigma, ¥tau])+M(¥tau-¥sigma)a(¥hat{D}_{¥sigma})$ ,

where $D_{¥sigma}=¥{x_{¥sigma}(¥cdot, ¥varphi):¥varphi¥in D¥}$ .

On the other hand, for every $¥sigma>0$, the set $D[¥sigma, ¥tau]$ is relatively compact
in $C([¥sigma, ¥tau];X)$ . To prove this assertion we need to show that $D[¥sigma, ¥tau]$ is
equicondinuous and each orbit $D$ $[¥sigma, ¥tau](t)$ is relatively compact in $X$, for
$¥sigma¥leq t¥leq¥tau$ . But the proof of both statements can be carried out with the same
argument already used in the proof of Theorem 1. Of course, the compactness
of semigroup $T$ is now essential because we can write
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$D[¥sigma, ¥tau]¥subseteq¥{T(¥cdot)¥varphi(0):¥varphi¥in D¥}+¥{w(¥cdot, ¥varphi):¥varphi¥in D¥}$

where

(3.3) $w(t, ¥varphi):=¥int_{0}^{t}T(t-s)F(s, x_{s})ds$ ,

and the first set in the right member of the above inclusion is relatively
compact in view of $¥{¥varphi(0):¥varphi¥in D¥}$ is bounded in $X$ and $T(t)$ is a compact
linear map for every $ t¥in$ $[¥sigma, ¥tau]$ .

Combining this fact with (3.2) we see that

(3.4) $a(¥hat{P}(¥hat{D}))¥leq M(¥tau-¥sigma)a(¥hat{D}_{¥sigma})$ .

Next we will evaluate $a(¥hat{D}_{¥sigma})$ . Proceeding as above for the interval $[0, ¥sigma]$

we infer that

(3.3) $a(¥hat{D}_{¥sigma})¥leq K(¥sigma)a(D[0, ¥sigma])+M(¥sigma)a(¥hat{D})$ .

We shall now show that

(3.6) $a(D[0, ¥sigma])¥leq H¥sup_{0¥leq t¥leq¥sigma}||T(t)||a(D)$ .

In fact, if $D(0)=$ $¥{¥varphi(0):¥varphi¥in D¥}$ then from the axiom (An) it follows that

(3.7) $a(D(0))¥leq Ha(D)$ .

Further, if we choose a real number $d>0$ such that $a(D(0))<d$ then,
from the definition of $a$, we can get a finite cover of $D(0)$ with sets $R_{i}¥subseteq X$,
$i=1,2,¥cdots,n$, of diameter less than $d$ . Next, for a subset $R$ of $X$ we will
indicate by $R^{*}$ the set of continuous functions

$R^{*}=¥{T(¥cdot)x|_{[0,¥sigma]} : x¥in R¥}$ .

Then, it is clear that

in $(R_{i}^{*})<¥sup_{0¥leq t¥leq¥sigma}||T(t)||d$

and

$D(0)^{*}¥subseteq¥bigcup_{i=1}^{n}R_{i}^{*}$ .

Hence we obtain that

$a(D(0)^{*})¥leq¥sup_{0¥leq t¥leq¥sigma}||T(t)||¥cdot d$ .
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Combining this inequality, (3.7) and the choice of $d$ we obtain

$a(D(0)^{*})¥leq H¥sup_{0¥leq t¥leq¥sigma}||T(t)||¥cdot a(D)$ .

Since

$D([0, ¥sigma])¥subseteq D(0)^{*}+¥{w(¥cdot, ¥varphi)|_{[0,¥sigma]} : ¥varphi¥in D¥}$

and the second set in the right member is relatively compact in $C([0, ¥sigma];X)$

then from the properties of measure $a$, we complete the proof of (3.6).
Thus, inequality (3.4), together with (3.5) and (3.6) shows that

$a(¥hat{P}(¥hat{D}))¥leq M(¥tau-¥sigma)[K(¥sigma)H¥sup_{0¥leq t¥leq¥sigma}||T(t)||+M(¥sigma)]a(¥hat{D})$ ,

for all $ 0<¥sigma¥leq¥tau$ .

