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1. Introduction

In this paper we consider non-fuchsian linear systems, i.e. systems of
ordinary linear differential equations of the kind

(1) $t^{r}X^{¥prime}=A(t)X$

where $r¥geq 2$ is an integer, $A¥in gl(n, ¥mathrm{C}¥{t¥})$, $A(0)¥neq 0$, “
$’’’¥equiv d/dt$ (by definition,

system (1) is called non-fuchsian, because it has a pole of order $¥geq 2$ at 0). In
the next section we make a brief review of some well-known facts about the
asymptotics and the analytic properties of the solutions of system (1) at 0
and define the Stokes’ multipliers and the monodromy operator which are
linear operators acting in the solution space of system (1).

Denote by $M$ the field of holomorphic or meromorphic functions in the
neighbourhood of 0, with a single pole at 0. Denote by $S¥subset C$ a sector with
vertex at 0 and by $K_{S}$ the extension of $M$ obtained by adjoining all the
restrictions to $S$ of the components of the solutions of system (1). The Galois’
group of system (1) is the group of automorphisms of the differential field $K_{S}$

which preserve the field $M$ . One of the aims of this paper is to prove

Theorem 1.1. The Stokes’ multipliers and the monodromy operator of sys-
$tem(1)$ belong to its Galois’ group.

Remark: In fact, we prove Theorem 1.1 not for system (1), but for system
(3) obtained from it by some holomorphic or fractionally meromorphic in $t$

linear transformation of the dependent variables $X$ as described in Section 2.

This theorem was stated by prof. J.-P. Ramis, see [1], [2], who also gave
a sketch of the proof there. The proof is going to be published in a book. It
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is using the so-called resummation method which has also been applied in
the sketch of the proof of the finiteness of the limit cycles theorem announced
by prof. J. Ecalle, prof. J. Martinet, prof. R. Moussu and prof. J.-P. $¥mathrm{R}¥mathrm{a}¥mathrm{m}¥mathrm{i}¥mathrm{s}_{>}$

see [3]. An independent proof (for the non-resonant case) was given by prof.
Yu. S. Il’yashenko and prof. A. G. Hovansky, see [4]; it is based on the
theory of the functional cochains developed by the first author. We list some
papers of prof. J. P. Ramis, ses Additional References, from which one can
derive the proof of Theorem 1.1 and many other results concerning non-
fuchsian equations and their differential Galois theory.

Naturally, the author of this paper does not claim any priority in proving
Theorem 1.1. His aim is to give an independent proof including the resonant
case and to show some results about the dependence of the angular type of
holomorphic functions of a given order in sectors on the angle. ’Independent’
is relative, of course?the problem was stated to the author by prof. Yu. S.
Il’yashenko and the author is following the same scheme of reasoning in Section
3, C) as the one used in [4].

In Section 2 we expose briefly some well-known facts from the local
analytic theory of non-fuchsian linear systems. Section 3 is devoted to the
Stokes’ multipliers, to the differential field $K_{S}$ and to the Galois’ group of
system (3) which is in some sense equivalent to system (1). In Section 4 we
describe the behaviour of the angular type of holomorphic functions in sectors
of a given order and formulate the generalised Phragmen-Lindeloff principle;
the proofs of two of the theorems are exposed in the Appendix. In Section
5 we prove Theorem 3.2 which is equivalent to Theorem 1.1. We don’t make
use of all the results in Section 4 in the proof of Theorem 3.2, but they are
closedly related to the problem of describing the behaviour of the solutions
of a non-fuchsian system.

2. Local normal forms and analytic theory of non-fuchsian linear systems
(brief review)

The local analytic theory of non-fuchsian linear systems is well exposed
in [5]. For the local normal forms we refer the reader to [6] and [7]. Non-
fuchsian systems from a more algebraic point of view are considered in [8]
and [9].

1) System (1) is called resonant if there are equal among the eigenvalues
of the matrix $A(0)$ . For any non-resonant (resonant) system (1) there exists
a formal change of variables

$X¥mapsto Q(t)X$ $(X ¥mapsto Q(t^{¥mathrm{J}^{¥prime}m})X, m¥in N)$



The Stokes’ Multipliers 331

where the matrix $Q$ is a formal Taylor power series of the variable $t$ , $¥det Q(0)¥neq$

$0$ (a formal Laurent power series of the variable $t^{1/m}$ ) which transforms system
(1) to the form

(2) $¥tau^{q}X^{¥prime}=(D_{0}+D_{1}¥tau+¥cdots+D_{q-2}¥tau^{q-2}+C¥tau^{q-1})X$

Here “
$’’’¥equiv d/d¥tau$, $¥tau=t$ in the non-resonant and $¥tau=t^{1/m}$ in the resonant case,

the matrices $D_{0}$ , $¥ldots$ , $ D_{q2}¥_$ are diagonal and the matrix $C$ is in Jordan normal
form, the invariant spaces of the linear operators with matrices $D_{0}$ , $¥ldots$ , $ D_{q2}¥_$

’

$C$ are embedded in each other according to the rule

Inv $ D_{0}¥supset$ Inv $ D_{1}¥supset¥cdots¥supset$ Inv $ D_{q2}¥_¥supset$ In $C$

Hence, the matrices $D_{0}$ , $¥ldots$ , $D_{q2}¥_’ C$ commute. In the non-resonant case
the diagonal entries of the matrix $D_{0}$ are exactly the eigenvalues of the matrix
$A(0)$ .

Any solution of the formal normal form (3) is of the kind

$ X=¥exp$ (diag $(b_{1}(1/¥tau), ¥ldots, b_{n}(1/¥tau))¥exp(C ¥ln¥tau)G$ ,

where $G¥in GL(n, C)$ and $b_{1}$ , $¥ldots$ , $b_{n}$ are polynomials of 1/$¥tau$ of power $q-1$

without constant terms.
In the non-resonant case $¥det Q(0)¥neq 0$, $q=r$. In the resonant one, in

general, $q>r$. In both cases the matrices diag $(b_{1^{ }},¥ldots, b_{n})$ and $C$ commute.

2) In the normalizing transformation we can cut off the sufficiently large
powers of $¥tau$ and obtain a holomorphic (or fractionally meromorphic?in the
resonant case) transformation which transforms system (1) to the form

(3) $¥tau^{q}X^{¥prime}=(D_{0}+D_{1}¥tau+¥cdots+D_{q-2}¥tau^{q-2}+C¥tau^{q-1}+¥tau^{q}W(¥tau))X$

where $W¥in gl(n, C¥{¥tau¥})$ .

System (3) is non-ramified and further we consider this system instead of
system (1). In [5] one can find an analytic presentation of the solution of
system (1) in the resonance ramified case.

3) The Stokes’ lines of system (3) in the non-resonant case are defined
as follows: put

$ b_{j}(1/¥tau)=b_{j,q-1}/¥tau^{q-1}+b_{j-2}/¥tau^{q-2}+¥cdots+b_{j,1}/¥tau$

Then the Stokes’ lines are defined by

$¥mathrm{R}¥mathrm{e}$ $[(b_{j,q-1}-b_{k,q-1})/¥tau^{q-1}]=0$ , $j¥neq k$

To each pair of polynomials $(b_{j}(1/¥tau), b_{k}(1/¥tau))$ there correspond exactly $2(q-1)$

such lines (in fact, what we call Stokes’ lines are rays beginning at 0). In
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the resonant case the Stokes’ lines are defined by

$¥mathrm{R}¥mathrm{e}$ $[(b_{j,s}-b_{k,s})/¥tau^{s}]=0$

where $b_{j,l}=b_{k,l}$ for $l$ $>s$ and $b_{j,s}¥neq b_{k,s}$ . Therefore in the resonant case to
the pair $(b_{j}(1/¥tau), b_{k}(1/¥tau))$ there correspond exactly $2¥mathrm{s}$ Stokes’ lines where $s¥leq q-$

$1$ . The number $s$ is called the level of the pair $(b_{j}, b_{k})$ and of the Stokes’
lines corresponding to it.

4) Consider a sufficiently narrow sector $S$ with vertex at 0; ’sufficiently
narrow’ means not containing two Stokes’ lines corresponding to one and the
same pair $(b_{j}, b_{k})$ . Then there exists a holomorphic matrix-function $H(¥tau):S¥rightarrow S$

having an asymptotic expansion at 0 as a formal Taylor series (or Laurent
series?in the resonant case) coinciding with the one of the normalizing trans-
formation, see 1), such that the general solution to system (3) admits the
presentation (for $¥tau¥in S$)

(4) $ X=H(¥tau)¥exp$ (diag $(b_{1}(1/¥tau), ¥ldots, b_{n}(1/¥tau))¥exp(C ¥ln¥tau)G$

with $G¥in GL(n, C)$. Further, for the sake of simplicity, we consider only the
case $ G=I¥equiv$ diag $(1, ¥ldots, 1)$ .

Remark: Further in the text we refer to (4) both as to an analytic
presentation of the solution and as to its asymptotics at 0; it should be clear
from the context which of the two is meant.

If the sector $S$ does not contain any Stokes’ line corresponding to some
of the pairs $(b_{j}, b_{k})$ , then the presentation (4) does not define a unique solution
to system (3). Really, suppose that system (3) is not resonant (in the resonant
case the reasoning is similar). Suppose that the sector $S$ contains no Stokes’
line corresponding to the pair $(b_{1}, b_{2})$ . Let the solution $¥tilde{X}$ to system (3) have
the expansion (4) in $S$ . Then the solution $¥tilde{X}V$ has the same expansion where

$V=$ $¥left¥{¥begin{array}{llll}1 & ¥cdots & ¥cdots & 0¥¥b & 1 & ¥cdots & 0¥¥¥vdots & ¥vdots & & ¥vdots¥¥ 0 & 0 & ¥cdots & 1¥end{array}¥right¥}$

Here $a=0$ and $b¥in C$ is arbitrary, if $¥mathrm{R}¥mathrm{e}$ $(b_{1}-b_{2})>0$ for $¥tau¥in S$ sufficiently small
and $b=0$, $a¥in C$ is arbitrary in the opposite case. It is easy to see that the
multiplication by $V$ to the right can be replaced by changing $H(¥tau)$; the new
matrix-function $H(¥tau)$ differs by exponentially small for $¥tau¥rightarrow 0$ terms and hence,
has the same asymptotics at 0.

In the non-resonant case the asymptotics (4) defines a unique solution to
system (3) if and only if the sector $S$ contains for each pair $(b_{j}, b_{k})$ exactly
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one Stokes’ line corresponding to it, strictly inside itself. Such sectors are
called nice. In the resonant case we call nice a maximal sector that for each
of the pairs $(b_{j}, b_{k})$ contains no more than one Stokes’ line corresponding to
it. It is possible that some of the nice sectors contain Stokes’ lines
corresponding not to every such pair. In such sectors the asymptotic expan-
sion (4) defines infinitely many solutions the matrices $H$ of which differ by
exponentially small for $¥tau¥rightarrow 0$ terms.

3. The differential field $K_{S}$ , the Stokes’ multipliers and the Galois’ group
of system (3)

A) We define the Stokes’ multipliers here. Consider the non-resonant
case first. Consider for any two overlapping nice sectors the solutions with
equal asymptotics (4) in them. Then these solutions are obtained from each
other by multiplying from the right by some constant non-degenerate matrix.

Let the solutions be $W_{1}$ , $W_{2}$ , defined on the sectors $S_{1}$ , $S_{2}$ . Then the
matrix $V$ has units on the diagonal. It may have non-zero elements exactly
on those off-diagonal positions $(j, k)$ for which $¥mathrm{R}¥mathrm{e}$ $(b_{k}(1/¥tau)-b_{j}(1/¥tau))<0$ for
$¥tau¥in S_{1}¥cap S_{2}$ and $¥tau$ sufficiently small. Note that one of the sides of $S_{1}$ (contained
in $S_{2}$ ) is a Stokes’ line corresponding to the pair $(b_{j}, b_{k})$ . This pair is said
to change dominance when $¥tau$ intersects the Stokes’ line. The matrix $V$ is called
a Stokes’ multiplier. Given the sectors $S_{1}$ , $S_{2}$ , it is defined in a unique way.
The matrices $H$ of the solutions $W_{1}$ , $W_{2}$ , see (4), differ in $S_{1}¥cap S_{2}$ by terms
which are $0(¥exp(-c/|¥tau|^{q-1}),$ $c>0$ for $¥tau¥rightarrow 0$ .

Consider the resonant case. In this case the solutions $W_{1}$ , $W_{2}$ may not
be uniquely defined by the asymptotics (4) and, hence, the Stokes’ multiplier
$V$, too, see part 4) of Section 2. It may again contain non-zero entries exactly
on those off-diagonal positions $(j, k)$, for which $¥mathrm{R}¥mathrm{e}$ $(b_{k}(1/¥tau)-b_{j}(1/¥tau))<0$ for
$¥tau¥in S_{1}¥cap S_{2}$ and $|¥tau|$ sufficiently small.

