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1. Introduction and preliminaries

Recently there has been a lot of activity concerning the oscillation and
asymptotic behavior of delay difference equations. See, for example, [2?13]
and [15-16]. For the general theory of difference equations the reader is
refered to [14]. We should note that the oscillatory behavior of ordinary
differential equations and its discrete analogue can be quite different, for
example, it is well known that every solution of the Logistic equation

$¥mathrm{x}^{¥prime}(t)=rx(t)(1-¥frac{¥mathrm{x}(t)}{k})$

is monotonie. But its discrete analogue

$X_{n+1}=ax_{n}(1-x_{n})$

has a chaotic solution when $a=4$ (see [14]). In addition, the difference on
the oscillation of delay differential equations and its discrete analogues also
exists, see for example [16].

In this paper we consider the neutral delay difference equation

(1) $¥Delta(y_{n}+py_{n-k})+q_{n}y_{n-1}=0$, $ n=0,1,2,¥ldots$

whose oscillation and asymptotic behavior have been investigated in
[3, 4, 10-12], where $p$ , $q_{n}$ $(n=0,1,2, ¥ldots)$ are real numbers, $k$ and $l$ are
non-negative integers, and $¥Delta$ denotes the forward difference operator
$¥Delta¥chi_{n}=x_{n+1}-x_{n}$ . Eq. (1) was first considered by Brayton and Willoughby [1]
from the numerical analysis point of view.

The following result has been established by Georgiou, Grove and Ladas
[4].

Theorem A [4]. Suppose
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(2) $k¥in¥{1,2,¥ldots¥}$ , $l¥in¥{0,1, 2, ¥ldots¥}$ and $q_{n}¥geq 0$ eventually.

Suppose also that

(3) $¥sum_{n=0}^{¥infty}q_{n}=¥infty$ .

Let $¥{y_{n}¥}$ be a nonoscillatory solution of $Eq$. (1). Then the following statements
are true:

(a) if $p<-1$ , then $¥lim_{n¥rightarrow¥infty}y_{n}=¥infty$ or $¥lim_{n¥rightarrow¥infty}y_{n}=-¥infty$ ;

(b) if $p>-1$ and $p¥neq 1$ , then $¥lim_{n¥rightarrow¥infty}y_{n}=0$ .

Remark 1. As we have seen in [4], the assumption that $p=-1$ , as well
as that (2) and (3) hold, implies that every solution of Eq. (1) oscillates. Thus
the assumption in the above Theorem A that $p¥neq-1$ is harmless. But, the
case $p=1$ has not yet been handled. Therefore, Georgiou, Grove and Ladas
posted the following conjecture in [4].

Coniecture $¥mathrm{B}[4]$ . Assume that (2) and (3) hold. Suppose moreover that
$p=1$ . Let $¥{y_{n}¥}$ be a nonoscillatory solution of $Eq$ . (1). Then

$¥lim_{n¥rightarrow¥infty}y_{n}=0$.

In addition, it is also valuable to consider the following problem:

Problem C. Whether Condition (3) is a necessary condition for the
oscillation of all solutions of $Eq$ . (1) with $p=-17$

Our aim in this paper is to solve the above open problems. In section
2, we first give a counterexample to show that Conjecture $¥mathrm{B}$ is not true, and
then give several positive solutions to Conjecture $¥mathrm{B}$ under some special cases,
that is, we show that, under appropriate additional hypotheses on $¥{q_{n}¥}$ ,
Conjecture $¥mathrm{B}$ is true. In section 3, we provide a sufficient condition which
does not require Condition (3) for the oscillation of all solutions of Eq. (1)
with $p=-1$ .

Let $m=¥max¥{k, l¥}$ . Then by a solution of Eq. (1) we mean a sequence
$¥{y_{n}¥}$ of real numbers which is defined for $n¥geq-m$ and which satisfies Eq. (1)
for $n=0,1,2$, $¥ldots$ . Clearly, in this case if we given real numbers

(4) $y_{n}=A_{n}$ , $n=-m$, ? $m+1,¥ldots,0$

as a set of initial conditions, then Eq. (1) has a unique solution satisfying (4)
(if it is not the case that $p=-1$ and $k=0$).
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A solution $¥{y_{n}¥}$ of Eq. (1) is said to be nonoscillatory if the terms $y_{n}$ are
either eventually positive or eventually negative. Otherwise, the solution is
called oscillatory.

