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Introduction

The purpose of the present work is to give a cohomological interpretation
of linear and quadratic relations satisfied by the hypergeometric function

2F1 |:a’ b’ ijl — i (a)n(b)n in
C

n=0 nl(c),

where (d), =d(d + 1)---(d + n — 1) and ¢ is not a negative integer. We also
study the cohomology of the generalized hypergeometric functions ;F, and, as
an application, we explain the formula of symmetry

b ’ b
2F1|:a, ;/1]=2F1|: ,a;;{|,
c C

which has non-trivial meaning in cohomology. We study the classical integral
representation ([2] §2.1.3)

b
zFl[a’ ;/l}=k(b, c)ij‘l(l —x) P71 — Ax)"%dx
¢ v

0.1
O I'(b)I'(c — b)

[kb, @1 = (1 =) (1 — o) 0
C

which holds for c¢,c—b#1,2,..., and AeC\[l, ). In formula (0.1)
integration is done over the Pochhammer loop y where Pe 0, 1[ is the starting
and ending point of y. The branch of the integrand
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fx)=x""11—x)F""11 - ix)"“

is chosen in such a way that argx and arg(l — x) are continuous in x and
are reduced to zero at the starting point of y, while arg(1 — Ax) is continuous
in 4, x and it is reduced to zero at A =0 and the starting point of y. It is
easily seen that the integrand function f(x) takes the same value at the starting
and ending points of y, i.e. corresponds to a closed loop on the Riemann
surface of f(x) (for details see [2] §1.6). When a, b and ¢ are rational, then
for each A the Riemann surface of f(x) is the algebraic curve defined by

yN _ xN—B(l _ x)N+B-C(1 _ ix)A =0

where y~! = f(x) while 4, B, C, N are nonzero integer numbers such that

a=A/N,b=B/N,c=C/N and gcd. (4, B, C,N)=1. If 4,B,C and N
are the previous integer numbers then

% ={(x,y, )eC> x S|yN = x""B(1 — x)N*EC(1 — Jx)1, y # 0}
is a family of curves parametrized by
n:€ —S

where S is the space of the parameter . Then = is a smooth affine morphism
and for each 1eS the fiber 77 '(1) is an irreducible non-singular affine curve
which is an N-cyclic covering of C\ {0, 1, 1/4}. Therefore (0.1) may be written

in the form
b
ZFI[“’ ;A}k(b, c)j@f
C 5 y

where 7§ is a suitable covering of y on ¥ and now ,F, is the multivalued
function, period of the S-relative algebraic form dx/y. There exists an integral
representation for ;F, involving a double integral, in which case families of
irreducible non-singular affine surfaces come into the game. Consider, in
general, a family X of non-singular affine varietes with an affine parameter
space and let

0.2) n: X — 8§

be a smooth affine morphism. In order to formulate our problem, we recall
some notions. Let Qy,; the complex of sheaves of germs of the S-relative
holomorphic algebraic forms on X, that is w e Qy s is a differential form which
depends holomorphically upon A and for each 4, weQy, X, =n~(4). Then
we study HY(I'(X, 2x,5)), g€ N, the cohomology of the complex of the global
section on X, which has the structure of (4-differential module. It means
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that every derivation D of OOy may be uniquely extended to a derivation D
of HY(I'(X, 2x/;5)). To define such an extention D we follow [4] and
[6]. Since X and S are affine varieties and n is an affine morphism, then

HA(I'(X, Qx/5)) = I'(S, Hhr(X/S))

where the relative de-Rham cohomology H}z(X/S) = Rin (Q2x/s), Rim, the
g-th hyperderivated functor of =, and D= Vx;s(D) where Vy,s denotes the
Gauss-Manin connection (see [5]). If n: X — § is a morphism of type (0.2)
then following Pham ([9], annexe A) we define #,(X/S), the g-dimensional
(geN) S-relative homology of X, to be the sheaf over the topological space
S associated to the pre-sheaf defined for every open set U of S, by

U — ”}fq+r(X> n_l(S\ U))a

r = dimgS, #.(X, A) being the usual relative homology of the pair (X, A),
A = X. Because of the previous definition it follows that »#,(X/S), the fiber
of #,(X/S) over €S, is H,(n™'(4)), the homology of the fiber X over 4 (see
[9]). For given two families

X —S; Y—F

of type (0.2), forms weHY(I'(X, Qx5), ©'eHYI'(Y,2y;)) and cycles
se A (X/S), s'e #,(Y/S'), put

F(ﬁ,)=jcu, F’(}L’)=J o'

If there are morphisms ¢ and <

X2y
0.3) | = |

S —§

such that ¢*(w') = w, s = ¢ and 1 = t(4), then by changing variables

ja)’=J‘ w’zf(p*a)’sz
s’ Pys s s

we have the equality F(4)=F’(4'). Then diagram (0.3) is called a cohomological
interpretation of F(A)=F'(A). Note that »#,(X/S) has not necessarily global
section and so s and s’ must be considered local sections over D(4,, &) and
D(4,, €') respectively (4, = t(4,)).

Therefore F(A) = F’(X) has to be interpreted as equality between two
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function elements ([,w, D(4,,¢)) and ([, w, D(4,,¢)) of the multivalued
functions F(4) and F’(4) respectively.

Let D and D’ be derivations on S and S’ respectively such that for every
he0(S")

v*D'(h) = D(t*h)
then for every ne HY(I'(Y, Qx/s))

@*Vy s (D) = Vys(D)p*n
Since previous ' satisfies in HY(I'(Y, Q5 ,s)) the equation

0.4) Y aj(X)Wys(DYa' =0

ji=o0
with a;(A)e0(S"), j=0,...,m then applying ¢* we obtain in HU(I'(x, 2x/s))
the relation

m

0.5) Y a(t(A))Vx;s(DYw =0

j=o0
aj(r(/l))e@(S), j=0,...,m

This means that o satisfies the same equation of ' after substitution
A =1(4). The same result holds for F(4) and F'(1). In fact in this work
we consider g-cycles s and s’ such that

D[F(4)] =J

S

Vi;s(D)w, D'[F'(1)] = j Vys (D)o’

S

and so integrating (0.4) and (0.5) over s and s’ respectively we have the
differential equations

m

> a;(A)DYIF(A)]=0

and
i aj(r(/l))Dj[F(/l)] = 0.

i=0

In this work we give some explicit diagram of type (0.3) and their
implications. In Chapter I we explain Kummer list of the 24 solutions of the
hypergeometric equation

(0.6) A — A)(d/dA)u+ [c— @+ b+ 1)A](d/dA)u — abu =0
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which has, among the others, u = ,F; [a, lz; /1] as solution. In this case we
use diagrams (0.3) where the varieties X and Y are curves, the morphisms ¢
and t are isomorphisms and the cohomology classes @ and o’ both satisfy
the hypergeometric equation (0.6). Linear transformations for ,F,; are so
explained since they are equalities between some couples of functions among
those of Kummer list.

In Chapter IT we study the relative de-Rham cohomology of a family of
affine surfaces coming from the integral representation of ;F,.

We show in Chapter IIT that reduction formulas of ;F, (that is, when
,F, coincides with ,F,) follow from diagrams of type (0.3) in which ¢ is
birational and 7 is the identity map.