Fix the solution $W_{1}$ . We say that the Stokes’ multiplier $V$ has minimal
support if it does not contain non-zero off-diagonal entries on those positions
$(j, k)$, for which the pair $(b_{j}, b_{k})$ does not change dominance in $S_{2}$ . This
means that if $V$ has not minimal support, then the matrices $H$ of the solutions
$W_{1}$ , $W_{2}$ , see (4), differ in $S_{1}¥cap S_{2}$ by terms which are $O(¥exp(-1/|¥tau|^{l}))$, $l$ $<q-1$ .
If $V$ has minimal support, then the number $l$ is the minimal of the levels of
the pairs $(b_{j}, b_{k})$ corresponding to Stokes’ lines which are contained in $S_{2}¥backslash S_{1}$ .

B) Theorem 3.1. Let $S_{1}$ , $S_{2}$ , $¥ldots$ be a sequence of nice overlapping sectors
on the universal covering of $C¥backslash 0$ , their order corresponding to $¥tau$ encircling 0
anticlockwise. Let $W_{1}^{¥prime}$ , $W_{1}^{¥prime¥prime}$ be two different matrix solutions to system (3) with
the same asymptotics (4) in $S_{1}$ . Denote by $W_{2}^{¥prime}$ , $W_{2}^{¥prime¥prime}$ the solutions to system (3)
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with this asymptotics in $S_{2}$ obtained from $W_{1}^{¥prime}$ , $W_{1}^{¥prime¥prime}$ by multiplying with the
Stokes’ multipliers with minimal support. Construct the pairs $(W_{3}^{¥prime}, W_{3}^{¥prime¥prime})$ ,
$(W_{4}^{¥prime}, W_{4}^{¥prime¥prime})$ , $¥ldots$ in the same way. Then for $m$ sufficiently large we have $W_{m}^{¥prime}¥equiv W_{m}^{¥prime¥prime}$ .

This theorem is proved in [5]. Here we give a sketch of the proof. $W_{1}^{¥prime}$

and $W_{1}^{¥prime¥prime}$ differ in $S_{1}$ by terms which are $O(e^{-c/|¥tau|^{1}})$ . When we pass from $S_{1}$

to $S_{2}$ , i.e. from $(W_{1}^{¥prime}, W_{1}^{¥prime¥prime})$ to $(W_{2}^{¥prime}, W_{2}^{¥prime¥prime})$ , then the Stokes’ multipliers remove
those terms in $(W_{1}^{¥prime}, W_{1}^{¥prime¥prime})$ which correspond to pairs $(b_{j}, b_{k})$ having change of
dominance in $S_{2}$ (and they don’t introduce other exponentially small in $S_{2}$

differences between $W_{2}^{¥prime}$ and $¥mathrm{W}_{2}^{¥prime¥prime}$ ?this is the sense of the minimal support).
After sufficiently many steps $W_{m}^{¥prime}$ and $W_{m}^{¥prime¥prime}$ do not differ at all.

C) We expose this part in the same way as it is exposed in [4], omitting
the proofs. Suppose that a nice sector $S$ is fixed (the choice of another sector
changes the Galois’ group of system (3) to a conjugate one, the conjugation
being done by the operator of analytic continuation). The Galois’ group
admits an exact $¥mathrm{r}¥mathrm{c}$-dimensional representation. Its automorphisms induce a
transformation of the Cartesian power $K_{S}^{n}¥rightarrow K_{S}^{n}$ ; this representation maps the
solution space of system (3) onto itself. We remind that we prefer to be
dealing with the non-ramified situation, i.e. with system (3) instead of system (1).

Let $A$ be an arbitrary and B?a matrix with non-negative integer elements.
Put

$A^{B}=¥prod_{i,j}a_{ij}^{b_{¥mathrm{i}j}}$

(this is an analog of the usual multiindices). Then every element of the field
$K_{S}$ has the form

(5) $f=¥sum a_{K}z^{K}/¥sum b_{K}z^{K}$

where the matrix $K$ has non-negative integer elements with values in some
dependent on $f$ finite set. Equation (3) allows us to replace differentiating
by algebraic operations.

Consider a basis $Z$ of the solution space $¥ovalbox{¥tt¥small REJECT}$ of system (3) (more precisely,
of its restriction to the sector $S$). Then there corresponds a linear operator
$T_{L}$ to the automorphism $L-T_{L}:Z¥mapsto ZT_{L}$ (we denote its matrix also by $T_{L}$ ).
We have

(6) $Lf$ $=¥sum(ZT_{L})^{K}a_{K}/¥sum(ZT_{L})^{K}b_{K}$

This formula, however, does not allow to construct an automorphism
after any operator $T_{L}:¥ovalbox{¥tt¥small REJECT}¥rightarrow¥ovalbox{¥tt¥small REJECT}$. If the representation (5) is not unique, then the
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element (6) will not be defined correctly. For the element (6) to be defined
correctly it is necessary and sufficient that the operator $L$ should preserve the
relations in the differetial field $K_{S}$ , i.e. if the equality

(7) $¥sum a_{K}Z^{K}=0$

holds, then there must hold the equality

$¥sum(ZT_{L})^{K}a_{K}=0$

as well. In other words, the operator $L$ preserves any algebraic equality
involving the components of the solutions to system (3).

Theorem 1.1 can be equivalently reformulated as follows:

Theorem 3.2. The Stokes’ multipliers and the monodromy operator preserve
the relations in the differential field $K_{S}$ .

For the monodromy operator the theorem is trivial?the analytic continu-
ation of the solutions preserves the relations. We prove Theorem 3.2 in Sec-
tion 5, after developing some necessary apparatus in Section 4.

Remark: Note that the changing of the sector $S$ changes $K_{S}$ to an
isomorphic differential field. Therefore we do not distinguish the fields $K_{S}$

corresponding to the different sectors $S$ .

4. On the growth rate of holomorphic functions in sectors

A) In this section we consider functions defined on sectors in $C$ of the
kind $S=¥{z ¥in C|a¥leq¥arg z¥leq b¥}$ , holomorphic inside and continuous on their
closure, and their growth rate for $|z|¥rightarrow¥infty$ . All the results are directly trans-
ferred to the case when $|z|¥rightarrow 0$ by the change of variables $z¥mapsto 1/z$ .

The well-known Phragmen-Lindeloff principle states that if a holomorphic
function is decreasing as $¥exp(-c|z|^{¥alpha})$, $c>0$ for $|z|¥rightarrow¥infty$ uniformly in such a
sector, then its opening must be less than $¥pi/a$ (for the precise formulation see
[10] $)$ . In this section we consider the growth rate of holomorphic functons
in sectors and its changing with the angle. We are going to examine the
behaviour of the angular type of functions of a given order. We don’t use
the notion of an order but the following definition:

A function $f$ is said to belong to the class $B_{a}$ , if it is defined on a sector
of opening $¥leq¥pi/¥alpha$ and there exist constants $c>0$, $d>0$ such that the inequal-
ity $|f|<ce^{d|z|^{a}}$ holds. Further we denote the sector by $S=¥{z|a¥leq¥arg z¥leq b$ ,
$b-a<¥pi/a¥}$ . For $f¥in B_{¥alpha}$ put

$¥rho_{f}(¥omega)=¥inf¥{k ¥in R|¥exists c(k)>0:|f(re^{i¥omega})|<c(k)e^{kr^{a}}, r¥geq 0, a¥leq¥omega¥leq b¥}$ .
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We call this number the angular type of $f$ corresponding to the direction $¥omega$ . Put

$A_{a}^{+}=¥{f ¥in B_{a}|¥rho_{f}(¥omega)¥geq 0¥forall¥omega¥in[a, b]¥}$

$A_{a}^{-}=¥{f ¥in B_{a}|¥rho_{f}(¥omega)¥leq 0¥forall¥omega¥in[a, b]¥}$

$¥tilde{A}_{¥alpha}^{-}=¥{f ¥in B_{a}|¥rho_{f}(¥omega)<0¥forall¥omega¥in[a, b]¥}$

$A_{¥alpha}=¥{f ¥in B_{¥alpha}|-¥infty<¥rho_{f}(¥omega)<¥infty¥forall¥omega¥in[a, b]¥}$

Example: For g $=e^{sz^{¥alpha}}$ we have

$¥rho_{g}(¥omega)=|s|¥cos$ $(a ¥arg z+¥arg s)$

Note that $g¥in B_{¥alpha}$ on any sector with vertex at 0 of its Riemann surface.

The following evident lemma is true:

Lemma. 1) If $f$, $g¥in B_{¥alpha}$ and if $¥rho_{f}(¥omega)>¥rho_{g}(¥omega)$, then $¥rho_{f+g}(¥omega)=¥rho_{f}(¥omega)$ .

2) If $f¥in B_{¥alpha}$ , $g=e^{cz^{a}}$ , $c¥in C$, then $¥rho_{fg}(¥omega)=¥rho_{f}(¥omega)+¥rho_{g}(¥omega)$

3) For any $d¥in C¥backslash 0$ we have $¥rho_{f}(¥omega)=¥rho_{df}(¥omega)$ .

Example: $¥rho_{¥sin z}(¥omega)=|¥sin¥omega|=¥max(¥sin¥omega, -¥sin¥omega)=¥max$ $(¥rho_{g}(¥omega), ¥rho_{h}(¥omega))$ ,
$g=e^{iz}$, $h=e^{-iz}$ .

General remark: Most of the proofs in this paper are based on the
comparison of a function $¥rho_{f}(¥omega)$ with the function $¥rho_{g}(¥omega)$ for $g=e^{cz^{a}}$, making
use of the lemma.

Theorem 4.1. There exists no function $f¥in B_{¥alpha}$ defined for $¥{a$ $¥leq¥arg z¥leq b$,
$b-a<¥pi/a¥}$ such that the following inequalities hold simultaneously:

$¥rho_{f}(a)<¥rho_{f}(¥omega)<0$ , $¥rho_{f}(b)<¥rho_{f}(¥omega)<0$

for some $¥omega¥in(a, b)$.

Remark: Theorem 4.1 stays correct if we allow the equality $¥rho_{f}(a)=-¥infty$

or $¥rho_{f}(b)=-¥infty$ or both (with $¥rho_{f}(¥omega)>-¥infty$ ).

Proof: 1o Without loss of generality we put $¥alpha=2$ (this can always be
achieved by the change of variables $z¥mapsto z^{2/¥alpha}$ ). Suppose that such a function
$f$ exists. Then for $¥arg z=a$ and $¥arg z=b$ the estimation

$|f|¥leq Ce^{-q|z|^{2}}$ $q>0$, $C>0$ ,

holds and on the ray $¥arg z=¥omega$ the estimation

$e^{-p|z|^{2}}<|f|<De^{-p^{¥prime}|z|^{2}}$
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holds, where $D>0,0<p^{¥prime}¥leq p<q$ ; the right inequality holds for all $z$ with
$¥arg z=¥omega$ and the left is satisfied by infinitely many $z$ with $¥arg z=¥omega$ and $|z|$

arbitrarily large.
Denote the rays $¥arg z=a$, $¥arg z=¥omega$ , $¥arg z=b$ by $l_{0}$ , $l_{1}$ , $l_{2}$ respectively;

the angles $(l_{0}, l_{1})$, $(l_{1}, l_{2})$?by $¥phi_{1}$ , $¥phi_{2}$ . Without loss of generality we put $¥omega=0$,
i.e. the ray $l_{1}$ is the positive real semi-axis, and we assume that $¥phi_{1}<¥pi/4$,
$¥phi_{2}<¥pi/4$, see $5^{¥mathrm{o}}$ .

2o Consider the function

$g=e^{-¥sigma^{2}/4(s+p)}e^{-sz^{2}+¥sigma z}$

We make an estimation for $|fg|$ and (making use of the decreasing of $f$ and
$g$ at $¥infty$ ) show that $|fg|$ is maximal strictly inside $S$ which contradicts the
maximum principle.

3o Here we define the functions $h_{0}$ , $h_{1}$ which estimate the growth rate
of $|fg|$ for $z¥in l_{0}$ , $l_{1}$ , $l_{2}$ , see $4^{¥mathrm{o}}$ . For the function

$h_{0}(x)=e^{-¥sigma^{2}/4(s+p)}e^{-(p+s)x^{2}+¥sigma x}$

we have

$¥max h_{0}=h_{0}(¥sigma/2(s+p))=1$
$x¥geq 0$

Consider the function

$h_{1}(x)=Ce^{-q(1+k^{2})¥mathrm{x}^{2}}e^{-¥sigma^{2}/4(s+p)}e^{-s(1-k^{2})x^{2}+¥sigma x}$

where $k$ with $|k|<1$ is a real parameter. Then

ma$¥mathrm{x}h_{1}=h_{1}(¥sigma/2(q(1+k^{2})+s(1-k^{2})))=Ce^{[-¥sigma^{2}/4(s+p)]+[¥sigma^{2}/4(q(1+k^{2})+s(1-k^{2}))]}$

$x¥geq 0$

For $¥sigma$ sufficiently large $(¥sigma>0)$ and $p<s<q$ this value is smaller than 1,
because

$-¥frac{1}{4(s+p)}+¥frac{1}{4(q(1+k^{2})+s(1-k^{2}))}<0$

(this follows from $-q(1+k^{2})-s(1-k^{2})+s+p=-(q-p)-(q-s)k^{2}<0$).

4o The functions $h_{0}$ , $h_{1}$ provide an estimation for the values of $|fg|$ .