In the sequel, when we write a sequential inequality we assume that it
holds for all sufficiently large positive integers.

2. Asymptotic behavior of nonoscillatory solutions

In this section we will first discuss a special example which shows that
Conjecture $¥mathrm{B}$ mentioned in Section 1 is not true, and then we prove, under
appropriate additional hypotheses on $¥{q_{n}¥}$ , that Conjecture $¥mathrm{B}$ is true.

In the following, we set

$B_{n}$ $=¥left¥{¥begin{array}{l}0,¥mathrm{i}¥mathrm{f}n¥mathrm{i}¥mathrm{s}¥mathrm{a}¥mathrm{n}¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}¥mathrm{i}¥mathrm{n}¥mathrm{t}¥mathrm{e}¥mathrm{g}¥mathrm{e}¥mathrm{r},¥¥1,¥mathrm{i}¥mathrm{f}n¥mathrm{i}¥mathrm{s}¥mathrm{a}¥mathrm{n}¥mathrm{o}¥mathrm{d}¥mathrm{d}¥mathrm{i}¥mathrm{n}¥mathrm{t}¥mathrm{e}¥mathrm{g}¥mathrm{e}¥mathrm{r},¥end{array}¥right.$

Clearly, we have $B_{n}+B_{n-1}=1$ for all integers $n$ .

Now let us consider the following neutral delay difference equation

(5) $¥Delta(y_{n}+y_{n-1})+q_{n}y_{n-1}=0$, $ n=0,1,2,¥ldots$

where

$q_{n}=(e^{2}-1)/(e^{n+1}B_{n-1}+e^{2})$ .

Obviously, $¥{q_{n}¥}$ is a sequence of positive real numbers and

$¥sum_{n=0}^{¥infty}q_{n}=¥infty$ .

Therefore, Conditions (2) and (3) are satisfied. However, we find by direct
substitution that $y_{n}=B_{n}+e^{-n}$ is a positive solution of Eq. (5) and $y_{n}$ does
not go to zero as $n$ goes to infinite since

$¥lim_{n¥rightarrow}¥sup_{¥infty}$ $y_{n}=1$ .

We should remark that the above example indeed shows that Conjecture
$¥mathrm{B}$ is not true. Therefore, the answer to Conjecture $¥mathrm{B}$ mentioned in Section
1 is negative. However, the following two theorems show that, under
appropriate additional hypotheses on $¥{q_{n}¥}$ , Conjecture $¥mathrm{B}$ is true.

Theorem 1. Assume that (2) and (3) hold and that

(6) $q_{n}>0$ and $¥lim_{n¥rightarrow}¥sup_{¥infty}$ $¥frac{q_{n}}{q_{n-k}}=¥beta<¥infty$ .
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Then every nonoscillatory solution of $Eq$ . (1) with $p=1$ goes to zero as $ n¥rightarrow¥infty$ .

Proof. Let $¥{y_{n}¥}$ be a nonoscillatory solution of Eq. (1). As $¥{- y_{n}¥}$ is
also a solution of Eq. (1), we may (and do) assume that it is eventually
positive. Thus, there exists an integer $n_{1}¥geq 1$ such that $q_{n}>0$ and $y_{n-k}>0$

for $n¥geq n_{1}$ . Set

$z_{n}=y_{n}+y_{n-k}$ .

Then by (1) we see

$¥Delta z_{n}¥leq 0$ , $z_{n}>0$ for $n¥geq n_{1}$ .

Moreover, from (1) we have

$¥Delta z_{n}=-q_{n}y_{n-1}$ , $¥Delta z_{n-k}=-q_{n-k}y_{n-k-1}$

and then we have

(7) $¥Delta z_{n}+¥frac{q_{n}}{q_{n-k}}¥Delta z_{n-k}+q_{n}z_{n-1}=q_{n}(z_{n-1}-y_{n-1}-y_{n-k-1})=0$ .