The cases of quadratic relations between hypergeometric functions
essentially involves diagrams (0.3) where ¢ and t are morphisms of degree
two as shown in Chapter IV.

NOTATIONS

i=—1,

e(0) = €2,

(@,=al@a+ (@a+2)--(a+n—1), nez,

I =[0, 1],

D(x, r); closed complex disk of radius r and center x,
DU, ry= U D(u, r), U cC,

uelU
k(a, b) = F(B)[(1 — &(a@))(1 — &b — a) (@) (b — a)]™ ",
B(a, b); beta function of arguments a and b.

Chapter 1. On Kummer list of 24 solutions of the hypergeometric equation
In this chapter we consider the family of curves

¢ — S =C\{0, 1}

€ ={(x, y; )eC? x S|y" = x""F1 — x)VTET(L — ix)*, y # 0}
where A, B, C, N are nonzero integer numbers, g.c.d.(A4, B, C, N)=1 and
A, B,C,B—C, A—C=#0 modN. We shall give some properties of such a
family. Let 6 =¢&(1/N). Then there exists an S-automorphism &: ¢ — ¥
given by (x, y)—(x, 8y). The corresponding morphism ©* acts on the

complex Q° = I'(%, Q4,5)) and so Q" splits into a direct sum of subcomplexes
Q; on which ©* acts via multiplication with 67/, If
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&L = 0(S)[x, (x(1 —x)(1 — Ax))" ']
then Q; is the complex

1 1
0—»73 ——>~j$dx —0

y y

N-1
for j=0,..,N—1and so Q"= @ Q;.
ji=o0
Since cohomology commutes with direct sum then @* gives the following
decomposition

N-1
HY(Q")= & HYUL;), q=0, 1
j=0
Let D = Vg 5(d/dA), then it is defined on Q° by
xyA

D(x)=0, D(y)= — m

(the second formula comes from the first and the equation of %) and then
extended to 2° by

D(f dg) = [D(f)]dg + f dD(g).

Passing to the quotient D is so defined on HY(Q"). Note that D commutes
with 6*, so H'(22") consists of N differential modules H'(2;),j=0,...,N — 1.

Theorem 1.1. If j=1,...,.N — 1 then H'(Q;) is a free O(S)-module of
rank 2. For j=0, HY(Q,) is a free O(S)-module of rank 3.

Proof. For j=1,...,N —1 The theorem follows by direct calculations
using reduction formulas coming from the equation of . In the case j =0
we observe that €, is the complex of the regular forms on C\ {0, 1, 1/4} and
so the result immediately follows.

See [7] and [1] for similar results.

Proposition 1.2. The relative cohomology class o = [dx/y]le H (2;)
satisfies the hypergeometric equation

(1.1) Ml —)D*w+[c—(a+b+1, ] Do — abw =0
a=A/N,b=B/N,c=C/N and D =V 5(d/d}).

Proof. From the definition of D it follows that
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- ax dx
(1 —Ax)y

and then the proposition follows by easy calculations.

D(dx/y) =

If s is a suitable covering of the usual Pochhammer type loop of base
points 0 and 1 (see y of the Introduction) then se#,(¢/S) and

b
zFl[“’ ;A} — kib, c)fw
c S

(d/d2),F, |:“’ b, /1} — k(b c)j Do,
C s

where, as usual, a = A/N, b= B/N c¢=C/N, and D =V, 5(d/dJ). Therefore
the hypergeometric equation (0.6) is nothing but equation (1.1) integrated over
the S-relative cycle s.

Kummer gave a list of 24 solutions of (0.6), see list 1, where each of these
solutions is expressed in terms of hypergeometric functions. From the integral
representations of these 24 solutions come out families of curves

¢ —S, j=1,...,24
where
C;i=Ch;a By,
={(x, y; )eC? x SIy’N hx' NP1 — XN TETY (1 — A XY, Y #£ 0}

with he 2(S) and a, f, y integer numbers as shown in list 2. Furthermore
gcd, (o, B, 7, Ny=1and o, 5,9, f — 7, 2 —y # 0 mod N, so the results previ-
ously stated for € still hold for families %, j=1,...,24.

Theorem 1.3. Let €}, j = 1,...,24 defined as in list 2. Then the following
diagram commutes

L

where @;, T;(t;(A) = A') are defined as in list 2.

Proof. Direct computation.

Corollary 1.4. The relative cohomology classes w; = [dx'/y']eH I,
Qz9) J=1,...,24 satisfy the hypergeometric equation (1.1).
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1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
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* List 1

u, = F[a, b; c; 1]

=1 =" Ffc—a,c—b;c; 1]

=1 — A" [a,c—b;c; /(A—1)]

=1 =" Flc—a,b;c; /(A —1)]
u,=F[a,b;a+b+1—c;1—4]

=A'"F[b+1—ca+1—c;a+b+1—c;1—14]

=A"F[a,a+1—c;a+b+1—c;1—1/2]
ATPF[b+1—c¢, b;a+b+1—c;1—1/4]
(—A)*Fla,a+1—c;a+1-b;1/]

(= AP — A PF[l — b, e —bsa+1—b; 1/4]

=1 —-A)"°Fla,c—b;a+1—b;1/1—- 7]

(= (1l — A F[l—ba+1—cia+1—b;1/(1—H]
U, =(— A Fb+1—c¢b;b+1—a;1/i]

(= (1 — A PF[c—a 1 —a;b+1—a;1/A]

(=)A= A+ L, 1 —aib+ 1 —a; 1/(1 = A)]

—(—2)Flc—ab:b+1—a;1/(1—2]
us=A"°F[b+1—c,a+1—c;2—c; 2]

= ALl — A TPF[L — b, 1 — a3 2 —c; A]

=T Q=2 Fb+l—c,1—a;2—c; A/(A—1)]

Sl — AFTVF[L —ba+1—c;2—¢; A/(A—1)]
g =(1—AF"*"*Flc—a,c—bs;c+1—a—b;1— 1]

el — A PF[1— bl —ajc+1—a—b;1— 1]

— (1 — A PFle—a, 1 —asc+1—a—b;1—1/A]

=71 = A ' F[1—b,c—b;c+1—a—b;1—-1/4]

Us

a, b
F[a,b;c;l]:ZZFl[ ;i}.
c

List 2
j h o B y F=1,0) x
1 1 A B X
A

1 —x

2 (— V(1 — pa+B-c C—4 C-—B :
1 —Jx

c

3 (— VA — 4 A C—B , 1—x

i—1 )