Really, for infinitely many $z¥in l_{1}$ with $|z|$ arbitrarily large we have

$|fg|>e^{-(p+s)|z|^{2}+¥sigma|z|}e^{-¥sigma^{2}/4(s+p)}$

and for $z¥in l_{0}$ , $l_{2}$ we have

$|fg|¥leq Ce^{-¥sigma^{2}/4(s+p)}e^{-q(1+k^{2})x^{2}}e^{-s(1-k^{2})x^{2}+¥sigma ¥mathrm{x}}$
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where $k=¥tan¥phi_{1}$ or $k=¥tan¥phi_{2}$ , $x=¥mathrm{R}¥mathrm{e}$ $z$ , $kx$ $=¥mathrm{I}¥mathrm{m}$
$z$ , $1+k^{2}=|z|^{2}$ .

Fix $s¥in(p, q)$ . Fix $¥sigma_{0}>0$ such that for $¥sigma>¥sigma_{0}$ the inequality
$h_{0}(¥sigma/2(s+p))=1>h_{1}(x)$ holds for any $x¥geq 0$. Choose $¥sigma>¥sigma_{0}$ so that
$|f(¥sigma/2(s+p))|>e^{-p¥sigma^{2}/4(s+p)^{2}}$ . Then

$|fg|(¥sigma/2(s+p))>h_{0}(¥sigma/2(s+p))=1>¥max ¥mathrm{h}_{1}¥geq¥max|fg|$
$x¥geq 0$ $z¥in¥iota_{¥mathrm{o}},¥iota_{2}$

Consider a circumference $¥tilde{c}$ of radius $r>>¥sigma/2(s+p)$ centered at 0 on which
$|fg|$ is smaller than 1 (such a circumference exists, due to the rate of decreasing
of $|fg|$ at $¥infty$ ). Then the holomorphic function $fg$ has a maximal module for
$z=¥sigma/2(s+p)$ in the domain bounded by $l_{0}$ , $l_{2}$ and $¥tilde{c}$ which contradicts the
maximum principle.

5o It remains to prove that we can assume $¥phi_{1}<¥pi/4$ and $¥phi_{2}<¥pi/4$ .
Suppose that $l_{1}$ is not the bisector of the angle $(l_{1}, l_{2})$ (if it is, then there is
nothing to prove). Denote the bisector by $l_{3}$ and by $¥omega_{0}$ the angle $(l_{1}, l_{3})$,
$¥omega_{0}=(a+b)/2$ . Put $-v=¥rho_{f}(¥omega_{0})$. If $v¥leq p$, then we can consider the rays
$(l_{0}, l_{3}, l_{2})$ instead of the rays $(l_{0}, l_{1}, l_{2})$ . Let $v>p$ and let $l_{3}$ be internal for
the angle $(l_{0}, l_{1})$ . Then we can consider the triple $(l_{3}, l_{1}, l_{2})$ instead of $(l_{¥mathrm{o}}, l_{1}, l_{2})$.
The angles $(l_{3}, l_{1})$ and $(l_{1}, l_{2})$ are less than $¥pi/4$ . This completes the proof of
the theorem.

Corollary 4.1. There exists no function $f¥in B_{¥alpha}$ such that

$¥rho_{f}(a^{¥prime})<0$ , $¥rho_{f}(b^{¥prime})>0$ , $¥rho_{f}(c^{¥prime})<0$

where $a<a^{¥prime}<b^{¥prime}<c^{¥prime}<b$ , $ b-a<¥pi/¥alpha$ .

The corollary follows from Theorem 4.1 if we multiply $f$ by $e^{cz^{a}}$ for a
suitably chosen $c¥neq 0$ .

Corollary 4.2. There exists no function $f¥in B_{¥alpha}$ such that $¥rho_{f}(¥omega_{0})=-¥infty$ ,
$¥rho_{f}(¥omega_{1})>-¥infty$ ; $¥omega_{0}$ , $¥omega_{1}¥in(a, b)$ .

Really, suppose that $¥omega_{0}<¥omega_{1}$ . If for some $¥omega_{2}>¥omega_{1}$ we have $¥rho_{f}(¥omega_{2})=$

$-¥infty$ , then this would contradict Theorem 4.1, see the remarks after it. If
$¥rho_{f}(¥omega_{2})>-¥infty$ , then there exists a function $g=e^{sz^{a}}$ , $s¥in C¥backslash 0$ such that $¥rho_{f}(¥omega)$

and $¥rho_{g}(¥omega)$ are such as shown on Fig. 1. It is easy to see that $¥rho_{fg^{¥_}}1(¥omega)$ provides
a contradiction with Theorem 4.1.

B) Theorem 4.2. Let $f¥in A_{¥alpha}$ . Then the number $¥rho_{f}(¥omega)$ is a continuous
function of the angle $¥omega$ .

Proof: 1o Continuity is a local property. Therefore we can consider
holomorphic functions defined on arbitrarily narrow sectors. Without loss of
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Fig. 1 Fig. $2¥mathrm{A}$

generality we prove the theorem for $f¥in¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$ which can be achieved by
multiplying $f$ by $e^{¥gamma z^{a}}$ for a suitable $¥gamma¥in C$.

2o Suppose that $¥rho_{f}(¥omega)$ is discontinous for $¥omega=¥omega_{0}$ . Note that $¥rho_{f}(¥omega)$ is
bounded. Hence, there either exist two sequences $¥{¥omega_{j}^{¥pm}¥}$ , $¥omega_{j}^{¥pm}¥rightarrow¥omega_{0}$ , $¥omega_{j}^{+}>¥omega_{0}$ ,
$¥omega_{j}^{-}<¥omega_{0}$ such that

$¥rho_{f}(¥omega_{j}^{+})¥rightarrow¥rho^{+}$ $¥rho_{f}(¥omega_{j}^{-})¥rightarrow¥rho^{-}$ $¥rho^{+}¥neq¥rho^{-}$

or there exists $¥lim¥rho_{f}(¥omega)$ for $¥omega¥rightarrow¥omega_{0}$ which is different from $¥rho_{f}(¥omega_{0})$ . Suppose
that $¥rho^{+}<¥rho^{-}$ (in the opposite case the proof is similar). Consider the function
$g=fe^{-¥rho_{f}(¥omega_{¥mathit{0}})(zq)^{a}-(zq)^{a}r}$ there $|q|=1$ , $¥arg(zq)^{¥alpha}=¥pi/2$ for $¥arg z=¥omega_{0}$ , i.e. $¥alpha¥omega_{0}+$

$a$ $¥arg q=¥pi/2$, $r>0$. Then $¥rho_{g}(¥omega_{0})=0$ and $¥rho_{g}(¥omega)$ changes sign at least thrice
in the neighbourhood of $¥omega_{0}$ for $r$ sufficiently large. The graphs of $¥rho_{f}(¥omega)$ and
$¥rho_{g}(¥omega)$ are shown on Fig. $2¥mathrm{A}$ .

3o Suppose that for $a^{¥prime}<b^{¥prime}<c^{¥prime}$ we have $¥rho_{g}(a^{¥prime})<0$ , $¥rho_{g}(b^{¥prime})>0$ , $¥rho_{g}(c^{¥prime})<0$,
$|a^{¥prime}-c^{¥prime}|<¥pi/a$ . This contradicts Corollary 4.1. If $¥rho_{g}(a^{¥prime})>0$, $¥rho_{g}(b^{¥prime})<0$ ,
$¥rho_{g}(c^{¥prime})>0$, then there exists $d^{¥prime}>c^{¥prime}$ or $d^{¥prime}<a^{¥prime}$ such that $¥rho_{g}(d^{¥prime})<0$ which again
contradicts Corollary 4.1.

4o Suppose now that $¥rho_{f}(¥omega_{0})¥neq¥lim_{¥omega¥rightarrow¥omega_{0}}¥rho_{f}(¥omega)$ . Then for a suitable func-
tion $h=e^{sz_{a}}$ we would have $¥rho_{fh}(d^{¥prime})<0$, $¥rho_{fh}(b^{¥prime})>0$, $¥rho_{fh}(c^{¥prime})<0$ which leads to
a contradiction with Corollary 4.1. An example of the graphs of $¥rho_{f}(¥omega)$ and
$¥rho_{h}(¥omega)$ is shown on Fig. $2¥mathrm{B}$ .

Denote by $PC^{+}[a, b]$ the class of functions defined on some closed interval
$[a, b]$ , $ b-a<¥pi/¥alpha$ of the kind

$F(¥omega)=$ $¥max(¥rho_{g_{1}}(¥omega), ¥ldots, ¥rho_{g_{k}}(¥omega))$ , $k¥in N$ , $g_{j}=e^{k_{j}z^{a}}$
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$¥backslash $

Fig. $2¥mathrm{B}$ Fig. 3

A function $f:[a, b]¥rightarrow R$ is said to be approximated by functions of a
given class $¥tilde{U}$ if for any $¥delta>0$ there exists $g¥in¥tilde{U}$ such that

$||f-g||<¥delta$ ,
$||¥cdot||=¥sup_{[a,b]}|¥cdot|$

Given a class of functions we define its closure as the set of functions which
can be approximated by functions of the given class; naturally, all the functions
are assumed to be defined on one and the same closed interval. Denote by
$¥overline{PC^{+}[a,b]}$ the closure of the class $PC^{+}[a, b]$ .

Theorem 4.3. Consider the class $U$ of functions which are $¥rho_{g}(¥omega)$ for some
function $g¥in A_{¥alpha}$ where $g$ is defined on some fixed sector $a¥leq¥arg z¥leq b$ of opening
$<¥pi/¥alpha$ . Then $U¥equiv¥overline{PC^{+}[a,b]}$ .

Theorem 4.4. $PC^{+}[a, b]$ can be equivalently defined as the class of
functions $f$ which are ’$subsinusoidaV$, i.e. continuous on $[a, b]$ and such that if
for a function of the kind $h=k¥sin(¥alpha¥omega+d)$ we have

$h(¥omega_{1})=f(¥omega_{1})$ , $h(¥omega_{2})=f(¥omega_{2})$ , $a¥leq¥omega_{1}<¥omega_{2}¥leq b$

then $f(¥omega)¥leq h(¥omega)$ for any $¥omega¥in(¥omega_{1}, ¥omega_{2})$ .

Theorems 4.3 and 4.4 are proved in the Appendix. They are not used
in the proof of Theorem 1.1.

Remark: Note that the property to be subsinusoidal, see Theorem 4.4,
is similar to the property to be convex?the sinusoids play the role of the
lines. Note also that the sinusoids are meant to be of one and the same
period?2$¥pi/¥alpha$ . Any two sinusoids of period 2 $¥pi/a$ intersect each other no more
than once on any interval of length $<¥pi/¥alpha$ , similarly to the lines.
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Theorem 4.5. Suppose that the holomorphic functions $f_{j}¥in¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$ , $j=$

$1$ , $¥ldots$ , $k$ are defined on the overlapping sectors $S_{j}$ , $ S_{j}¥cap S_{j+1}¥neq¥emptyset$ with vertex at
0. Let $g_{j}:S_{j}¥cap S_{j+1}¥rightarrow C$, $g_{j}¥equiv f_{j}-f_{j+1}$ , $g_{j}¥in¥tilde{A}_{¥beta}^{-}$ , $¥beta>¥alpha$ , $j=1$ , $¥ldots$ , $k-1$ . Let
the opening of $S_{1}¥cup¥cdots¥cup S_{k}$ be $>¥pi/¥alpha$ . Then $f_{j}¥equiv 0$, $j=1$ , $¥ldots$ , $k$ .

This theorem is similar to the Phragmen-Lindeloff principle. Before prov-
ing it we shall state the Generalised Phragmen-Lindeloff Principle. It is proved
at the end of Section 5. Most of its proof is contained in the proof of
Proposition 4 in Section 5.

The Generalised Phragmen-Lindeloff Principle. Let the holomorphic func-
tions $f_{j}¥in¥tilde{A}_{¥alpha}^{-}$ , $f_{j}¥not¥in¥tilde{A}_{¥gamma}^{-}$ , $¥gamma>¥alpha$ , $f_{j}:S_{j}¥rightarrow Cw$here the sectors $S_{j}$ are as in Theorem
4.5. Let $g_{j}¥in¥tilde{A}_{¥beta}^{-}$ , $¥alpha<¥gamma<¥beta$ , $g_{j}=f_{j}-f_{j+1}$ , $g_{j}:S_{j}¥cap S_{j+1}¥rightarrow C$. Let the opening
of $S_{1}¥cup¥cdots¥cup S_{k}$ be $>¥pi/¥alpha$ . Then $f_{j}¥equiv 0$, $j=1$ , $¥ldots$ , $k$ .

Proof: 1o Let $S_{j}=¥{z|a_{j}¥leq¥arg z¥leq b_{j}¥}$. Suppose that $f_{j}¥not¥equiv 0$. It follows
from $g_{j}¥in¥tilde{A}_{¥beta}^{-}$ , $¥beta>¥alpha$ that the functions $¥rho_{f_{j}}(¥omega)$ and $¥rho_{f_{j+1}}(¥omega)$ coincide for $¥omega¥in$

$[a_{j+1}, b_{j}]$ , $j=1$ , $¥ldots$ , $k-1$ . Then the function $¥rho(¥omega)¥equiv¥rho_{f_{j}}(¥omega)$ for $¥omega¥in[a_{j}, b_{j}]$ ,
$j=1$ , $¥ldots$ , $k$ is well defined and continuous on $[a_{1}, b_{k}]$ . It takes negative
values only?this follows from $f_{j}¥in¥tilde{A}_{¥alpha}^{-}$ .