Finally, condition (3.1) implies that $¥hat{P}$ is a condensing map.
By the fixed point theorem of Sadovski [8] we conclude that the set

$¥{¥hat{¥varphi}¥in¥hat{E}:¥hat{P}¥hat{¥varphi}=¥hat{¥varphi}¥}$ is non-empty$¥wedge ¥mathrm{a}¥mathrm{n}¥mathrm{d}$ compact in $¥hat{¥ovalbox{¥tt¥small REJECT}}$ . Let $¥varphi$ be an element in
$E$ such that $¥hat{P}¥hat{¥varphi}=¥hat{¥varphi}$ . Then $P^{¥kappa}(¥varphi)=¥hat{¥varphi}$ for every $k¥in N$ and, since

$||P^{k}¥varphi-P^{m}¥varphi||_{¥ovalbox{¥tt¥small REJECT}}=||¥hat{P^{k}¥varphi}-¥overline{P^{m}¥varphi}||_{¥hat{¥ovalbox{¥tt¥small REJECT}}}=0$ ,

$(P^{k}¥varphi)_{k}$ is a Cauchy sequence in $¥ovalbox{¥tt¥small REJECT}$ . Hence we infer that there exists $¥psi¥in E$

such that $ P^{k}¥varphi¥rightarrow¥psi$ , as $ k¥rightarrow¥infty$ . Therefore, $ P¥psi=¥psi$ . Since $P$ is a condensing
map, we may assert that $¥{¥varphi¥in E;P¥varphi=¥varphi¥}$ is non-empty and compact.

Corollary 3 Let $¥ovalbox{¥tt¥small REJECT}:=C¥times L^{1}(g)$ and $fet$ $F:[0,$ $¥infty$ ) $¥times¥ovalbox{¥tt¥small REJECT}¥rightarrow X$ be $a$

continuous and $x$-periodic function which satisfies a local Lipschitz condition.
Assume that $T$ is a compact semigroup and that conditions (2.7), $a)$ , $b)$ and $c$)
of Proposition 5 hold. Then there exists a $mx$-periodic solution of equation (1.1).

Proof. Since $F$ takes bounded sets into bounded sets and $T$ is compact,
then $F$ satisfies $(F_{1})$ . From Corollary 2 we obtain that the solution of
(1.1)?(1.2) is defined on [0, $¥infty$ ). Proposition 5 implies that there exist $R>0$

and $m¥in N$ so that the set $E:=B_{R}[0]$ is invariant under the map $P¥varphi=x_{m¥tau}(¥cdot, ¥varphi)$

and the set $¥{x_{t}(¥cdot, ¥varphi):0¥leq t¥leq m¥tau, ¥varphi¥in E¥}$ is bounded in $¥ovalbox{¥tt¥small REJECT}$ . Furthermore, since
$¥ovalbox{¥tt¥small REJECT}=C¥times L^{1}(g)$ , one can choose $m¥in N$ large enough so that the condition (3.1)
with $¥mathrm{m}¥mathrm{x}$ in place of $¥tau$ holds. Now, Theorem 2 asserts that there exists a
$¥mathrm{m}¥tau$ -periodic solution of (1.1)?(1.2) with $¥varphi¥in E$ .

Next, we will apply Corollary 3 to linear equations.

Example. We consider the equation

(3.8) $¥dot{x}(t)=Ax(t)+F(t, x_{t})+f(t)$,
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where $f$ is continuous and $¥mathrm{t}$ -periodic; $F(t, ¥cdot)$ is linear for each $t¥geq 0$ and, all
the assumptions considered in Corollary 3 hold. Then there exists a $¥mathrm{i}$ -periodic
solution of (3.8). In fact, we know that there exists a $¥mathrm{m}¥mathrm{r}$ -periodic solution

$x(¥cdot)$ , for some $m¥in N$. Let us introduce the set $V:=¥overline{c(¥{¥hat{¥hat{x}}_{t}(¥cdot)..0¥leq t¥leq m¥tau¥})}$ .

Since $¥{x_{t}(¥cdot):0¥leq t¥leq m¥tau¥}$ is compact in $¥ovalbox{¥tt¥small REJECT}$ , then $V$ is also a compact and
convex subset of the Banach space $¥hat{¥ovalbox{¥tt¥small REJECT}}$

. On the other hand, if $P$ denotes the
map $P¥varphi:=¥mathrm{x}_{¥tau}(¥cdot, ¥varphi)$ , then $P$ is a continuous and affine map. The last property
is a consequence of the uniqueness of solutions of equation (3.8) with initial
condition (1.2). Consequently, the map $¥hat{P}$ induced by $P$ on $¥hat{¥ovalbox{¥tt¥small REJECT}}$ also verifies
these properties, which implies that $¥hat{P}(V)¥subseteq V$. Now, the Schauder’s fixed point
Theorem assert that $¥hat{P}$ has a fixed point and, proceeding as in the roof of
Theorem 2, we infer that $P$ has a fixed point, which in turn implies that
equation (3.8) has a $¥mathrm{i}$ -periodic solution.
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