1—4
4 (1— 2" C—4 B (A
1—Ax

5 (—1)® A B x
x —1

1—4

1

6 (— 1N=B)C-N B+N—C|A+N-C -
A+B+N-C -
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1
7 (— 1)N-B4 A A+N-C
1 1 —x
1—-
A ,
N AX
8 (— AP B+N-C B .
1 —JAx
9 (— 1B~C(= 1 A A+N-=C 1/x
1/4
A(1—
10| (= HNICTB( — pA+B=C N-B C-B (1=x)
1—Ax
A+N—B
x—1
11 (— DVHB=C(1 — p)4 A C—-B
1 X
=4 [,
12 [(= )VBJCNQ —ppN*4=C| N_B |A+N-C
1 — Ax
13 1B B+N-—C B Ax
1/4
. 1 —Ax
141 (= DVAC 4 — 1ATEC C—4 N—4A —
B+N-—4 —
15 (—1)YAC YA —1V+*BC IBLN—_—C| N-—4 ) 1— ix
=4 (1—2)x
16 (h—1)® cC—4 B
x—1
17 (— 1ATB-C)Ce-N B+N—-C|A+N-C 1/2x
A
1—2x
18 | (— NAC N — 1A+B-=C N—B N—A4
A(1—x)
2N —C
19 [ (=N NA-—DV*ECIBLN—-C| N-4 2 1—x/4
N )
20 | (— )V BIENA — N4 €| N_B |A+N-C =
, Mx—1)
x—1
21| (= DV A — pATE-C C—4 C—B i
(1—A)x
1—2
) 1—Ax
22| (= 1YAACN(L — 1)A+BEC N-B N-—4 -
C+N—A—B —
1—1
23| (= A4 — 1ATBC C—-4 N—4 x
L a=2x
2 a(1=x)
24| (= 1)4A€B(q — ArE-C N-—B C-B P

N. B. To make computation easier h is defined in terms of A rather than A’

®;: 4 — %, are defined by the previous x' = x'(x) and y' = y(d/dx)x'.

The morphisms
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Proof. By definition of the morphism ¢; we have that (¢; ')*w = w; for
j=1i...,24. Therefore applying (¢; *)* to equation (1.1) Corollary follows.

It is interesting to note that Kummer list arises in correspondence to the
24 Moebius transformations which map the set {0, 1, oo} is {0, 1, 1/4, o0}. If
s5; i1s the S-relative cycle on %; covering the loop of Pochhammer type with
base points 0 and 1 then (¢; ')ss; is a S-relative cycle on % which covers a
loop of Pochhammer type with (two) base points in {0, 1, 1/4, c0}. Hence
every period of o integrated over any S-relative cycle of such a type is a
solution of (0.6) as pointed out in [2], §2.1.3.

Furthermore for j = 1, 2, 3, 4, morphisms ¢; are stable on {0, 1} and then
(pj 'ws;=s. This implies the equalities in list 1 which are the linear
transformations of ,F;.

It is, perhaps, surprising that the curve of equation

DN — uN-A(l _ u)N+A—C(1 _ /lu)B

coming from % by transposition of 4 and B does not appear on list 2 even
though by integral representation

b
2F1[ ’ a; }v:l = k(a, c)f du/v
c S

b
ZFI[ ’a;)]"_—zlal:a,b;/l}-
c c

In Chapter III we shall see that a cohomological interpretation of the
symmetric relation involves cohomology of surfaces.

and

Chapter II. The cohomology of the generalized hypergeometric function ;F,

The generalized hypergeometric function ;F, is defined as the series

3Fz[a’ blabz;;[’:|= > (Du(b)u(b2)s
Ci, Cy n=0 n! (Cl)n(CZ)n

where ¢, ¢, are non-negative integer numbers and |A| < 1. If & denotes
A(d/dZ) then ;F, satisfies the third order linear differential equation

(2.1) [0(6 + ¢, — 1) + ¢y — 1) — A6 + a)(§ + by) (8 + by)]5F, = 0.

Equation (2.1) is of Fuchsian type with regular singularities 4 =0, 1 and oo.
To state the cohomological situation we consider the parameters
a, b,, b,, c,, c, as rational numbers and the integer numbers A, B,, B,, C;, C,
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and N are chosen such that
a=A/N,b, =B;/N,b,=B,/N,c; =C;/N, c, = C,/N
g.C.d. (A, Bl’ Bz, Cl’ C2, N) == 1,

and A, Bl’ Bz, Cl) Cz, Bl - Cl’ B2 - C2 $ O mOdN.
We define

P(x, ¥V, Z; l) — ZN _ xN—B1(1 . x)N+B1~C1yNABz(1 _ y)N+B2*C2(1 _ /lxy)A'
Then the family % of affine surfaces
L ={(x,y,2; )eC?> x §|P(x, y,z; A) =0, z #0}
is parametrized by
n: ¥ —> S=C\{0, 1}

where S is the space of the parameter A.

The family % has some properties analogous to those of % in Chapter
I. Let 6 =¢(1/N). There exists an automorphism @ on & given by
(x, ¥, z2) = (x, y, 8z). The corresponding morphism O* acts on the complex
Q' =1I(¥,Q255) and so Q° splits into a direct sum of subcomplexes £2; on
which @* acts via multiplication by 677,

More precisely, if

L =0)[x, y, (x(1 = x)y(1 — y)(1 — Axy))" ']

1 1 1 1
z’ z’ zJ
for j=0,...,N — I
By functoriality @* gives the following decomposition in cohomology

N-1
Hq(Q .) = @ Hq(Qj.)a q = Oa 1> 2

j=0
Let D =V, 5(d/dA) then D is defined on Q° by

Axy

Dix)=D(y)=0, D(z)= — m

and extended to Q° in the appropriate way. Passing to the quotient D is
defined on HY(Q2"), ¢ =0, 1, 2. Furthermore H?*(2") consists of N differential
modules H*(Q;), j=0,...,N — 1, since D commutes with @*.



22 Pier Ivan PASTRO

From now on o = [dx A dy/z]e H*(2;).

Proposition 2.1. There exists se I'(S\ (1, + o), #,(F/S)) such that

a, b, b
(2.2) 3F2[ ! 25 i} = k(by, ¢y)k(b,, CZ)Jv @,
C15 Co s
a, bl’ ‘bz
(2.3) (d/d2);F, ; A | = k(by, O)k(b,, ¢;3) | Do.
Cla 02 s

Proof. Tt is easily seen that for every A,eS\(1, + o) there exist r, ¥, r”
positive nonzero real numbers such that

DI, ¥)n{A"'|AeD(4,, 1)} =09,
D, r)n{(At)"'|AeD(4,, 1), teD(I, ¥)} = Q.
Let A,€(0, 1) and 7 a parametrization of a loop of Pochhammer type consisting

of intervals [p, 1 — p], circles |t| = p and |1 —t| = p with 0 < p <min(¥', r")
and real starting point y(0). Let s the covering map

/l"
I*—C?x S

(tla t29 S15 52) ——_)(Y(tl)a y(t2)a )“o + Fsy 8(52))

P(x, y, z, 2) = (x, y, 4) and with s(0, 0, 0, 0) = (y(0), y(0), z,, 4, )eR%,. If U =
int(D(4,, r)) then se #, (¥, n~1(S\U)) and so seI'(U, #,(¥/S)). Further-
more s may be extended to a section on {AieS|ixy # 1, x, ye D(I, p)} and so
to S\ (1, +o0) since p is arbitrary.

Let

gx, y; Ay =x""H1 = x) TPy — )T — dxy)

then g(x, y; A) dx A dy is the branch of dx A dy/z such that g(y(0), y(0); 4y)e
R.,.
Then we shall have that for AeU

(2.4) kb, ¢1)k(b, Cz)f g(x, y; Adx A dy

S

coincides with the series expansion of ;F, previously given. In fact, because
of (0, 1) integral (2.4) becomes
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b
k(b,, cl)-[ xP (1 — x)“_b1"12F1|:a’ 2. )ux]dx
v

Ca

and then statement follows expanding in series ,F, and integrating term by
term using the integral representation of the classical beta-function

25 Bl f) = [(1 — e@) (1 — s(ﬁ))]*f 71— of e,

Y

7 the Pochhammer loop defined in the Introduction (see [2], §1.6). For
general 1eS\ (1, +o) integral (2.4) is the analytic continuation of F,.
Finally equality (2.3) comes by derivation with respect to A of equality (2.2).