2o Put $¥delta=¥min(b_{1}-a_{2^{ }},¥ldots, b_{k1}¥_-a_{k}, a_{2}-a_{1^{ }},¥ldots, a_{k}-a_{k-1}, ¥pi/2¥alpha)$ . The
graph of $¥rho(¥omega)$ contains no more than a finite number of arcs of graphs of
functions of the kind $ C¥cos$ $(¥alpha¥omega+d)$ defined on intervals of length $>¥delta/2$ .

The graphs of the analytic continuations of these functions intersect $[a_{1}, b_{k}]$

in a finite number of points the set of which we denote by $P$, see Fig. 3.

3o Put $g=e^{¥mathrm{C}z^{a}}$ . Remember that $¥rho_{g}(¥omega)=|C|¥cos$ $(¥alpha¥omega+¥arg C)$ . We show
that it is possible to choose $C$ in such a way that there should exist an
interval $[a^{¥prime}, b^{¥prime}]¥subset[a_{1}, b_{k}]$, $b^{¥prime}-a^{¥prime}<¥delta/2$ such that $¥rho(¥omega_{0})>¥rho_{g}(¥omega_{0})$ for some $¥omega_{0}¥in$

$(a^{¥prime}, b^{¥prime})$ , $¥rho(¥omega)<¥rho_{g}(¥omega)$ for $¥omega=a^{¥prime}-0$ and for $¥omega=b^{¥prime}+0$. This means that the
functon $gf_{j}$ (where $f_{j}$ is defined for $¥omega¥in(a^{¥prime}, b^{¥prime})$; such a $j$ exists, because $b^{¥prime}-a^{¥prime}<$

$¥delta/2)$ provides a contradiction with Corollary 4.1.

4o To choose the necessary $C$ it is necessary and sufficient to require
that the number $¥arg C+s¥pi/2$ does not belong to $P$ $(s ¥in Z)$ and then to vary
$|C|$ , see Fig. 4. For the large values of $|C|$ there exists an open set in $[a, b]$

on which $¥rho(¥omega)>¥rho_{g}(¥omega)$. Diminishing $|C|$ , we diminish this open set until it
contains the necessary interval $(a^{¥prime}, b^{¥prime})$ . The condition $¥arg C+s¥pi/2¥not¥in P$

prevents from the following situation: for some value of $|C|$ the intersection
of the graphs of $¥rho(¥omega)$ and $¥rho_{g}(¥omega)$ is an arc of a sinusoid defined on an interval
of length $>¥delta/2$ .

We end this section by two theorems the first of which was suggested
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Fig. 5

Fig. 4

by the author as a hypothesis and first proved by prof. J. Ecalle. We do
not make use of this proof here, but we admit that the confirmation of the
hypothesis stimulated the writing of this paper.

Theorem 4.6. Let $f¥in B_{¥alpha}$ , $f:¥{a ¥leq¥arg z¥leq b¥}¥rightarrow C$ and let $f¥in¥tilde{A}_{¥beta}^{-}$ , $¥beta>¥alpha$ for
$a^{¥prime}¥leq¥arg z¥leq b^{¥prime}$ , $a<a^{¥prime}¥leq b^{¥prime}<b$, $ b-a<¥pi/¥alpha$. Then $f¥in A_{¥beta}^{-}$ for $a¥leq¥arg z¥leq b$

and $f¥in¥tilde{A}_{¥beta}^{-}$ for $a<¥arg z<b$.

Proof: Obviously, $f¥in B_{¥beta}$ for $a¥leq¥arg z¥leq b$ . It is clear that (with respect
to $¥beta$ and not to $¥alpha$ ) we have $¥rho_{f}(¥omega)¥leq 0$ for $¥omega¥in[a, a^{¥prime}]¥cup[b^{¥prime}, b]$ and $¥rho_{f}(¥omega)<0$

for $¥omega¥in(a^{¥prime}, b^{¥prime})$ . Suppose that $¥rho_{f}(¥omega)=0$ for $¥omega¥in[a, a^{¥prime}]¥cup[b, b^{¥prime}]$ . Such a (con-
tinuous!) function cannot be subsinusoidal, see Fig. 5. The contradiction
obtained with Theorems 4.3 and 4.4. shows that we must have $¥rho_{f}<0$ (with
respect to $¥beta$ ). Hence, $f¥in A_{¥beta}^{-}$ for $a¥leq¥arg z¥leq b$ and $f¥in¥tilde{A}_{¥beta}^{-}$ for $a<¥arg z<b$.

Theorem 4.7. Let $f:S¥rightarrow C$ be holomorphic inside and continuous and
bounded on the closure of the sector $S=¥{a ¥leq¥arg z¥leq b, b-a<¥pi/¥alpha¥}$ . Let $ f¥in$

$¥tilde{A}_{¥alpha}^{-}$ for $¥arg z=¥omega_{0}$ with $¥rho_{f}(¥omega_{0})<0$ . Then $f¥in¥tilde{A}_{¥alpha}^{-}$ in any proper subsector of
$S$ ( $i.e$ . for $a^{¥prime}¥leq¥arg z¥leq b^{¥prime}$ , with arbitrary $a<a^{¥prime}<b^{¥prime}<b$).

The proof is similar to the one of the previous theorem. We let the
reader do it oneself.

Remark: It is possible to obtain results similar to the ones obtained in
this section if one compares the growth rate of holomorphic functions in
sectors not with $e^{¥mathrm{x}^{a}}$ , but with $e^{x^{a}¥log^{¥beta}¥mathrm{x}}$, $e^{¥mathrm{x}^{a}¥log^{¥beta}¥mathrm{x}1¥mathrm{o}g^{¥gamma}¥mathrm{l}¥mathrm{o}¥mathrm{g}¥mathrm{x}}$ etc.
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5. Proof of Theorem 3.2

A) We say that a Stokes’ multiplier is of level $¥geq s$ if it has non-zero
off-diagonal elements only on positions $(j, k)$ corresponding to pairs $(b_{j}, b_{k})$ of
level $¥geq s$ , see Section 2, 3). We consider solutions to system (3) in nice
sectors. This means that all the Stokes’ multipliers of level $q-1$ have minimal
support.

Proposition 1. The Stokes’ multipliers of level $q-1$ preserve the relations
in the differential field $K_{S}$ .

Proof: 1o Consider any two overlapping nice sectors $S_{1}$ , $S_{2}$ and solutions
$W_{1}$ , $W_{2}$ with the same asymptotics (4) in them (for $¥tau¥rightarrow 0$) connected with each
other by a Stokes’ multiplier of level $q-1:W_{2}=W_{1}V$.

2o Present equality (7) in the form

(8) $¥sum_{j}h_{j}(¥tau)e^{d_{j}(1/¥tau)}=0$

where $h_{j}$ are holomorphic functons in the sector $S_{1}$ with power asymptotics
for $¥tau¥rightarrow 0$ ; the powers, in general, need not to be integer because of the presence
of the factor $¥exp$ $(C ¥ln¥tau)$, see (4); we can assume them to be positive. The
polynomials $d_{j}(1/¥tau)$ are of power $q-1$ and without a constant term.

3o Put $ d_{j}(1/¥tau)=d_{j,q1}¥_/¥tau^{q-1}+¥cdots+d_{j,1}/¥tau$ . Separate the terms with equal
$d_{j,q^{¥_}1}$ in (8):

(9) $¥sum¥tilde{h}_{k}(¥tau)e^{d_{kq-1}/¥tau^{q-1}}=0$

where $¥tilde{h}_{k}¥in B_{q-2}$ and all the $d_{k,q^{¥_}1}$ are different. There exists a ray $l$
$¥subset S_{1}$ on

which all the $d_{k,q^{¥_}1}/¥tau^{q-1}$ have different real parts. Let $d_{k_{0},q1}¥_/¥tau^{q-1}$ be the one
with greatest real part. It is easy to see that then $¥tilde{h}_{k_{¥mathrm{O}}}(¥tau)=O(e^{-c/|¥tau|^{q-1}})$ for some
$c>0$, otherwise equality (9) is impossible. Hence, $¥tilde{h}_{k_{¥mathrm{O}}}¥in¥tilde{A}_{q1}^{-}¥_$ (this can be easily
derived from Theorems 4.6 and 4.7). The sector $S_{1}$ is nice, i.e. of opening
$>¥pi/(q-1)$ . Hence, $¥tilde{h}_{k_{¥mathrm{O}}}¥equiv 0$ . Similarly we prove that $¥tilde{h}_{k}¥equiv 0$ for all $k$ .

4o Apply the Stokes’ multiplier $V$ to the left hand side of equality (9)
(remember that the functions $¥tilde{h}_{k}$ are expressed by the elements of the matrices
in the right hand side of (4) $)$ . This changes the functions $¥tilde{h}_{k}$ to similar functons
$¥tilde{h}_{k}^{¥prime}¥in B_{q-2}$ in $S_{2}$ . In $S_{1}¥cap S_{2}¥tilde{h}_{k}$ and $¥tilde{h}_{k}^{¥prime}$ differ by terms which are $O(e^{-c/|¥tau|^{q-1}})$

for some $c>0$; this follows from the fact that $V$ is a Stokes’ multiplier of
level $q-1$ and, hence, the matrices $H(¥tau)$ in the presentations (4) corresponding
to $W_{1}$ and $W_{2}$ differ in $S_{1}¥cap S_{2}$ by terms of order $O(e^{-c/|¥tau|^{q-1}})$ . But then $¥tilde{h}_{k}^{¥prime}¥in$

$¥tilde{A}_{q^{¥_}1}^{-}$ in $S_{1}¥cap S_{2}$ . $¥tilde{h}_{k}^{¥prime}¥in B_{q-2}$ in $S_{2}$ . According to Theorem 4.6 and Corollary
4.2, $¥tilde{h}_{k}^{¥prime}¥in¥tilde{A}_{q-1}^{-}$ in $S_{2}$ and, hence, $¥tilde{h}_{k}^{¥prime}¥equiv 0$ (because $S_{2}$ is of opening $>¥pi/(q-1)$ ).
This proves the proposition.
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B) Call a good sector of level $(q -s)$, $s=1$ , $¥ldots$ , $q-1$ any sector with
vertex at 0 of opening $>¥pi/(q-s)$ restricted by two Stokes’ lines and not
containing two different Stokes’ lines corresponding to one and the same pair
$(b_{j}, b_{k})$ of level $¥leq(q-s)$ inside itself. All nice sectors are good sectors of
level $q-1$ , the reverse may not be true.

Consider two good sectors of level $(q -s)$ $-¥tilde{S}_{1},¥tilde{S}_{2}$ . We assume that
their intersection is restricted by two Stokes’ lines ? $l_{1}$ , $1_{2}$ ?of level $(q -s)$

corresponding to one and the same pair of polynomials $(b_{j}, b_{k})$ which we call
the special pair. Then $¥tilde{S}_{1}¥cap¥tilde{S}_{2}$ does not contain more than one Stokes’ line
corresponding to each pair $(b_{j}, b_{k})$ of level $¥leq(q-s)$ . The coincidence of some
of the Stokes’ lines is of no importance for the further reasoning.

Remark: We assume that $¥tilde{S}_{1}¥cup¥tilde{S}_{2}$ contains no more than one Stokes’ line
different from $l_{1}$ and $l_{2}$ corresponding to each pair of polynomials $(b_{j}, b_{k})$ of
level $q-s$ except for the special one. It is allowed, however, that the lines
$l_{1}$ , $l_{2}$ or one of them should correspond to two or more pairs of polynomials.

Consider coverings of $¥tilde{S}_{1}$ and $¥tilde{S}_{2}$ by good sectors of order $q-1$ : let the
sectors $S^{¥prime}$ , $S_{1}$ , $¥ldots$ , $S_{¥mathrm{v}}$ cover $¥tilde{S}_{1}$ and let $S_{1}$ , $¥ldots$ , $S_{¥mathrm{v}}$ , $S^{¥prime¥prime}$ cover $¥tilde{S}_{2}$ , each two
adjacent sectors being overlapping, $S^{¥prime}¥cup S_{1}¥cup¥cdots¥cup S_{v}=¥tilde{S}_{1}$ , $S_{1}¥cup¥cdots¥cup S_{¥mathrm{v}}¥cup S^{¥prime¥prime}=¥tilde{S}_{2}$ ,

see Fig. 6.

Proposition 2. There exist solutions $W^{¥prime}$ , $W_{1}^{j}$, $¥ldots$ , $W_{v}^{j}$, $W^{¥prime¥prime}$ , $j=1,2$ defined
in $S^{¥prime}$ , $S_{1}$ , $¥ldots$ , $S_{¥mathrm{v}}$ , $S^{¥prime¥prime}$ with one and the same asymptotics (4) in them. The
matrices $H$ (see (4)) of the solutions $(W_{k}^{j}, W_{k+1}^{j})$, $j=1,2;k=1$ , $¥ldots$ , $v$ $-1$ differ
from each other by terms which are $O(e^{-c/|¥tau|^{q-s+1}})$, $c>0$ in $S_{k}¥cap S_{k+1}$ and so do
the matrices $H$ corresponding to $(W^{¥prime}, W_{1}^{1})$ and $(W_{v}^{2}, W^{¥prime¥prime})$ in $S^{¥prime}¥cap S_{1}$ and $S_{¥mathrm{v}}¥cap S^{¥prime¥prime}$

respectively. The matrices $H$ of the solutions $(W_{k}^{1}, W_{k}^{2})$ , $k=1$ , $¥ldots$ , $v$ differ
from each other in $S_{k}$ by terms which are $O(e^{-d/|¥tau|^{q-¥mathrm{s}}})$, $d>0$.