From (6) there is an integer $n_{2}¥geq n_{1}$ such that

$¥frac{q_{n}}{q_{n-k}}<¥beta+1$ for $n¥geq n_{2}$ .

Substituting this into (7) we get

(8) $¥Delta z_{n}+(¥beta+1)¥Delta z_{n-k}+q_{n}z_{n-1}¥leq 0$, $n¥geq n_{2}$ .

Now, we want to prove that

$¥lim_{n¥rightarrow¥infty}z_{n}=0$ .

Otherwise,

$¥lim_{n¥rightarrow¥infty}z_{n}=a>0$ .

Summing up both sides of (8) from $n_{2}$ to $N$ $(¥geq n_{2})$ , we have

$z_{N+1}-z_{n_{2}}+(¥beta+1)(z_{N-k+1}-z_{n_{2}-k})$

$¥leq-¥sum_{n=n_{2}}^{N}q_{n}z_{n-l}¥leq-a(¥sum_{n=n_{2}}^{N}q_{n})¥rightarrow-¥infty$ as $ N¥rightarrow¥infty$ ,

which implies that $ z_{n}¥rightarrow-¥infty$ as $ n¥rightarrow¥infty$ , a contradiction. Hence,
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$¥lim_{n¥rightarrow¥infty}z_{n}=0$ ,

which implies that

$¥lim_{n¥rightarrow¥infty}y_{n}=0$.

The proof of this theorem is complete.

Theorem 2. Assume that (2) holds and that

(3)’ $¥sum_{n=k}^{¥infty}q_{n}^{*}=¥infty$

where $q_{n}^{*}=¥min¥{q_{n}, q_{n-k}¥}$ . Then every nonoscillatory solution of $Eq$ .

$p=1$ tewdi to zero as $ n¥rightarrow¥infty$ .

Proof. Let $¥{y_{n}¥}$ be an eventually positive solution of Eq.
$z_{n}=y_{n}+y_{n-k}$ . Then

$¥Delta z_{n}=-q_{n}y_{n-l}¥leq 0$

which means that $¥{z_{n}¥}$ is eventually positive and decreasing and so
$¥lim_{n¥rightarrow¥infty}z_{n}=M¥geq 0$ exists and is finite. For

$0=¥Delta z_{n}+q_{n}y_{n-l}+¥Delta z_{n-k}+q_{n-k}y_{n-k-l}$

$¥geq¥Delta z_{n}+¥Delta z_{n-k}+q_{n}^{*}(y_{n-l}+y_{n-k-l})$

$=¥Delta(z_{n}+z_{n-k})+q_{n}^{*}z_{n-l}$

which means that $¥{z_{n}¥}$ satisfies the difference inequality

(9) $¥Delta(z_{n}+z_{n-k})+q_{n}^{*}z_{n-l}¥leq 0$ .

From this and (3)’, and using the same arguments as that in the
Theorem 1, we get

$¥lim_{n¥rightarrow¥infty}z_{n}=0$

and so $¥lim_{n¥rightarrow¥infty}y_{n}=0$ and the proof is complete.

3. Oscillation of Eq. (1) with p $=-1$

In this section we study the oscillation of Eq. (1) with $p=-$
following theorem is the main result.

Theorem 3. Assume that (2) holds with $p=-1$ . Suppose also
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(10) $¥sum_{n=0}^{¥infty}nq_{n}¥sum_{j=n}^{¥infty}q_{j}=¥infty$ .

Then euery solution of $Eq$. (1) oscillates.

Proof. As (3) implies that all solutions of Eq. (1) oscillate, it suffices to
show that all solutions of Eq. (1) oscillate in the case that

(11) $¥sum_{n=0}^{¥infty}q_{n}<¥infty$ .