The differential modules H?(Q;) will be the main object of study of this
chapter.

Theorem 2.2. If j is an integer 1 <j< N and g.c.d.(j, N)=1 then
H*(Q;) is a free O(S)-module of rank 3.
Proof. The theorem follows by an elementary but somewhat tedious

recursion based on reduction formulas coming from the equation of .

Observation 2.3. By Theorem 2.2 H?*(Q;) has rank 3 over ¢/(S). Using
reduction formulas we can prove that a base of H?*(Q;) over O(S) is given
by three cohomology classes among

ldx Andy/z], [x dx ndy/z], [y dx ndy/z] and [xy dx Ady/z]

which, for simplicity, we call w, xw, yw, xyw respectively. Since
d[(1 —x)(I — y)(y dx + x dy)/z]
=[by — by +(by —c)x —(by —¢;)y + (c; —c))xyldx ndy/z

then there exists the following relation in cohomology
(2.6) (bl - bz)a) + (b2 - CI)XCO - (bl - Cz)yw + (Cl - cZ)xyC() - 0.

Therefore the choice of the base of H?(Q2;) depends upon the values of
b, b,, cy, c,. Note that (2.6) is not trivial since its coefficients are not all
zeros at the same time. Otherwise b; = ¢; and b, = ¢, in contradiction with
our hypothesis.

Theorem 2.4. Let (o, yo, xyw) be a base over O(S) of H*(R2;). Then
the connection matrix of H?*(Q3) is
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B b2 b1 - Cz a — Cl ]
& b, Cy w
(2.7) (1 =Wy sd/dd) | yo | =] J 2 Yo
Xyw b, b, —c, .G Xyow
L A A A

Proof. First we write some formulas that we shall use in the
demonstration (D = Vg s(d/d4));

1x* B dx A d
2.8) D(x* 1y~ dx A dy/z) = XY X ALY

(1 — Axy)z
29)  d[x*y'(1 —x)dy/z — x*~ 'y’ (1 — y)dx/z]
=x*" P [(by,— 1+ P+ (b —cr+ta—By+(a—c,+1—a)xyldx ndy/z

A
— (1 — A)x*y* @
I — Axy

(210)  d[x"y* 11 — x)dy/z — x*y*(1 — y)dy/z]
=[(by—14+a)+(by—ci+Pp—x+(@a—c,+1—Pxy]x*" 'y " tdx ndy/z

dx ndy/z

A
S Y
1 —Axy

with o, feZ and o, f > 0.
Using (2.9) and (2.8) with a = =1

dx ndy/z

(2.11) (1 =A)Dw=>b,w+ (by —c)yw +(a —cy)xyw,

from (2.10) and (2.8) with a =1, f =2

(2.12) (1 —ADyw=>b,yw+ (b, —c; + Dxyw + (@ —c, — ) xy*w
and from (2, 9) and (2.8) with a = =2

(2.13) (1 — ) Dxyw = (b, + Dxyw + (b; — c))xy*w + (a — ¢; — Nx*y*w

where, as usual, xy*w = [xy?dx A dy/z] and x*y*w = [x*y?dx A dy/z].
From

dl[—y(1 —y)(1 — Axy)dx/z]
=[b, —c,y+ Ala— by, — Dxy + Alc, —a + D)xy*ldx Ady/z
we obtain

(2.14) Aa—c, —1)xy*w =b, — c,yo + Ala— b, — ) xyw
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In the same way, by
dxy(l —x)(1 — Axy)dy/z]
=[b,y —c;xy + Al@a — by — )xy* + A(c, —a+ )x>y*]dx Ady/z
we have that
Aa—cy — Dx%y?*w + Ab; — c))xy*w

=b,yo —c;xyw + Ala — ¢, — 1) xy*w
and then

(2.15) =b,w+ (b; — c))yo — [¢c; — Ala— b, — )] xyw

because of (2.14).

Therefore the connection matrix (2.7) comes from (2.11), from (2.12) and
(2.14) by elimination of xy?>w and from (2.13) and (2.15) by elimination of
xy*w, x*y*w.

Observation 2.5. If (o, xw, xyw) is a base of H?(2;) then the computation
of the connection matrix is the same. Such a matrix is that of Theorem 2.4
after the changing x, y, by, b,, ¢, ¢, into y, x, b,, by, c,, ¢; respectively. The
other cases arc similar.

Proposition 2.6. The cohomology class « satisfies the third order
generalized hypergeometric equation

(2.16) Ve s(0) (Ve s(0) + ¢y — 1)V g s() + ¢, — 1)
— AV g5(0) + a)(Vg5(0) + b)) (Vg s(6) + by)Jw =0
where 0 = A(d/d1).

Proof. To make notation easier D =V, s(d/dA). Applying D to (2.11)
and using the connection matrix (2.7)

217) Al —A)D*w +[c; —Aa+b; +by+1—cy)]Dw — by(a+ by — cy)o
=, —cy)la—cy)yw
and finally applying D to (2.17) it follows the equation
PA=AD*w+[c;+c;—1—Aa+ b, +b,+3)]iD%w
+ [cicy; —AMla+ by + b, +aby +ab, + bbb, + )]Dw —ab,; b, =0

which is equivalent to (2.16).
Note that relations (2.7) still work even if (w, yw, xyw) is not a base of
H?(2;) and then (2.16) always holds.
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In analogy with the hypergeometric function we have that the differential
equation (2.1) satisfied by 3F, is obtained by integration of (2.16) over the
S-relative 2-cycle defined in Proposition 2.1.

Chapter III. Cohomological interpretation of degeneration formulas of ;F,
§0. Introduction

In Chapter IT we proved that for every value of the rational parameters
a, by, b,, ¢, c, the cohomological space H*(£2;) is a free ¢(S)-module of rank
3 (Th. 2.2). We are now interested in the submodule M of H?*(;) spanned
by @ = [dx Andy/z] and its derivatives D"w,n=1,2 (D =V ,5(d/dA)). By
Theorem 2.4 we have the following relations

(3.0.1) A1 — AD*w +[c, —AMa+ by +by,+1+c;)]Dw —by(a+ by — cr)w
=(b; —c))a—c))yw

(3.0.2) (1—2)Dw=>byw+ (b, —cr)yw + (a —c)xyw

and their symmetric changing x, y, by, b,, ¢y, ¢, into  y, x, by, by, ca, ¢4
respectively.
Therefore it is evident that rank ,M depends upon the parameters a, by,

b,, ¢, and c,.

Theorem 3.0.1. Let a, by, b,, ¢, c, noninteger rational numbers such that
b, # ¢y and b, # c,.

If a#c,,a+#cy, b, #c, and by # ¢, then M = H*(2{) and so rank M
= 3. Otherwise rank y5M < 3.