Fig. 6
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Proof: 1o We take any solution with the asymptotics (4) in $S^{¥prime}$ for $W^{¥prime}$ .

Let $W_{1}^{1}=W^{¥prime}V$ where $V$ is a Stokes’ multiplier with minimal support. Put
$V=V_{0}V_{1}$ where $V_{0}$ (resp. $V_{1}$ ) is a Stokes’ multiplier contaning non-zero off-
diagonal elements only on positions corresponding to pairs of polynomials
$(b_{j}, b_{k})$ of level $¥geq q-s+1$ (resp. of level $¥leq q-s$). Such a decomposition is
always possible. If $V_{1}¥neq I$, then we change $(W^{¥prime}, W_{1}^{1})$ to $(W^{¥prime}V_{1}^{-1}, W_{1}^{1})$. Thus
the //-matrices of the new pair $(W^{¥prime}, W_{1}^{1})$ differ in $S^{¥prime}¥cap S_{1}$ by terms which are
$O(e^{-c/|¥tau|^{q-¥mathrm{s}+1}})$ , $c>0$.

2o In the same way we construct $W_{2}^{1}$ , $W_{3}^{1}$ , $¥ldots$ , $¥mathrm{W}_{¥mathrm{v}}^{1}$ ?constructing $W_{k}^{1}$

we may have to change $W_{k-1}^{1}$ , $W_{k-2}^{1}$ , $¥ldots$ , $W_{1}^{1}$ , $W^{¥prime}$ . After this we construct
in a similar way $W^{¥prime¥prime}$ ; similar means that in the decomposition $V=V_{0}V_{1}$ the
off-diagonal non-zero elements of $V_{0}$ (resp. of $V_{1}$ ) correspond to pairs $(b_{j}, b_{k})$

of level $¥geq q-s$ (resp. $¥leq q-s-1$ ). This is connected with the fact that the
sector $¥tilde{S}_{1}¥cup¥tilde{S}_{2}$ contains two different Stokes’ lines of level $q-s$ corresponding
to the special pair.

3o Let $W_{k}^{1}=W^{¥prime¥prime}V(1¥leq k¥leq v)$ . Put $V=V^{0}V^{1}$ where $V^{0}$ contains non-
zero off-diagonal elements corresponding only to pairs $(b_{j}, b_{k})$ of level $¥geq q-$

$s+1$ and $¥mathrm{V}^{1}$ ?to the special pair. Put $W_{k}^{2}=W^{¥prime¥prime}V^{0}$ . We let the reader
check oneself that the solutions $W^{¥prime}$ , $W_{k}^{1}$ , $W_{k}^{2},1¥leq k¥leq v$ , $W^{¥prime¥prime}$ constructed in
this way satisfy the conditions of the proposition.

Corollary. The solutions $(W_{k}^{1}, W_{k}^{2})$ are connected with each other by $a$

Stokes’ multiplier which has non-zero off-diagonal elements only on those positions
which correspond to the special pair $(b_{j}, b_{k})$ of level $q-s$.

This is a corollary not from Proposition 2 but from its proof?see $3^{¥mathrm{o}}$ .

Proposition 3. For every Stokes’ multiplier $V$ of level $q-s$ there exist
the decompositions $V=V_{0}V_{1}=V_{1}^{¥prime}V_{0}$ where $V_{0}$ is a Stokes’ multiplier of level
$q-s$ not containing non-zero off-diagonal elements corresponding to pairs of
polynomials of level $>q-s$ and $V_{1}$ , $V_{1}^{¥prime}$ are Stokes’ multipliers of level $¥geq q-$

$s+1$ .

Proof: A suitable ordering of the polynomials $b_{j}$ brings $V$ to the following
block decomposition form (upper triangular, with units on the diagonal):

$V=$ $¥left¥{¥begin{array}{llll}V^{1} & K_{1}^{2} & ¥cdots & K_{1}^{r}¥¥0 & V^{2} & ¥cdots & K_{2}^{r}¥¥¥vdots & ¥vdots & .. & ¥vdots¥¥ 0 & 0 & ¥cdots & V^{r}¥end{array}¥right¥}$

The off-diagonal elements of the blocks $V^{¥sigma}$ (the elements of the blocks $K_{¥mu}^{¥theta}$ )
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correspond to pairs $(b_{j}, b_{k})$ of level $q-s$ (of level $¥geq q-s+1$ ). Hence, for
suitable blocks $¥tilde{K}_{¥mu}^{¥theta},¥overline{K}_{¥mu}^{¥theta}$ we have

$V=$ $¥left¥{¥begin{array}{llll}V^{1} & 0 & ¥cdots & 0¥¥0 & V^{2} & ¥cdots & 0¥¥¥vdots & ¥vdots & ¥ddots & ¥vdots¥¥ 0 & 0 & ¥cdots & V^{r}¥end{array}¥right¥}$ $¥left¥{¥begin{array}{llll}I & ¥tilde{K}_{1}^{2} & ¥cdots & ¥tilde{K}_{1}^{r}¥¥0 & I & ¥cdots & ¥tilde{K}_{2}^{r}¥¥¥vdots & ¥vdots & .. & ¥vdots¥¥ 0 & 0 & ¥cdots & I¥end{array}¥right¥}$

$=$ $¥left¥{¥begin{array}{llll}I & ¥overline{K}_{1}^{2} & ¥cdots & ¥overline{K}_{1}^{r}¥¥0 & I & ¥cdots & ¥overline{K}_{2}^{r}¥¥¥vdots & ¥vdots & .. & ¥vdots¥¥ 0 & 0 & ¥cdots & I¥end{array}¥right¥}$ $¥left¥{¥begin{array}{llll}V^{1} & 0 & ¥cdots & 0¥¥0 & V^{2} & ¥cdots & 0¥¥¥vdots & ¥vdots & .. & ¥vdots¥¥ 0 & 0 & ¥cdots & V^{r}¥end{array}¥right¥}$

C) Proposition 4. The Stokes’ multipliers of level $¥geq q-s$ with minimal
support preserve the relations in the field $K_{S}$ .

Proof: 1o We prove Proposition 4 by induction; for $s=1$ it coincides
with Proposition 1. It is easy to see that if the Stokes’ multipliers of level
$¥geq q-s+1$ with minimal support preserve the relatons in the field $K_{S}$ , then
so do all Stokes’ multipliers of level $¥geq q-s+1$ .

2o Relation (7) can be written in the form

(10) $¥sum_{j}¥tilde{h}_{j}(¥tau)e^{d_{j}(1/¥tau)}=0$

where $d_{j}(1/¥tau)=d_{j,q1}¥_/¥tau^{q-1}+¥cdots+d_{j,qs}¥_/¥tau^{q-s}$ and $¥tilde{h}_{j}$ are holomorphic functions
belonging to the class $ B_{qs1}¥_¥_$ ; the polynomials $d_{j}$ are supposed different. To
obtain equation (10) it is sufficient to express the left hand-side of equation
(7) by the right hand-side of the representation (4) and then to separate the
exponents of $1/¥tau^{q-1}$ , $¥ldots$ , $1/¥tau^{q-s}$ from the ones of $1/¥tau^{q-s-1}$ , $¥ldots$ , $ 1/¥tau$ . It is clear
that $¥tilde{h}_{j}¥in B_{q-s-1}$ .

3o The functions $¥tilde{h}_{j}$ can be expressed by different solutions to system (3),
in different sectors (remember that the Stokes’ multipliers of level $¥geq q-s+1$

preserve the relations in the field $K_{S}$ ). Therefore we shall use the same indices
for them as we use for the solutions $W$. For example, in $S^{¥prime}$ and $S_{k}$ the
following equalities are true:

$¥sum_{j}¥tilde{h}_{j}^{¥prime}(¥tau)e^{d_{i}(1/¥tau)}=0$ and $¥sum_{j}¥tilde{h}_{j,k}^{1}(¥tau)e^{d_{j}(1/¥tau)}=0$

4o We make an additional non-restrictive assumption: the sectors $S^{¥prime}¥backslash S_{1}$

and $S^{¥prime¥prime}¥backslash S_{¥mathrm{v}}$ contain no Stokes’ lines of level $<q-1$ except $l_{1}$ , $l_{2}$ . We admit
the situations $S_{1}¥subset S^{/}$ , $S_{2}¥subset S^{¥prime¥prime}$ provided that $S_{1}$ , $S_{2}$ are good sectors. In this
case the Stokes’ multipliers $W_{1}^{1}(W^{¥prime})^{-1}$ , $W_{¥mathrm{v}}^{2}(W^{¥prime¥prime})^{-1}$ are trivial.
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5o The functions $¥tilde{h}_{j}^{¥prime},¥tilde{h}_{j,k}^{1}$ , $k=1$ , $¥ldots$ , $v$ with $j$ fixed in the intersections
of the neighbouring sectors differ by terms which are $O(e^{-c/|¥tau|^{q-s+1}})$ . Choose a
ray $l$ $¥subset S^{¥prime}¥cap S_{1}$ on which one of the exponents?e $d_{j0}(1/¥tau)$

?grows faster than the
others for $¥tau¥rightarrow 0$ . Then $¥tilde{h}_{j_{0}}^{¥prime}=O(e^{-c^{¥prime}/|¥tau|^{q-s}})$ for $¥tau¥in l$, otherwise equality (7) is
impossible. But then $¥tilde{h}_{j_{0}}^{¥prime}=O(e^{-c^{¥prime¥prime}/|¥tau|^{q-¥mathrm{s}}})$ for $¥tau¥in S^{¥prime}$ ; this can easily be derived
from Corollary 4.2 and Theorems 4.6 and 4.7. Hence, $¥tilde{h}_{j_{0},1}^{1}=¥cdots=¥tilde{h}_{j_{0},v}^{1}=$

$O(e^{-c^{¥prime¥prime¥prime}/|¥tau|^{q-s}})$.

6o There exists a change of coordinates in $¥tilde{S}_{1}¥cup¥tilde{S}_{2}y=¥tau¥Phi(¥tau)$ , where $¥Phi(¥tau)$

increases or decreases for $¥tau¥rightarrow 0$ slowlier than any power of $|¥tau|$ , $¥Phi¥neq 0$ for
$¥tau¥neq 0$ such that

1) the sectors $S^{¥prime}$ , $S_{1}$ , $¥ldots$ , $S_{¥mathrm{v}}$ , $S^{¥prime¥prime}$ are mapped onto curvilinear sectors $S^{l*}$ ,
$S_{1}^{*}$ , $¥ldots$ , $S_{v}^{*}$ , $s^{¥prime¥prime}*$ with vertex at 0 such that the tangent lines to the sides of
the sectors $S^{l*}$ , $¥ldots$ , $S^{ll*}$ at 0 coincide with the ones of the sectors $S^{¥prime}$ , $¥ldots$ , $S^{¥prime¥prime}$ .

2) each one of the sectors $S^{l*}$ , $¥ldots$ contains a (true) subsector of smaller
radius?S$r**$ , $¥ldots$?and of opening $>¥pi/(q-1)$ (with vertex at 0), each two
adjacent subsectors being overlapping.

3) the function $¥tilde{h}_{j_{0}}^{¥prime}(¥tau(y))$ belongs to the class $¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$ for some $¥alpha¥geq q-s$ ,
$y¥in s^{¥prime}**$ .

7o The existence of such a change of coordinates is proved in $9^{¥mathrm{o}}-15^{¥mathrm{o}}$ .