Assume, for the sake of contradiction, that Eq. (1) has an eventually positive
solution $¥{y_{n}¥}$ . Choose an integer $n^{*}¥geq 1$ to be such that

(12) $y_{nm}¥_>0$ for $n¥geq n^{*}$

where $m=¥max¥{k, I¥}$ . Set $z_{n}=y_{n}-y_{n-k}$ . Then by (1) we have

(13) $¥Delta z_{n}=-q_{n}y_{n1}¥_¥leq 0$ $(¥not¥equiv 0)$ for $n¥geq n^{*}$

which implies that $z_{n}$ is nonincreasing for $n¥geq n^{*}$ . Therefore, $z_{n}$ is eventually
nonnegative or eventually negative.

First, we assume that $z_{n}<0$ eventually. Since $¥{z_{n}¥}$ is nonincreasing, there
exist $a>0$ and $N¥geq n^{*}$ such that

$z_{n}¥leq-a$ for $n¥geq N$ .

Therefore,

$ y_{n}¥leq-a+y_{nk}¥_$ for $n¥geq N$

and it follows that

$ y_{N+ik}<-(i+1)a+y_{N-k}¥rightarrow-¥infty$ as $ i¥rightarrow¥infty$

which contradicts (12). Thus, $z_{n}$ can not be eventually negative.
Next, we assume that $z_{n}¥geq 0$ eventually. In this case we have eventually

$ y_{n}¥geq y_{nk}¥_$
’ which means that there exist $M>0$ and $N^{*}¥geq N$ such that

$y_{nm}¥_¥geq M$ for $n¥geq N^{*}$ . Then from (13), it follows that

for $n¥geq N^{*}$ .$¥Delta z_{n}¥leq-Mq_{n}$ for $n¥geq N^{*}$ .

Hence

$z_{n}¥geq M¥sum_{j=n}^{¥infty}q_{j}$ for $n¥geq N^{*}$

alld so
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(14) $y_{n}¥geq y_{n-k}+M¥sum_{j=n}^{¥infty}q_{j}$ for $n¥geq N^{*}$ .

Now let $I(n)$ denote the greatest integer part of $(n -N^{*})/k$, then we have

$y_{n}¥geq M(¥sum_{j=n}^{¥infty}q_{j}+¥sum_{j=n-k}^{¥infty}q_{j}+¥cdots+¥sum_{j=n-(I(n)-1)k}^{¥infty}q_{j})+y_{n-I(n)k}$

which, together with (13), yields

(15) $¥Delta z_{n}¥leq-I(n)Mq_{n}¥sum_{j=n}^{¥infty}q_{j}:=-H_{n}$ .

By noting the fact that $I(n)/n¥rightarrow 1/k$ as $ n¥rightarrow¥infty$ , we see that

(16) $H_{n}(nq_{n}¥sum_{j=n}^{¥infty}q_{j})^{-1}=¥frac{I(n)M}{n}¥rightarrow¥frac{M}{k}$ as $ n¥rightarrow¥infty$ .

Clearly, (10) and (16) imply that

$¥sum_{n=0}^{¥infty}H_{n}=¥infty$

which, together with (15), yields

$ z_{n}¥rightarrow-¥infty$ as $ n¥rightarrow¥infty$

which contradicts the hypothesis that $z_{n}$ is eventually nonnegative. Thus, all
solutions of Eq. (1) oscillate. The proof is complete.

Remark 2. Clearly, (10) is weaker than (3). Hence, Theorem 3 is an
improvement of Theorem 1 in [4] and shows that the answer to Problem $¥mathrm{C}$

mentioned in Section 1 is negative.

Example. Consider the neutral difference equation

(17) $¥Delta(y_{n}-y_{n-k})+n^{-a}y_{n-l}=0$

where $a¥in(1,3/2$]. Since

$n^{-a}(n^{-(a-1)}-(n+1)^{-(a-1)})^{-1}¥rightarrow¥frac{1}{a-1}$ as $ n¥rightarrow¥infty$

and $n^{-(a-1)}-(n+1)^{-(a-1)}$ satisfies condition (10), it is easy to see that $n^{-a}$

satisfies (10). Therefore, by Theorem 3, every solution of Eq. (17) oscillates.
But, condition (3) does not satisfy.
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