Proof. Suppose a # ¢y, a 7& ¢y, by # ¢, and b, # ¢,. Then (w, yo, xyw)
is a base of H?(Q;) (see (2.6)). By the previous (3.0.1) and (3.0.2) we have that

[w, Do, D*w]' = H[w, yo, xyn]'
where
i 1 0
b, by — ¢,
H = 1—4 1—2
b,fa+b,—c,—c,+A(1—=Db,)] (by—cy)la—cy—c,+A(1+by+by)]
A1 —=A)? A(1—1)2
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0 -

a — Cl

1-2

(ci,—a)[ey—Ma+b+by+1—c,)]
A(1—2)?

Since

(a—cy)a—cy)(by —cy)
A(A—1)

detH =

then (detH) 'e@(S) and so M = H?(22;). Otherwise we have that two
parameters coincide. For example let b; = ¢,. From (3.0.1) the class D?*w
may be written as a linear combination of w and Dw with coefficients in O(S)
and then rank ,5M < 3.

The other cases are similar.

It is perhaps obvious to note that the reductions of rank , M is connected

| . : . : a, by, b
to the reductions of the generalized hypergeometric function yF 2|: RS /1:|
C15 €3

into a ,F,. Cases b; =c¢; and b, = ¢, do not appear in the cohomological
context since the integral representation of ;F, does not hold any more.

There are different types of situations.

First we consider that among the equalities a = ¢;, a =¢,, b, = ¢,, b; = ¢;
only one occurs.

If by = ¢, or a = ¢, then rank ,5M = 2 and the relation among D*w, Dw
and o is stated by (3.0.1) which is an hypergeometric equation. The cases
b, = ¢, and a = ¢, are analogous to the cases b, = ¢, and a = ¢, respectively.
The following §3.1 is about cases b, = c, or b, = ¢,, while §3.2 concerns the
cases a=c¢; Or a = C,.

When two equalities occur there are more possibilities. If b; = ¢, and
a = c; then rank ;M = 1 because of (3.0.2) which becomes of binomial type.

Case b, =c; and a=c, is analogous. These two cases may be
investigated using the results of §3.1 and §3.2.

When b, = ¢, and b, = ¢, then rank M =1 and the relation between
Dw and w is given by (2.6) and (3.0.2).

The other cases a = c¢; = ¢,, a =c¢; = b,, and a = ¢, = b, are connected to

the symmetry of ,F, I:OC’ ﬁ; /1] with respect to the transposition o« and f (see
Y

§3.2) and in these cases rank yM = 2.
Finally we observe that the consistent cases in which three equalities occur
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were previously considered.

§1. Reduction cases b, = ¢, and b, = ¢,

In this paragraph we shall state the connection between the curve 4 of
Chapter I and the surface & of Chapter II when B, = C,. At the same time
we shall discuss in cohomological way the formula

(.1.1) 3F2[“’f’ b;,l]:zFl[a’b;i]
C,f C

which corresponds to a degeneration into ,F,; of ;F, (case b, = ¢,).

For this purpose we consider 4, B, C, F and N as integer numbers such
that g.cd. (4, B,C,F,N)=1 and A, B,F,B—C,F—C,B—F#0 modN
and define

P(x;, x5, x3; A) = x5 — x¥V7F(1 — x V7%V B(1 — x, )V BF(1 — Axyx,)4,
Q1s ¥z, Y33 A= y5 — Y1270 =y YT — pp)V TP — Ayt
Therefore ‘
X = {(xy, X3, X35 )€C> x S|P(xy, X5, X35 4) = 0, x5 # 0},
Y={(y1, ¥2, ¥3; H€C> x S|Q(yy, 2, y35 4) = 0, y3 # 0}
are families of affine surfaces of the usual type (0.2)
X—S, Y—>S§

with space of parameters S = C\ {0, 1}.

Let a=A/N, b=B/N, c=C/N and f= F/N.

Note that X coincides with & previously defined with B, = C, and so its
cohomology was studied in Chapter II.

Therefore by Proposition 2.1

>

JF [“’ S ?; i} — k(f, k(b /) f dx; A dxs/x,

s a suitable 2-cycle.
In the same way, because of equality (2.5)

a, b
zFl[ J: /’L] = k(b, o)k(f — b, ¢ — b)j dyy A dy,/ys

where the definition of &' is analogous to that of the s of Proposition 2.1.
Since
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(1 —&lc = b))k(b, )k(f — b, ¢ — b) = (1 — e(/)k(f, )k(b, [)

then (3.1.1) assumes the cohomological form

(3.1.2) (1 vs(c—b))wa=(1 —8(f))Ja)y

where w, = [dx; A dx,/x3], w,=[dy, Ady,/y;] and integration is done on
appropriate 2-cycles.

Furthermore w, satisfies the second order equation (3.0.1) with b, = ¢, = f,
b, = b and c¢; = ¢ which is the hypergeometric equation (1.3). ]

Now we shall study the cohomology of family Y and relation (3.1.2) will
be explained later.

Let

€ = {(u, y)eC?lul = yY* P F (A — y )VTF € u, # 0},

€ = {(uz, 23 HEC? x Sluy = y3 (L — y)N 271 — Ay,)*, u, # 0}
If the integer numbers A, B, C, F and N satisfy the extra conditions
gcd. (4,B,C,N)=1 and gcd. (B—F,F—C,N)=1 then ¥ and %" are
families of curves of type (0.2). We denote by ¢’ x ¢” — S the family of
surfaces (of type (0.2) again) consisting for each 1 of the affine product of %’

and €.
Therefore there exists the commutative diagram

%I >< %l/ d] %/ X %II

N A

Y
where ¥ and t are the S-morphisms
lll: (ula Vi, Uz, y2) __)(aula Yis 0—11"29 yZ)a

T (ula Vi, Uy, J’2) —)(yls Yo, Uy, u2)
and 0 = ¢(1/N).
The automorphism  permits us to determine the structure of the complex
I'(Y, 2y,5) and its cohomology.

Proposition 3.1.1. Let {y> the group of order N generated by . Then
Y=(¢" x€")/{Y>, ie.
Y is the topological quotient of €' x €" with respect to {y),
(Y, Q) =T(€ x 6", Q¢ «g )", the subcomplex of the {Y*) invariant
forms.



30 Pier Ivan PASTRO

Proof. Direct verifications.

For the properties of the quotient varieties see [&].

Let
N—-1
I'(Y, Qf/s) = @ YJ
j=0
(3.1.3) No1 N-1
I%,Q2;)= @ €, I'(€", %6 5)= D €;°
j=0 j=0

the usual decompositions with respect to the automorphisms of Y, €', ¢”
induced by multiplication by 6.
From the Kunnet formula of the product ¢’ x ¢” we have for ¢ =0, 1, 2

HYI'(¢' x €", Q‘é'X%”/S))
q
~ @ [H"I(%', Q2¢) @ HI""(I'(€", Qg/5))]
n=0

and then by Proposition 3.1.1 and (3.1.3)

(3.1.4) HI(® Y)=[ @q—) (ea ;") ® H*” "(@ @71
j=0

j=0

I|2

=0
g N-1
D © H'(6})® H™(6]")
Therefore by (3.1.4) we have for j=0,...,N—1and ¢=0,1, 2

(3.1.5) HY(Y;) = o H"(%;") ® H*""(%}")

n=0

Furthermore if ne HY(I'(Y, Qy5)) and n =1 ®n” for some n'e H'(I'(¢", 2g))
and n"eHI "(I'(¢", Q24,5)) then

(3.1.6) Vyis@d/d)n =n @V s(d/di)y".
Proposition 3.1.2. For j=0,...,N — 1
H*(Y)= H (¢;")® H'(¥]")
as differential modules. In particular w, satisﬁes equation (1.1).
Proof. Tt follows from (3.1.5) and (3.1.6).