Now we show that $¥tilde{h}_{j_{0}}^{¥prime}¥equiv 0$ . Really, let $q-s+r>¥alpha¥geq q-s+r-1$, $r¥in N$. It
follows from the construction of the solutions $W^{¥prime}$ , $W_{1}^{1}$ , $¥ldots$ , $W_{v}^{1}$ , $W^{¥prime¥prime}$ , see the
proof of Proposition 2, that there exists $¥mu¥in N$ such that the sector $ S^{l**}¥cup S_{1}^{**}¥cup$

$¥ldots$
$¥cup S_{¥mu}^{**}$ is of opening $>¥pi/(q-s+r-1)$ and all the differences $W^{¥prime}-W_{1}^{1}$ ,

$ W_{¥mu}^{1}-W_{¥mu 1}^{1}¥_$ (defined on $s^{¥prime}**¥cap S_{1}^{**}$ , $¥ldots$ , $S_{¥mu 1}^{**}¥_¥cap S_{¥mu}^{**}$ ) are $O(e^{-c^{0}/|y|^{q-s+r-¥epsilon}})$, $0<$

$¥epsilon<1$ , $c^{0}>0$ . This follows from the fact that when we construct the solutions
$W^{¥prime}$ , $W_{1}^{1}$ , $¥ldots$ , $W_{v}^{1}$ we use the Stokes’ multipliers with minimal support; for
every pair of polynomials $(b_{j}, b_{k})$ of level $q-s_{0}<q-1$ the first Stokes’ line
in $¥tilde{S}_{1}¥cap¥tilde{S}_{2}$ corresponding to it (when we move from $l_{1}$ to $l_{2}$ , see Fig. 6) does
not introduce a difference between $W_{k}^{1}$ and $W_{k+1}^{1}$ or between $W^{¥prime}$ and $W_{1}^{1}$

(which is $O(e^{-c^{1}/|¥tau|^{q-s}¥mathrm{o}})$ ) but only the second such line does. Hence, it follows
from $¥tilde{h}_{j_{¥mathrm{o}}}^{¥prime}¥in¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$ that $¥tilde{h}_{j_{0},1}^{1}¥in¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$ , $¥ldots,¥tilde{h}_{j_{0},¥mu}^{1}¥in¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$ (there exists $¥beta>¥alpha$

such that $¥tilde{h}_{j_{0}}^{¥prime}-¥tilde{h}_{j_{0},1}^{1}¥in¥tilde{A}_{¥beta}^{-}$, $¥ldots,¥tilde{h}_{j_{0},¥mu 1}^{1}¥_-¥tilde{h}_{j_{0},¥mu}^{1}¥in¥tilde{A}_{¥beta}^{-}$ ). It follows from Theorem
4.5 that $¥tilde{h}_{j_{¥mathrm{o}}}^{¥prime}¥equiv 0$, $¥ldots,¥tilde{h}_{j_{0},¥mu}^{1}¥equiv 0$. Similarly we prove that $¥tilde{h}_{j}^{¥prime}¥equiv 0$ for all $j$ . But
then $¥tilde{h}_{j,k}^{1}¥equiv 0$, $k=1$ , $¥ldots$ , $v$ as well. This follows from the fact that the Stokes’
multipliers of level $¥geq q-s+1$ preserve the relations in $K_{S}$ .

8o In a similar way we prove that $¥tilde{h}_{j,k}^{2}¥equiv 0$, $k=1$ , $¥ldots$ , $v,¥tilde{h}_{j}^{¥prime¥prime}¥equiv 0$. It is
essential in the proof that all the Stokes’ lines of level $¥leq q-s$ inside $¥tilde{S}_{1}¥cap¥tilde{S}_{2}$

are ’ignored’, i.e. they don’t participate with non-zero off-diagonal elements in
the Stokes’ multipliers connecting the solutions $W^{¥prime}$ , $W_{1}^{1}$ , $W_{1}^{2}$ , $¥ldots$ , $W_{¥mathrm{v}}^{1}$ , $W_{¥mathrm{v}}^{2}$ ,
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$W^{¥prime¥prime}$ . The estimation for the rate of decreasing for $¥tau¥rightarrow 0$ of the difference
$¥tilde{h}_{j,k}^{2}-¥tilde{h}_{j,k+1}^{2}$ is the same as for $¥tilde{h}_{j,k}^{1}-¥tilde{h}_{j,k+1}^{1}$ , due to Proposition 3. Note that
in the block decomposition of the Stokes’ multiplier $V$, see the proof of Proposi-
tion 3, the blocks $¥overline{K}_{j}^{s}$ and $¥tilde{K}_{j}^{s}$ are or are not 0 simultaneously. These blocks
correspond to one and the same pair of polynomials. Proposition 4 follows
from the fact that $¥tilde{h}_{j,k}^{2}¥equiv 0$, $k=1$ , $¥ldots$ , $v,¥tilde{h}_{j}^{¥prime¥prime}¥equiv 0$.

9o It remains to prove that the change of coordinates described in 7o
really exists. Put $¥alpha=¥sup$ $¥{¥delta¥in R|¥exists C>0, d>0:|¥tilde{h}_{¥acute{i}_{0}}(¥tau)|¥leq Ce^{-d/|¥tau|^{¥delta}}, ¥tau¥in l¥}$ . The
restriction of $|¥tilde{h}_{j_{0}}^{¥prime}|$ to $l$ is a real-valued function $h$ . We show in 10o-15o that
it is possible to construct a holomorphic in $¥tilde{S}_{1}¥cup¥tilde{S}_{2}$ function $¥psi(¥tau)$ with the
properties:

i) $¥psi(¥tau)¥neq 0¥forall¥tau¥in¥tilde{S}_{1}¥cup¥tilde{S}_{2}¥backslash 0$

$¥mathrm{i}¥mathrm{i})$ $¥lim_{¥tau¥rightarrow 0}|¥tau|^{s}/|¥psi(¥tau)|$ is 0 for $s>0$ and $¥infty$ for $s<0$

$¥mathrm{i}¥mathrm{i}¥mathrm{i})$ $d(¥tau¥psi^{-1/¥alpha}(¥tau))/d¥tau¥neq 0$ in $¥tilde{S}_{1}¥cup¥tilde{S}_{2}¥backslash 0$

$¥mathrm{i}¥mathrm{v})$ Put $¥gamma_{1}=¥lim¥sup_{¥tau¥in ¥mathrm{I}}h(¥tau)/e^{-¥psi(¥tau)/|¥tau|^{a}}$. Then $ 0<¥gamma_{1}<¥infty$ .

v) $¥psi=|¥psi|(1+o(1))$ for $¥tau¥rightarrow 0$ . In other words, $¥arg¥psi¥rightarrow 0$ for $¥tau¥rightarrow 0$, $¥tau¥in$

$¥tilde{S}_{1}¥cup¥tilde{S}_{2}$ .
$¥mathrm{v}¥mathrm{i})$ the function $¥tau¥psi^{-1/¥alpha}(¥tau)$ is real for $¥tau¥in l$ ; without loss of generality we

assume $l$ to be the positive semi-axis. We also suppose the negative semi-axis
not to belong to $¥tilde{S}_{1}¥cup¥tilde{S}_{2}$ .

The necessary function $¥Phi(¥tau)$ is in fact $¥psi^{-1/¥alpha}$ . Really, it follows from $¥mathrm{i}$ ),
$¥mathrm{i}¥mathrm{i})$, $¥mathrm{i}¥mathrm{i}¥mathrm{i})$ that the function $¥tau¥Phi(¥tau)$ is a coordinate in $¥tilde{S}_{1}¥cup¥tilde{S}_{2}¥backslash 0$ (it might be necessary
to diminish the radius of the sectors). It follows from $¥mathrm{i}¥mathrm{v}$) that $¥rho_{¥tilde{h}_{i_{0}}^{¥prime}}(0)=-¥gamma_{1}$

with respect to $¥alpha$ . Making use of Corollary 4.2, we conclude that in the new
variable $y$ we have $¥tilde{h}_{j_{0}}^{¥prime}¥in¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$ . It follows from v) that the sectors $s^{¥prime}*$ , $¥ldots$ ,
$S^{¥prime¥prime*}$ satisfy 1) and 2), see $6^{¥mathrm{o}}$ .

10o Put $g(¥tau)=-¥log h(¥tau)|¥tau|^{¥alpha}$ , $g:R^{+}¥rightarrow R$ ; if $h(¥tau_{0})=0$, then we put $g(¥tau_{0})=$

$¥infty$ . The function $g(¥tau)$ is bounded from below on any finite interval and
$¥lim_{¥tau¥rightarrow 0}|g|¥cdot|¥tau|^{-s}=¥infty¥forall s>0$ . This follows from the definition of the number
$¥alpha$ . We prefer to construct the function $¥psi$ in the map $ z=1/¥tau$ . The image in
this map of $¥tilde{S}_{1}¥cup¥tilde{S}_{2}$ is a sector $S$ (without some compact set) of opening $<2¥pi$ .

11o We can assume $g$ to be positive ( $g$ cannot take negative values for
arbitrarily large $|z|$ , otherwise $h$ will not be decreasing). Either $¥inf_{z¥geq z_{0}}g(z)$

increases slowlier or $¥inf_{z¥leq z_{0}}g(z)$ decreases slowlier than any power of $|z_{0}|$

for $|z_{0}|¥rightarrow¥infty$ ; this follows from the definition of the number $¥alpha$ . If
$ 0<¥lim¥inf_{|z|¥rightarrow¥infty}g(z)=¥gamma_{2}<¥infty$ , then we put $¥psi=¥gamma_{2}/2$ . Let $¥lim¥inf_{|z|¥rightarrow¥infty}g(z)=0$

(the case $¥lim¥inf_{|z|¥rightarrow¥infty}g(z)=¥infty$ is treated in $14^{¥mathrm{o}}$ ). Then we put

$¥psi=¥sum_{¥iota=1}^{¥infty}C_{l}/(z-a)^{k_{l}}$
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where $a<0$, $(a ¥not¥in S)$ , $C_{l}>0,0<k_{¥iota}<1/2^{(l+100)}$ ; the sequence $¥{k_{l}¥}$ is decreasing
and tends to 0. The condition $k_{l}<1/2^{(l+100)}$ implies that

$¥arg(C_{¥iota}/(z-a)^{k_{l}})¥in[-¥pi/4, ¥pi/4]¥forall z¥in S$

Hence, all the partial sums and the sum of $¥psi$ (provided that it exists) have
no zeros in $S$ . The symbol $l/(z - a)^{k_{l}}$ denotes the sheat of a multivalued
function taking real positive values for $z$ real positive; $k_{l}$ need not to be
rational. If the numbers $k_{l}$ tend to 0 very fast, then the arguments of the
terms of the series tend to 0 very fast. We choose the constants $C_{¥iota}$ , $k_{l}$ in
such a way that $¥psi(z)|_{R}<g(z)$ and there exist infinitely many points $z_{1}$ , $z_{2}$ ,

$¥ldots$
$¥rightarrow¥infty$ such that $¥psi(z_{k})>g(z_{k})/2$. This provides property $¥mathrm{i}¥mathrm{v}$); $¥mathrm{v}¥mathrm{i}$ ) is checked

directly.

12o We prove here that the derivative of the function $z¥psi^{1/¥alpha}$ does not
vanish in $S¥backslash K$ for some compact set $K$ ; this implies $¥mathrm{i}¥mathrm{i}¥mathrm{i}$ ). For this it is sufficient
to prove that $ D¥equiv z¥mathrm{d}¥psi/¥mathrm{d}z+¥alpha¥psi$ does not vanish there. But

$D=¥sum_{¥iota=1}^{¥infty}D_{l}$ , $D_{l}=(¥alpha C_{l}-C_{l}k_{¥iota})/(z-a)^{k_{1}}+aC_{l}k_{l}/(z-a)^{k_{I}+1}$

If $ k_{l}<<¥alpha$, $|a|k_{¥iota}<<1$ , $k_{l}<1/2^{(100+l)}$, then for $|z|>2|a|$ the module of the second
term in $D_{l}$ is much smaller than the module of the first one whose argument
is close to 0 for $l$ large; hence, for such $k_{l}$ and $z$ the arguments of all $D_{l}$

belong to $[-¥pi/4, ¥pi/4]$ and $D$ does not vanish in $S¥backslash K$ . This proves $¥mathrm{i}¥mathrm{i}¥mathrm{i}$ ) $;¥mathrm{i}$ ) is
proved in the same way. For $|z|¥rightarrow¥infty$ the argument of $D$ is influenced stronger
by the arguments of the $D_{¥iota}$ with larger $l$ because they decrease slowlier But
their argument is as closer to 0 as larger $l$ is. Hence, for $|z|¥rightarrow¥infty¥arg¥psi¥rightarrow 0$ .

This proves $¥mathrm{v}$). Property $¥mathrm{i}¥mathrm{i}$ ) follows from the form of $¥psi$ .

13o Let’s construct $¥psi$ itself. Let $z_{0}>1$ . Put $¥min_{z¥leq z_{0}}g(z)=m_{0}$ . Put
$¥psi_{s}=¥sum_{l=1}^{s}C_{¥mathrm{I}}/(z-a)^{k_{¥iota}}$ . Choose $0<k_{1}<<¥min(1/2^{101}, ¥alpha, 1/|a|)$, $C_{1}>0$ such that
there exists $z_{1}>z_{0}:g(z_{1})<2¥psi_{1}(z_{1})<2g(z_{1})$, $g(z)>¥psi_{1}(z)$ for $z¥geq 2|a|$ ,
$¥psi_{1}(2|a|)<m_{0}/2$; note that the functions $l/(z - a)^{k_{l}}$ are monotonously decreasing
for $z¥in R$, $z>2|a|$ .

In the same way we construct $¥psi_{2}$ : $¥exists z_{2}>z_{1}+1$ , $g(z_{2})<2¥psi_{2}(z_{2})<2g(z_{2})$,
$g(z)>¥psi_{2}(z)¥forall z¥geq 2|a|$ , $¥psi_{2}(2|a|)<m_{0}/2+m_{0}/4$ , $k_{2}<<¥min(1/2^{102}, ¥alpha, 1/|a|)$, $C_{2}>0$

etc. The choice of the constants $c_{¥iota}$ , $k_{¥iota}$ is possible due to the slow rate of
decreasing of $¥inf_{z¥leq z_{0}}g(z)$ for $ z_{0}¥rightarrow¥infty$ .