Proposition 3.1.3. The families X and Y previously defined are birationally
equivalent by mean of

> Y

@: X
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defind by

. x1(1 — x5) . X1 X3
VW=7, Ya2=X1X3, V3= 1 .

Proof. Morphism ¢ has inverse ¢~ !':

V2 .. = (1 —y2)ys
) 3 .
Yi+Y2—V1y2 Yi+ Y2 —Vi)2

Xy =Y1+ Y2 = ViV, X2 =

It is easily shown that by restriction

@ X\{x1x2 = 1} E—— Y\{}H + Y, = le’Z}

is an isomorphism and then Proposition is proved.

If X'=X\{x;x,=1} and Y'=Y\{y; +y,=y.),} then X'—S and
Y’ — S are surfaces of type (0.2).

Let &: X'c X and &,: Y' 5 Y the inclusion maps of X’ and Y in X
and Y respectively.

Theorem 3.1.4. Let q=0,1, 2.
Then

p*: HY(I'(Y', Qx;'/s)) — HYI'(X', Q)}'/s))

is an isomorphism and @*Vy g = Vy s@*.
For V=X and Y

& HIL(V, Qy5)) — HAT(V', 2y5))
is a monomorphism.

Proof. The statement is an easy consequence of Prop. 3.1.3 and explicit
verifications.

Corollary 3.1.5. The cohomology classes o, and w, satisfy the same
equation of second order, namely the hypergeometric equation (1.1).

Proof. Tt comes because @*(dy, A dy,/y3) = dx, Adx,/x5.

Observation 3.1.6. Prop. 3.1.3 does imply that ¢*&F H*(Y;) is isomorphic
to the O(S)-module spanned by &¥Vy s(d/dA)'w,, n=0,1, 2.

Finally formula (3.1.1) comes by integration of the equality ¢*(dy; A dy,/
y3) = dx; A dx,/x; over I* using the usual Euler’s integral representations of
,F, (over I), of ;F, (over I?) and beta function (over I) (see [2], formula (1)
of pag. 9 and (10) of pag. 59).
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To prove formula (3.1.2) we need a ) e#,(X’/S) such that &) =
(1 —e(c — b))s where s is the usual 2-cycle defined in Prop. 2.1. The
construction of such a ) is complicated, so we don’t give it here.

The reduction case b, = c; is treated in the same way by transposition
of indexes 1 and 2.

§2. Reduction cases a = ¢, and a = ¢,

In analogy with the previous paragraph let A4, B, C, F and N integer
numbers such that g.cd. (4,B,C,F,N)=1 and A,B,F,B—C, A—F#0
mod N.

Let

P(xy, X3, X35 4) = x§ — x¥ 7B — x )V TE x40 — x,)VTATF(1 — Ax, x,)F
Q(z1, 23, 235 A) =25 — 2y B(1 — 2z )V *B7C(1 — Az, )25 A1 — z)N T4,
Hence
X = {(x1, x5, x3; )€C> x S|P(xy, X5, x3; 4) = 0, x5 # 0},
Z = {(z1, 25, 235 )€ C? x S|Q(zy, 25, 23; 4) = 0, z3 # 0}

are families of affine surfaces of type (0.2) over S = C\ {0, 1}.
The family X is then the & of Chapther II with 4 = C, and so

JF, [f’ b, ;; x} = k(b, ¢)k(a, f)f dx; A dx, /x5,

s the usual 2-cycle.
Furthermore using equality (2.5) we have

JF, [“’ b, /1] = k(b, O)k(a, f)j dz, A dzy)zs,
C &

s’ a 2-cycle defined as s.

The treatment of this reduction case is completely the same of that of
case b, = c,.

The main result we state here is the following.

Theorem 3.2.1. The families X and Z are birationally equivalent because of

Q: X — 2
defined by

e s =x2(1—/1x1) = x3(1 — Axy)
P axgx, (1= Axyx,)?
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Proof. The inverse map ¢~ ' is defined by

Z, z3(1 — Azy)
s X3 =
1 ‘)le (1 —22) I:l —iZl(l _22)]2

X1 =2y, Xy =

and the restriction
o: X\{1 —Ax; =0} — Z\ {1 — 2z,(I — z,) =0}
is an isomorphism.

As in the previous case we have that ¢*(dz; A dz,/z;3) = dx,; A dx,/x; and
so both w, = [dx; A dx,/x5;] and w, = [dz, A dz,/z4] satisfy the equation (1.3).

Let X' = X\ {1 —Ax; =0}. It is easily seen that the definition of s in
Prop. 2.1 still holds after restriction of X to X'. So by integration of w,
over such a restricted s(se #,(X’'/S))

— — % —
JVO)X_JV wx—fcpwx_fwz
s ptts’ s’ s’

which corresponds to the reduction case a = c,.

In the same way case a = ¢, is treated.

The symmetric formula for the hypergeometric function can be cohomolo-
gically interpretated using reduction cases of ;F,.

In fact we can consider family & of Chapter II with parameters
A, By, B,, Cy, C, equal to 4, A, B, C, A respectively.

Hence both degeneration cases b; = ¢, and a = ¢, appear. Therefore the
families of surfaces

Y = WA — y VAP T — )V TP — Ayt ys # 0,

{28 =200 = z)VT T = Az)P 23R — )V ETA, 2y £ 0}

Nt =<t
Il

are birationally equivalent by means of the morphism ¢: Y— Z coming by
composition of morphisms of Prop. 3.1.3 and Th. 3.2.1

As a first consequence symmetric formula comes out from Q*(dzy Adz,/z3)
=dy, ndy,/y; by integration over a suitable 2-cycle.

By Prop. 3.1.1 families Y and Z are quotient varieties (with respect to a
finite group of automorphisms) of the affine product of a curve which does
not depend upon A and the hypergeometric curve ¥ and %’ respectively (€
is defined in Chapter I and €’ comes from ¥ after transposition of A and B).
Cohomology of € and ¥’ are then related though @*.

As pointed out in [2], pag. 78, symmetric formula can be also
cohomologically explained setting 4, B,, B,, C; and C, equal to C, B, A, C, C
respectively, i.e. using reduction cases a =c; and a = c¢,.
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Chapter IV. Quadratic transformations for hypergeometric function ,F,

In [3] Goursat gave a complete list of the transformations of polynomial
type for the hypergeometric functions. Those of quadratic type are all derived
from

4.1) JF, [a/Z, ("b+ /2, (LY] — (1 — 4/2%,F, [a’ b, /1]
+12°\i 22 2b

42) zFl[“’ b ;A]=2F1[ a/2b/2 ;41(1—1)]
@+b+1)2 (@+b+1)2

by means of linear transformations.

The terminology “quadratic” stems from the fact that the variable A
undergoes a quadratic transformation. Rewriting (4.1) using Euler integral
representation of ,F,

F(b + 1/2) t(afl)/Z(l _ t)b—a/z—l(l _ /llt)—a/z dt
I'((a+ 1)/2)I'(b—a/2) J;
; _ a F(2b) _ b—1 _ —a
=(1—4/2) Vil L [t(1 — )P~ 1(1 — i)~ *dt

where 2/ = 22/(A — 2)%.
The quotient of the two beta-factors in the previous equality is
Ir@2b)yr'((a+ 1)/2)I'(b — a/2) _ - I'((a+ 1)/2)I'(b — a/2)
[I(B)1?I'(b +1/2) I'(b)I'(1/2)
_ 2t B(— a/2, (a + 1)/2)
B(— a/2, b)

because of multiplication formula
I'(b)I'(b+1/2)=21"2rQ2br1/2).

Then using the beta integral

(4.3) f (72T =P eI —1,)P T2 Y (1 — A t,) Y2 dt, dt
12

- 22b_a_1(2_).)a\[\ xl_a/z_l(l '—‘xl)(a‘ 1)/2[)(:2(1 _xz)]b‘1(1 _ixZ)_adxl de

I2

Note that the results of Chapter 2.1 may be applied to the first integral of
(4.3), explicitly by changing variables
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_ yi(l — ;)

= s Ly =Y1);
(1 —=yiy2)

1

and equality (4.3) may be rewritten
(4.4) J Y=y P T ST (=) TP T A= Ay yy) " P dyy dys
12

_ 22b—a—1(2__/1)aJ\ xl—a/Zfl(l—xl)(a—l)/z [xz(l—xz)]bgl(l—/lxz)_adxl dxz

I
So we have to consider two families of surfaces
X —S=C\{0, 1,2}
X = {(x1, X5, x3; AeC? x S|P(xy, X,, X3; 1) =0, x5 # 0}
P = x3VQ2 — J)2A428- AN _ xINFAL WA x, (1 — x,) 12V 725(1 — Ax,)?A
and
Y—— 8 =C\{0, 1}
Y{(y1> ¥2, ¥3; A)€C? X 8'1Q(yy, ¥, y33 4) =0, y3 # 0}
Q= yi" = Vi1 =y VTP =y N A = Ay o)

where a = A/N and b= B/N for integer .numbers A, B and N such that
g.cd (4, B,N)=1, gcd. (4,2, N)=1 and A, B#0 modN.

We now introduce a third family of surfaces Z which permits us to
establish a relation between X and Y. Let

Z — S
Z = {(21, Zy, 23, /AL)ECS' X S|R(zy, 25,235 A) =0, z3 # O}

R = 23"~ [2,(z — DIV 4(1 — z%)”‘”[l - zl(l - <~) ’ 2>2 )}

Then the following result holds.

Theorem 4.1. There exists the commutative diagram
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where ¢ and Y are rational morphisms defined by
1—z,(1—#n%z3 1— 1—z,(1—n%z3
0 X, = zi(1—n 222,x2=(1~22)/2, x3=( nzy)[l—z(1—n 232)123
[1—z,(1—nz,)] 2[1—z,(1 —nzy)]

Zy 2123
LU T A=)

= 4/(A—2), and 1(}) = X'

‘//3J’1=Z§>J’2=

Furthermore there are the birational S-automorphims

o p:Z—Z

oz, z z)=< 1=z z 2273 )
DT\l — 2 (=922 T — 2,1 — 2R )

B(z1, 23, 23) = (21, — 23, — Z3)

with the following properties

a? =1Id, B> = Id, pa = ¢, f = V.

Proof. Direct computations.

First we shall show how to derive quadratic transformations.

The birational S-automorphisms « and f generate a group G. This group
1s isomorphic to the diedral group Dg of eight elements.

More precisely

G={1,¢¢, &, aaf al?, ald}

where

£ = af, (2, 22 23) ( L=z 12275 )
= s Z1s Zp, = s — Z9,
| R T e N NN ey
52(21,22,23)=(21922, — z3),

1—2z —Nz,yZ
*z1, 25, 23) = ! s — Zy, 273 )
e 22 2 <1—aa—n%é Y-z, (1 - 223
al = p,

1 —z —Nz,2
al?(zy, z5, z3) = ! s Z2, 273 )
2 2 <1—au—n%§ 1=z, — 223

0553(Z1a 23, 23) = (21, — 23, Z3).

Let
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W, = @*(dx, A dx,/x;) = (1—_—21%_22_722—) - 1>(d21 A dzy/23)
w, =y*(dy, ndy,/y3) =2dz, Adzy/z;.

Then

4.5) 20, +w, — o' =0

with

2nz,

11—z (1 —n?2d)

’

dz, ndz,/z;

and w,, w,, @ satisfy
o, = o, @)*w, =0, (@) 0 =

Proposition 4.2. The quadratic relation (4.1) comes from (4.5) by integration
over a suitable se€ H,(Z'|S) where

Z'=Z\{z;(1 — z;(1 = 1z3))(1 — zy(1 + nz3))(1 — n?z3) = 0}.

Proof. Definition of s.

Consider A,e(—0,0) i.e. 0<n, <1, n,=4,/(4, —2). Let y, a parame-
trization of a Pochhammer loop of type (0+, (—o0)+, 0—, (—o0)—) (it means
loops around 0, —oo of positive or negative directions according to signs +
or —) consisting of intervals [—()"*, —r], circles |¢t| =71, |t '] =¢ with
0<r <l —n""and y,(0)= — 1.

Let y, a parametrization of a loop (1+, (—1)+, 1—, (—1)—) consisting of
intervals [—1+¢", —1r"], [, 1—r"], circles |1+¢t|=7r", |1 —t|=r" and
semicircles |[t| =7", Imt >0 with 0 <" < 1/2, y,(0) = 1/2.

It is easily seen that there exist » and r” such that the following map is
defined

I’ —V

(ty, ty) — (11 (t1), 72(L2))

V= {(z1, 2,)€C?|zy2,(1 — z)(1 — 23) (1 — n*z3)(1 — z,(1 — n?z3))
- (1 —zy(1 = nzy))(1 — z;(1 + nz,)) # 0}

Then s is the covering map
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(tla t29 S1, SZ) __)(’Vl(tl)a y2(t2)9 ;to + 7518(52))

where P(z,, z,, z3; A) = (24, 2,5 A), r >0 suitably chosen and s(0, 0, 0, 0) =
(—1,1/2, z3, A,) with z3 > 0. Therefore se# (2, = '(S\U)) where U =
int(D(4,, r)) i.e. se H,(Z'S).

Note that (xed)ys = — s.

Integrating (4.5) over s

2ij+fwy—jw’=0
ZJa)ijfa)y:O
s.

since (a&3)*w’ = o' and (a&3)ys = —
Then

and then

2‘[ dx, A dx,/x;, +J dy, ndy,/y; =0

where @45 = s,, s, a covering of
x;€(14,0+,1—,0-)
x,e(0+,14+,0—,1-)

and @45 = —s,, s, a covering of

y,€e14+,0+,1+,0—,1—,0+,1—,0—)
y26(0+9 1+’0_: 1_)

(the sign —1 comes from the twisting y, with y,). Therefore the previous
equality may be rewritten in terms of integrals over I?