For $|z|=2|a|$ we have $¥psi_{s}=¥sum_{l=1}^{s}C_{¥iota}/(3a)^{k_{¥mathit{1}}}$ . We require that $|¥psi_{s}|(2|a|)<$

$(1 - 2^{-s})m_{0}$ . It follows from here that the constants $C_{l}$ are bounded and tend
to 0. It is easy to prove the convergence of the series for $¥psi$ , for its derivative
and for $d(z¥psi^{1/¥alpha})/dz$ . This completes the construction of the function $¥psi$ in the
case when $¥inf_{z¥leq z_{0}}g(z)$ tends to 0.
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14o Let now $¥lim¥inf_{z¥rightarrow¥infty}g(z)=¥infty$ . Put $G(z)=1/g(z)$. Then $G$ is
bounded and $¥sup_{|z|¥geq z_{0}}G(z)¥rightarrow 0$ slowlier than any power of $|z_{0}|$ ; this follows
from the definition of the number $¥alpha$ . Put $F=¥psi^{-1}$ ,

$F=¥sum_{¥iota=1}^{¥infty}P_{¥iota}$ , $P_{l}=C_{l}/(z-a)^{k_{¥mathrm{I}}}$

(the constants in the right hand-side have the same meaning as before). Put
$F_{s}=P_{1}+¥cdots+P_{s}$ . Let $¥max_{z¥geq 2|a|}G(z)=G(z_{0})$. Choose $C_{1}>0$, $0<k_{1}<<$

$¥min$ $(¥alpha, 1/¥alpha, |a|, 1/|a|, 1/2^{101})$ such that $F_{1}(z_{0})=G(z_{0})$, $F_{1}(2|a|)¥leq 2G(z_{0})$,
$¥max_{z¥geq 2|a|}(G-F_{1})=(G-F_{1})(z_{1})¥leq G(z_{0})/2$, $z_{1}>z_{0}+1$ . Then similarly we
choose $C_{2}$ , $k_{2}$ such that $F_{2}(z_{1})=G(z_{1})$, $ F_{2}(2|a|)¥leq 2G(z_{0})+2(G-F_{1})(z_{1})¥leq$

$3G(z_{0})$, $¥max_{z¥geq 2|a|}(G-F_{2})=(G-F_{2})(z_{2})¥leq(G-F_{1})(z_{1})/2¥leq G(z_{0})/4$ , $z_{2}>z_{1}+$

$1$ etc. It is clear that $F_{k}>G$ for $Z¥leq z_{k}$ , $F_{k}(z_{s})<4G(z_{s})$, $s¥leq k$ ; this follows
from the fact that the functions $l/(z - a)^{k_{I}}$ are monotonous for $z>2|a|$ . But
then $F(z_{s})¥leq 2G(z_{s})$ , $F(z)¥geq G(z)¥forall z¥geq 2|a|$ .

15o The properties i) $-¥mathrm{v}¥mathrm{i}$ ) for the function $¥psi$ can be checked similarly to
the case when $¥lim¥inf_{z¥leq z_{0}}g(z)=0$ , see 10o-13o and we prefer to let the reader
check them oneself. This completes the proof of the proposition.

Proof of the Generalised Phragmen-Lindelojf Principle: There exists a
change of coordinates in $S_{1}¥cup¥cdots¥cup S_{k}$ which maps the sectors $S_{j}$ onto some
curvilinear sectors $S_{j}^{*}$ with vertex at 0 and which have the same tangent lines
to their sides at 0 as the sectors $S_{k}$ ; the sectors $S_{j}^{*}$ contain some true sectors
of smaller radius $S_{j}^{**}$ which are overlapping again. After this change of coor-
dinates the functions $f_{j}$ belong to the class $¥tilde{A}_{¥alpha_{1}}^{-}¥cap A_{¥alpha_{1}}$ for some $¥alpha_{1}>0$ and
satisfy all the other conditions of Theorem 4.5 in the sectors $S_{j}^{**}$ ; hence, they
are 0. The construction of this change of coordinates is described in 9o-15o
of the proof of Proposition 4.

Appendix. Proof of Theorems 4.3 and 4.4

The proofs of Theorems 4.3 and 4.4 follow from the lemmas formulated
below. If the reader is reluctant to read the whole Appendix, he might read
the lemmas and then pass onto the end of the Appendix where we explain
how to derive the proofs of the theorems from the lemmas. For the sake of
simplicity we put $¥alpha=1$ which leads to no loss of generality.

We use the notaton $PC$ for the class of functions whose graphs consist
of a finite number of arcs of the kind $y=k¥cos(¥omega+d)$, $d¥in R$. Hence, $ PC^{+}¥subset$

$PC$ . The latter arcs are called sinusoids. Note that they always in this section
have one and the same period $-2¥pi$ . We remind the notation $||¥cdot||=¥sup_{[a,b]}|¥cdot|$ .

The reader should be careful in reading the proofs of the lemmas as we use



The Stokes’ Multipliers 351

the notation $(¥cdot, ¥cdot)$ both to denote a point in $R^{2}$ and an open interval in
$R$ . The definition of a subsinusoidal function is given in Theorem 4.4.

Lemma 1. Let the function $f:[a, b]¥rightarrow R$, $ b-a<¥pi$ be continuous and let
there exist points $a¥leq¥omega_{0}<¥omega_{1}<¥omega_{2}¥leq b$ such that $f(¥omega_{0})¥leq 0$, $f(¥omega_{1})>0$, $ f(¥omega_{2})¥leq$

$0$ . Then the function $f$ does not belong to $¥overline{PC^{+}[a,b]}$.

Proof: 1o Suppose that for any $¥delta>0$ there exists $g¥in PC^{+}$ such that
$||f+g||<¥delta$ . Then we have $|f(¥omega_{1})-g(¥omega_{1})|<¥delta$. Put

$h=g(¥omega_{1})¥cos(¥omega-(¥omega_{0}+¥omega_{2})/2)/¥cos(¥omega_{1}- (¥omega_{0}+¥omega_{2})/2)$

Note that $h>0$ for $¥omega¥in$ $[¥omega_{0}, ¥omega_{2}]$ . Then there exists an arc of a sinusoid $¥tilde{¥alpha}$

which is a part of the graph of $g(¥omega)$ such that $¥tilde{¥alpha}¥cap$ graph $(h)¥ni(¥omega_{1}, h(¥omega_{1}))$ .

Either for $¥omega=¥omega_{1}-0$ or for $¥omega=¥omega_{1}+0$ the sinusoid $¥tilde{¥alpha}$ is above or on the
graph of $h$ (if the point $(¥omega_{1}, h(¥omega_{1}))$ is common for two such arcs of the graph
of $g$ , then at least one of them lies above or on the graph of $h$ ; this is easy
to prove using the definition of the class $PC^{+}$ , see Fig. 7).

2o Let $¥tilde{¥alpha}$ be above or on the graph of $h$ for $¥omega=¥omega_{1}+0$ . Then the first
intersection point $a^{0}$ of the analytic continuation of $¥tilde{¥alpha}$ to the right with the
$¥mathrm{c}¥mathrm{o}$ -axis is to the right or coincides with the first one for the analytic continua-
tion to the right of the graph of $h$ (denoted by $b^{0}$ ). Hence, for $¥omega¥in(¥omega_{1},$ $b]$

this continuation is strictly above the continuation of graph (h) or coincides
with it. This follows from $¥omega_{2}-¥omega_{0}<¥pi$ . If $¥tilde{¥alpha}$ is defined for $¥omega¥in[¥omega^{¥prime}, ¥omega^{¥prime¥prime}]$ ,
$¥omega^{¥prime}¥in[a, ¥omega_{1}]$ , $¥omega^{¥prime¥prime}¥in(¥omega_{1},$ $b$], then there exists another arc of $¥mathrm{s}¥mathrm{i}¥mathrm{n}¥mathrm{u}¥mathrm{s}¥mathrm{o}¥mathrm{i}¥mathrm{d}-¥tilde{¥alpha}^{¥prime}$ ?defined
for $¥omega¥in[¥omega^{¥prime¥prime}, ¥omega^{¥prime¥prime¥prime}]$ , $¥omega^{¥prime¥prime¥prime}¥in(¥omega^{¥prime¥prime},$ $b$] which belongs to the graph of $g,¥tilde{¥alpha}^{¥prime}¥cap¥tilde{¥alpha}^{¥prime¥prime}=$

$(¥mathrm{c}¥mathrm{o}’’, g(¥omega^{¥prime¥prime}))$. The first intersection point of the analytic continuation of $¥tilde{¥alpha}^{¥prime}$ to
the right with the $¥mathrm{c}¥mathrm{o}$ -axis is strictly to the right of $a_{0}$ and, hence, to the right
of $b_{0}$ . This means that $¥tilde{¥alpha}^{¥prime}$ is strictly above the graph of $h$ ; this again follows
from the definition of the class $PC^{+}$ and from $¥omega_{2}-¥omega_{0}<¥pi$ .

Fig. 7
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3o If the graph of $g$ contains more arcs of sinusoids to the right of $¥tilde{¥alpha}_{>}^{¥prime}$

then using the same arguments we show that these arcs lie above the graph
of $h$ . But

$|h(¥omega_{2})-f(¥omega_{2})|¥geq|h(¥omega_{2})|=|f(¥omega_{1})||¥cos(¥omega_{2}-¥omega_{1})|/|¥cos(¥omega_{1}-(¥omega_{0}+¥omega_{2})/2)|$

which is greater than $¥delta$ for $¥delta$ sufficiently small. This proves the lemma.

Lemma 2. Suppose that the function $f:[a, b]¥rightarrow R$ , $ b-a<¥pi$ is continuous
and there exist points $a¥leq¥omega_{0}<¥omega_{1}<¥omega_{2}¥leq b$ and a function $h=k¥sin(¥omega+d)$,
$k$, $d¥in R$ such that $f(¥omega_{0})¥leq h(¥omega_{0})$, $f(¥omega_{1})>h(¥omega_{1})$, $f(¥omega_{2})¥leq h(¥omega_{2})$ . Then the func-
tion $f$ does not belong to $¥overline{PC^{+}[a,b]}$ .

This lemma follows from Lemma 1 applied to the function $f-h$. We
use the stability of $PC^{+}[a, b]$ under the addition of a sinusoid.

Lemma 3. Let ’$he$ function $f:[a, b]¥rightarrow R$, $ b-a<¥pi$ be continuous. Then
$f$ can be approximated by functions of the class $PC$.

The proof consists in using the uniform continuity of $f$ and the fact that
through any two points not lying on a vertical line there passes exactly one
sinusoid $(b -a<¥pi)$. We divide $[a, b]$ into intervals of length $¥delta/2,0<¥delta<¥pi/4$

such that the variation of $f$ in each of them is $<¥epsilon$ , $¥epsilon>0$ . The function $f$

is bounded. Consider the set of functions $¥tilde{G}=¥{k ¥sin(¥omega+d);k, d¥in R¥}$ . There
exists $k_{0}>0$ such that if two points of the graph of $f$ are connected by an
arc of a function $g¥in¥tilde{G}$ and the difference between the $¥mathrm{c}¥mathrm{o}$-coordinates of the
points is $<¥delta$ , then this arc is the graph of a monotonous function or of a
function with $|k|¥leq k_{0}$ . The set $¥tilde{G}¥cap$

$¥{|k|¥leq k_{0}¥}$ is a set of functions with
uniformly restricted derivatives on $[a, b]$ . If the points $(¥omega_{1}, y_{1})$ , $(¥omega_{2}, y_{2})$ belong
to the graph of $f$, $|¥omega_{2}-¥omega_{1}|<¥delta$, then $|y_{2}-y_{1}|<¥epsilon$ and one can easily estimate
the variation of the arc of a sinusoid connecting these two points. We let
the reader complete the proof oneself.

Lemma 4. The class $¥overline{PC^{+}[a,b]}$ contains only continuous functions.
The proof is similar to the one of Theorem 4.2. If the function $ f¥in$

$¥overline{PC^{+}[a,b]}$ is not continuous, then there exists a function $h=k¥sin(¥omega+d)$ such
that the function $f-g¥in¥overline{PC^{+}[a,b]}$ changes sign at least thrice on $[a, b]$ , see
Fig. 2 (remember that $ b-a<¥pi$). This contradicts Lemma 1.

We say that a function $f$ admits a special approximation with functions
of the class $PC[a, b]$ (or $PC^{+}[a,$ $b]$ ) if for any $¥delta>0$ there exists $g¥in PC[a, b]$

(or $g¥in PC^{+}[a,$ $b]$ ) such that $||f-g||<¥delta$ and all the ends of arcs of sinusoids
comprising the graph of the function $g$ belong to the graph of $f$ as well.
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Lemma 5. If a real function defined on $[a, 6]$ is continuous and
subsinusoidal, then it admits a special approximation with functions of the class
$PC^{+}[a, b]$ .

Proof: 1o It follows from Lemma 3 that for any $0<¥delta<¥pi/4$ there exists
a function $g¥in PC$ such that $||f-g||<¥delta/4$. Denote by $a_{1}$ , $¥ldots$ , $a_{k}$ the ends
of the arcs of sinusoids comprising the graph of $g$ . Consider one of the arcs
$¥tilde{¥sigma}$ , the graph of the restriction of $g$ to $[a_{j}, a_{j+1}]$ . There exist two possible cases:

1) $g(a_{j})-f(a_{j})$ and $g(a_{j+1})-f(a_{j+1})$ have the same sign or one of them
is 0

2) they have different signs.

2o In case 2) we replace the arc $¥tilde{¥sigma}$ by two arcs as follows: there exists
$a^{¥prime}¥in(a_{j}, a_{j+1})$ such that $g(a^{¥prime})=f(a^{¥prime})$ . Let $g(a_{j})-f(a_{j})>0$, $g(a_{j+1})-f(a_{j+1})<0$

(the opposite case is treated similarly). We replace $¥tilde{¥sigma}$ by $¥tilde{¥sigma}^{¥prime}¥cup¥tilde{¥sigma}^{¥prime¥prime}$ where $¥tilde{¥sigma}^{¥prime}$ is
the restriction of $¥tilde{¥sigma}$ to $[a_{j}, a_{j+1}]$ and $¥tilde{¥sigma}^{¥prime¥prime}$ is the arc of a sinusoid defined on
$[a^{¥prime}, a_{j+1}]$ connecting the points $(a^{¥prime}, g(a^{¥prime}))$ and $(a_{j+1}, f(a_{j+1}))$ . On $[a_{j}, a^{¥prime}]$ the
difference $|f$ $-g|$ does not change. For $¥omega¥in[a^{¥prime}, a_{j+1}]$ the difference
$|(¥tilde{¥sigma}^{¥prime¥prime}-¥tilde{¥sigma})(¥omega)|$ is greatest for $¥omega=a_{j+1}$ and, hence, less than $¥delta/4$ because
$¥tilde{¥sigma}^{¥prime¥prime}(a_{j+1})=f(a_{j+1})$ . Thus for $¥omega¥in[a^{¥prime}, a_{j+1}]$

$|f$ $-g|¥leq|f-¥tilde{¥sigma}|+|¥tilde{¥sigma}-¥tilde{¥sigma}^{¥prime¥prime}|<¥delta/4+¥delta/4=¥delta/2<¥delta$

3o Consider case 1). Let the ends of $¥tilde{¥sigma}$ be the points $(a_{j}, b_{j})$, $(a_{j+1}, b_{j+1})$.

Consider the arc of a sinusoid $¥tilde{¥sigma}^{¥prime¥prime¥prime}$ connecting the points $(a_{j}, b_{j})$ and
$(a_{j+1}, f(a_{j+1}))$ . Then $¥tilde{¥sigma}^{¥prime¥prime¥prime}¥cap¥tilde{¥sigma}$ is the point $(a_{j}, b_{j})$ . The difference $|b$ $-b^{¥prime¥prime¥prime}|$ where
$(a, b)¥in¥tilde{¥sigma}$ , $(a, b^{¥prime¥prime¥prime})¥in¥tilde{¥sigma}^{¥prime¥prime¥prime}$ is greatest for $a=a_{j+1}$ . Hence, for any $a¥in[a_{j}, a_{j+1}]$ and
$(a, b)¥in¥tilde{¥sigma}$ , $(a, b^{¥prime¥prime¥prime})¥in¥tilde{¥sigma}^{¥prime¥prime¥prime}$ we have

$|b^{¥prime¥prime¥prime}-f(a)|¥leq|b^{¥prime¥prime¥prime}-b|+|b-f(a)|<¥delta/4+¥delta/4=¥delta/2$

Let now in a similar way $¥tilde{¥sigma}^{0}$ be the arc of a sinusoid connecting the points
$(a_{j}, f(a_{j}))$ and $(a_{j+1}, f(a_{j+1}))$. The difference $|b^{0}-b^{¥prime¥prime¥prime}|$ where $(a, b^{0})¥in¥tilde{¥sigma}^{0}$ ,
$(a, b^{¥prime¥prime¥prime})¥in¥tilde{¥sigma}^{¥prime¥prime¥prime}$ is greatest for $a=a_{j+1}$ and we know that $|f(a_{j})-b_{j}|<¥delta/4$. Hence,

$|b^{0}-f(a)|¥leq|b^{0}-b^{¥prime¥prime¥prime}|+|b^{¥prime¥prime¥prime}-f(a)|<¥delta/4+¥delta/2<¥delta$

Thus, uniting cases 1) and 2), we are able for any function $f¥in¥overline{PC^{+}[a,b]}$ and
for any $¥delta>0$ to construct a function $g¥in PC$ such that $||f-g||<¥delta$ .

4o It remains to show that $g¥in PC^{+}[a, b]$ . If this is not true, then some
pair of arcs $AC$, $BD$ of the graph of $g$ have analytic continuations which
look like it is shown on Fig. 8. The arc AB is below these continuations
and the graph of $f$ is below or on AB. This means that the approximation
is not special. The lemma is proved.
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Fig. 8.

Call a special sequence (approximating the function $g$) a sequence of
functions $g_{j}¥in¥overline{PC^{+}[a,b]}$ which are special approximations of $g$ and such that
if $D_{j}$ denotes the set of the ends of arcs of sinusoids building the graph of
$g_{j}$ , then $D_{j}¥subset D_{j+1}$ , $j=1,2$, $¥ldots$ .

Lemma 6. Any function $f¥in¥overline{PC^{+}[a,b]}$ can be approximated by a special
sequence.

Proof: We replace the sequence $¥{g_{j}¥}$ (in case that it is not special) by
a sequence $¥{g_{j}^{0}¥}$ where the set of the ends of arcs of sinusoids comprising the
graph of $g_{j}^{0}$ is $D_{1}¥cup D_{2}¥cup¥cdots¥cup D_{j}$ . $g$ is subsinusoidal (according to Lemma
2). Hence, the newly built sequence (which is special) provides a not worse
approximation than the initial one. We leave the details for the reader.

Lemma 7. For every function $g¥in¥overline{PC^{+}[a,b]}$ there exists a function $f¥in A_{¥alpha}$

such that $g=¥rho_{f}(¥omega)$ .

Proof: 1o Let $¥alpha=1$ (this assumption is non-restrictive). Put $S=$

$¥{a ¥leq¥arg z¥leq b, b-a<¥pi¥}$ . It is sufficient to prove the lemma for $f¥in¥tilde{A}_{¥alpha}^{-}¥cap A_{¥alpha}$

which can always be achieved by multiplying $f$ by a decreasing in the sector
exponent. This means that the function $g$ takes negative values only.

2o Consider a decreasing sequence of numbers $k_{j}>1$ , $k_{j}¥rightarrow 1$ . Choose a
decreasing sequence of numbers $¥epsilon_{j}>0$ , $¥epsilon_{j}¥rightarrow 0$ such that $|k_{j+1}-k_{j}||g(¥omega)|>¥epsilon_{j}$

$¥forall¥omega¥in[a, b]$ . It follows from Lemma 5 that for each of the functions $k_{j}g(¥omega)$

there exists a function $g_{j}(¥omega)¥in PC^{+}[a, b]$ such that $|(g_{j}-k_{j}g)(¥omega)|<¥epsilon_{j}/2$ . This
implies that

1) $¥forall¥omega¥in[a, b]$ the sequence $¥{g_{j}(¥omega)¥}$ is strictly monotonously increasing
2) $¥lim_{j¥rightarrow¥infty}g_{j}(¥omega)=g(¥omega)¥forall¥omega¥in[a, b]$ , the convergence being uniform in

$[a, b]$

3) there exist functions $F_{j}=1/q_{j}¥sum_{q=1}^{q_{j}}p_{j,q}e^{c_{j.q}z}$ , $q_{j}¥in N$, $p_{j,q}=$

$¥min$ $(1, 1/|c_{j,q}|)$ such that $g_{j}=¥rho_{F_{j}}(¥omega)$ (see the lemma in Section 4 and the
definition of the class $PC^{+}[a, b])$. The exponents $e^{c_{j.q}z}$ are decreasing in $S$ .

3o The necessary function $f$ is constructed as a sum of the kind
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$f=¥sum_{j=1}^{¥infty}C_{j}F_{j}$

where $0<C_{j}¥leq 1/2^{j-1}$ . It follows from the definition of the functions $F_{j}$ that
this series and the series of its derivatives are uniformly convergent in $S$ .
Hence, this series is convergent to a holomorphic in the sector $S$ function.

4o Put $C_{1}=1$ . Further by $K_{j}$ we denote a circle of radius $r_{j}$ centered
at 0. Each $F_{j}$ is a finite sum of exponents and $¥forall¥omega¥in[a, b]¥rho_{F_{j+1}}(¥omega)>¥rho_{F_{j}}(¥omega)$ .
Hence, there exists $K_{1}$ and a constant $D_{1}>0$ such that $¥forall¥omega¥in[a, b]$ $¥exists z^{0}$ :
$¥arg z^{0}=¥omega$, $z^{0}¥in K_{1}¥cap S$ , $|F_{1}(z^{0})|>D_{1}e^{¥rho_{F_{1}}(¥omega)|z^{0}|}$. Choose $0<C_{2}¥leq 1/2$ such that
$¥forall¥omega¥in[a, b]$ we would have $|C_{2}F_{2}(z^{0})|<|F_{1}(z^{0})|/4$. There exist $D_{2}>0$ and
$K_{2}$ , $r_{2}>r_{1}+1$ such that $¥forall¥omega¥in[a, b]¥exists z^{1}$ : $¥arg z^{1}=¥omega$ , $z^{1}¥in(K_{2}¥backslash K_{1})¥cap S$,
$|(F_{1}+C_{2}F_{2})(z^{1})|>D_{2}e^{¥rho_{F_{1^{+C}2^{F}2}}(¥omega)|z^{1}|}¥equiv D_{2}e^{¥rho_{F_{2}}(¥omega)|z^{1}|}>D_{1}e^{¥rho_{F_{1}}(¥omega)|z^{1}|}$ .

5o Choose $0<C_{3}¥leq 1/4$ such that $¥forall¥omega¥in[a, b]$ we would have
$|C_{3}F_{3}(z^{0})|<|F_{1}(z^{0})|/8$, $|C_{3}F_{3}(z^{1})|<|(F_{1}+C_{2}F_{2})(z^{1})|/4$ . There exist $D_{3}>0$,
$K_{3}$ , $r_{3}>r_{2}+1$ such that $¥forall¥omega¥in[a, b]¥exists z^{2}¥in(K_{3}¥backslash K_{2})¥cap S$ , $¥arg z^{2}=¥omega$ ,

$|(F_{1}+C_{2}F_{2}+C_{3}F_{3})(z^{2})|>D_{3}e¥rho_{F+CF+CF}(¥omega)|z^{2}|12233$

$>D_{2}e^{¥rho_{F_{1}+C_{2^{F}2}}(¥omega)|z^{2}|}$

$>D_{1}e^{¥rho_{F_{1}}(¥omega)|z^{2}|}$ etc

Finally we would have that $¥forall¥omega¥in[a, b]¥exists¥{z^{j}¥}$ , $|z^{j}|¥rightarrow¥infty$ such that $|f(z^{j})>$

$(D_{k}/2)e^{¥rho_{F_{1}+}}+c_{k^{F_{k}(¥omega)|z^{j}|}}$ for $j¥in N¥cup 0$, $k¥leq j+1$ . This means that $¥forall¥omega¥in$

$[a, b]¥rho_{f}(¥omega)>¥rho_{F_{k}}(¥omega)$ , $k=1,2$, $¥ldots$ . On the other hand-side it is checked di-
rectly that

$|f|¥leq|¥sum_{s=1}^{¥infty}C_{j}/q_{j}¥sum_{s=1}^{q_{j}}e^{c_{i^{s}}.z}|¥leq¥sum_{j=1}^{¥infty}(C_{j}/q_{j})q_{j}e^{g(¥omega)}=$ const $e^{g(¥omega)}$

i.e. $¥rho_{f}(¥omega)¥leq g(¥omega)$ . Hence, $¥rho_{f}(¥omega)¥equiv g(¥omega)$.

Lemma 8. Let $f¥in¥overline{PC^{+}[a,b]}$. Then $f$ is Lipschitz on every interval
$[a^{¥prime}, b^{¥prime}]$ , $a<a^{¥prime}<b^{¥prime}<b$ .

We shall not prove the lemma in full detal. Let the lemma be not
true. Then there exists $F¥in A_{¥alpha}$ such that $f=¥rho_{F}(¥omega)$ and the function $f$ is not
Lipschitz at some point. Then there exists a functon $G=e^{kz}$ such that the
function $¥rho_{FG}$ provides a contradiction with Theorem 4.1. Examples of the
possible graphs of $f$ and $¥rho_{G}$ are shown on Fig. 9.

Proof of Theorem 4.3 and 4.4: It follows from Theorems 4.1 and 4.2
that any function of the class

$U=¥{f:[a, b]¥rightarrow R, b-a<¥pi/¥alpha|f=¥rho_{F}(¥omega), F¥in A_{¥sigma}¥}$
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Fig. 9

is subsinusoidal and continuous. It follows from Lemmas 1 and 2 that any
function $f¥in¥overline{PC^{+}[a,b]}$ is subsinusoidal and from Lemma 4?that it is continu-
ous. It follows from Lemmas 3 and 5 that any subsinusoidal continuous
function defined on $[a, b]$ belongs to $¥overline{PC^{+}[a,b]}$ . This together with Lemma
8 proves Theorem 4.4. Theorem 4.3 follows now from Lemma 7.
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