J dx, Adx,y/x3 = — (1 —e(b))*e(a/2)(1 — e(— a))J dx,dx,/x;

J dyy Ady,/ys =2(1 — e(b))*e(a/2) (1 — e(— a))J dyydy,/ys
Sy 12 ‘
and so (4.4) follows.
Proposition 4.3. The cohomology classes [dx, A dx,/x;] and [dy; A dy,/

ys] satisfy the same second order equation (which is the differential equation
of the two functions in equality (4.1)).
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Proof. We recall some equalities:
o*(dyy ndyy/ys) =2dzy Adzy/z3,
Qe*F(dxy Adx,y/x3) = — (1 + a®)dzy Adz,/z5.
By §3.1 the cohomology class [dy, A dy,/y;] satisfies the same equation of
the function on the left side of (4.1) and because of the previous equalities so
[dz, A dz,/z;] does and therefore also [dx, A dx,/x;].
In the other way [dx; A dx,/x;] must satisfies the same equation of the

function of the right side of (4.1) and then the two equations (after substitution
A= A (A)) must coincide because of irreducibility.

Theorem 4.4. Let
X' =X\{x,=1/2},
Z' =Z\{z,(1 —nz,)(1 —z,(1 — nz,)) = 0}.
Then X' = Z'/<{a) and Y=Z/{B>.

Proof.  We shall prove X'~ Z’/{a) only since the proof of the other
isomorphism is analogous. A straightforward calculation using the definitions
of ¢, X' and Z’ establishes the surjectivity of ¢: Z' > X'.

As a first consequence of that

qo*: Q;(/ — QZ.’
(Qy=I(X", Qg ;) and Q;:=1(z, 2, ,)) is an injective morphism of
complexes and

qo*(gé)lf') = (QQZ,)<OC*>’ q = 07 1’ 2-

We shall prove that for ¢ = 0, 1, 2 equality holds in the previous relation, i.e.
(Qy) = (2,)” and so Theorem will be proved.

Case q=0. Let K(X'), K(Z') be the function fields of X' and Z’
respectively. In view of the relation gu = ¢

P*K(X') = a*p*K(X')
whence
0*K(X') < K(Z),

Since K(Z') is an algebraic extension of degree two over ¢@*K(X') then
e*K(X') = K(Z')**> because K(Z')*” # K(Z').
By what we have just proved
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O(Z") 2 O(Z)" = K(Z)"n0(Z')
= *K(X)NO(Z") 2 o*0(X)NO(Z') = p*O(X').
Since X' is smooth affine variety it follows that (@(X’) is integrally closed in
K(X’). Since ¢* is injective ¢*@(X’) is integrally closed in ¢* K(X') and so
too in O(Z')¢*” 2 ¢p*O(X").

Next (0(Z') is finitely generated as a ¢*@(X')-module, which will imply that
O(Z')*> is also finitely generated as ¢@*0O(X')-module and thus that
O(Z) = *O0(X).

Let u=[1—2z,(1 —7nz,)] then

0(Z') = 0(S) [z, 22, z3, N N nz,)~ ' u” '1/(R).
From the equalities

251 = p*(1 — 2x,)%1,

. 2_ 4 )il
S -,

(1 —nz)™" = @*[(1 — 4/2)(1 — ix;)" "]

it follows that

P*O(X") 2 O(S) [25, z3/u, 23 ', u/z3, (1 — 12,) ' 1/(R).
Let

=2i~1—ix2 S:i(1—2x2)
(A—2)x; (4 —2)x;
then r, s, s~ e O(X").
Furthermore

u? — o*(ru + ¢*(s) = 0,
W™ —@*(rs Hu ' 4+ @*(s™ ) =0

and so u,u ! and z, = (1 —u)/(1 —nz,) are integral over @*(O(X’). Then

case ¢ = 0 is proved.
Cases g = 1, 2 easily follow from case g = 0.

Finally we shall derive quadratic relation (4.2). Our idea is to integrate
(4.5) over a domain with the same properties of the previous s in Prop. 4.2.
The difference is that in this case we shall not integrate over a 2-cycle. Let
Z = {(zy, 25, 23; ))€C? x S|R(zy, 2,, 235 ) = 0}.  Consider 4,e(—00,0) and
so0<y,<1,n,=2,/4 —2). Lety},y, parametrizations of [0, (1 — nz,)" "]
and (—oo, —1) respectively and L the covering map



Hypergeometric Functions 41

7
b
I — C? x

S

(tla [29 Sls ‘52) —_ (y,l(tl)a Vﬁ(tz)z }'o + 7518(52))

where P(zy, z,, z3; A) = (24, 25; 4), ¥ > 0 suitably chosen, and L(1/2, 1/2, 0, 0)
= (71(1/2), 73(1/2), z3, 4,) with z3 > 0.
Let ¢ = (1 — (@& (1 — &) + aw) L, where (1 + {4) L denotes the addi-

tion in the group of simplicial maps and so f = f +j .
(1+Z,)L L Z,L

If w,, w, and ' are defined as in (4.5) then

fa)’=0,

since (a&3)*w' = o, (a&3)ys = — &,
jcoy=2J‘ wy=4j a)y=4J w,
s’ (1 "éﬁ)(l +ay)L (1+ay)L (1 *(aéz)#)L
because (0&’)*w, = — w,, (£*)*w, = — w,, and

Jcoxzj a)x=2j‘ a)x=4ij
s (1—&H(1+ayL (1 +ay,)L L

since (2&M)u(1 — &1 + a) L= (1 — ) (1 — &L and o* o, = o, ()0, =
— w,.
Hence by integration of (4.5) over s

2J w, + J w, = 0.
L I —(@g?) )L

2J dxl/\dxz/x3+J dy, ndy,/y; =0.
o4L Wu(1 = (@&2),)L

That is

It is easily seen that @sL = L', L' a covering of (x;, x,)e[1, +o0) x [1, +c0)
while (1 — (@&?)4)L= — L", L" a covering of (y;, y,)e[1l, +00) x (— o0, 0]
(since (1 — a&?)yL covers (z, z,)e[0, 1] x [— 1, — o0)).

Therefore we have that

+ o + o too (0 |
ZJ J dx,dx, /x5 = J J dy,dy,/y;
x1=1dJx2=1 yi=1dyz=-—o
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and so by substitution
xy = 1/uy, x, = 1/u,,
yi =0 — vy +0,0,)/(0,05), ¥y, = 01(v, — 1)/(1 — vy + v10,)

we have

— 2\
4b<—22i ) f up 21 — u) @21 — uy) (L — uy/A) " duy du,
12

— (i/)—a/zj‘ vz{/z—b(l _ Ul)b—luq/z—b*l/Z(l o UZ)(afl)/Z
12

’ _1 —al2
X <1 — 02/1 7 ) dv, dv,.

By means of Euler beta and hypergeometric integrals
52b-a Ir1/2)r((a+ 1/2)I'a+1—2b)1'(b) 7 [a, a+1—2b ’1_1]
I'(a/2+ DIa+1—b) N oa+1-0b"’
_I'@2—-b+1)I®)I((a+1)/2—0b)I((a+1)/2)
I'a/2+ H)I'a+1—0>b)

§ 2F}[a/z, (@+1)/2—b 42~ 1)]
a+1—b A?

We can drop the two constant factors since they are equal by Gauss multiplica-
tion formula of gamma-function. After redefinition of parameters and variable
as follows

A=t"Y,a=da,b=(@ —b +1)/2
we obtain (4.2).

Observation 4.5. In §3.1 the cohomology of the family Y is given in term
of the cohomology of the usual hypergeometric curve. In the same way the
cohomology of family X may be given.
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