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Existence of Nonoscillatory Solutions of nth
Order Neutral Delay Differential Equations
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1. Introduction

In this paper, we consider the following NDDE (neutral delay differential
equation)

(1) () + ex(t — D) + f(6, x(t —0(®) =0, t>1

where ¢ is a real number, 1 >0, n>2, o(t)eC([ty, + ), RT), t — () >
+ oot = + ), f(t, x)e C([ty, + ©) X R, R).

Several papers!'! ~°! have discussed the existence of the nonoscillatory
solutions of nth order DDE (delay differential equation) and obtained some
interesting results. Recently, Grove, Kulenovic and Ladas'®! has given some
sufficient conditions for the first order NDDE to have nonoscillatory
solutions. But there are few paper dealing with the existence of nonoscillatory
solutions of nth order NDDE. In this paper, the author gives some sufficient
conditions for (1) to have nonoscillatory solutions.

Definition. A solution of (1) is called nonoscillatory if it is eventually
positive or eventually negative.

In this paper, we shall use the following Kranoselskii fixed point theorem:

Theorem A (Kranoselskii). Suppose that Q is a Banach space and X is
a bounded, convex and closed subset of €. Let U, S: X — Q satisfy the
following conditions

(1) Ux+ SyeX for any x, ye X ;

(i1) U is a contraction mapping ;

(i11) S is completely continuous.
Then U + S has a fixed point in X.

2. Main results

Theorem 1. Suppose that |c|# 1, xf(t,x)>0 (x #0) and |f(t, x)| <
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Lf @& Yl for |x| < [yl, xy > 0. If
0} JMJM ------ j+w|f(s, K)|ds ds; -+ ds,_, < + o0

Sfor some K # 0, then (1) has a bounded nonoscillatory solution.

Proof. Without loss of generality, we assume that K >0 (a similar
argument holds for K < 0).

(a) Case |c| < 1. Take T enough large such that t — t > ty, t — a(t) > t,
fort > T and

+ oo + w0 + oo 1
3) J J ------ j S5, K)ds dsy -+oods,y < (1 = [e]) K.
T Sn—1 St
Let T* =inf{t —1,t — o(t): t > T}. We introduce the Banach space
CplT*, + 0) = {x: xe C([T*, + ), R), sup |x(t)] < + oo}.
=T

x| = sup |x(z)].

t=T*

Set X = {xeCB[T*, + 00):

Siie

< x(f) < K}.

Then X is a bounded convex and closed subset of Cx[T*, + o0). Define two
operators U and S: X — Cx[T*, + o0) by

3(1 + oK

y —cx(T — 1), T*<t<T
UDO=9 31 1 gk
—*4—‘—CX(I—T), t=T
and
0, T*<t<T
_ t + o + o0
(8x) (1) = j J ...... f 1(s, x(s — 0(s)))ds dsy +---ds,_y, t=T
T Vsn-1 S1
for n even,
(Sx) (1)
+o [+ + o0
J J ...... f(s, x(s — a(s)))ds dsy ------ ds,_ 1, T*<t<T
_ T Sn-1 S1

\%

- +w [+ +
J J ...... f(s, x(s — o(s)))ds dsy ------ ds,_ 1, t=T

S1
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for n odd.
We are going to demonstrate that U and S satisfy the conditions of

Theorem A. Without loss of generality, we assume that n is even (the case that n
is odd can be treated similarly).

(i) Ux+ SyeX for any x, ye X.

Since x, ye X, we have

4) 0<K/2<x(t)<K,0<K/2<y(t)<K.
By the condition that | f(t, x)| < |f(t, y)| for |x| < |y|, xy > 0, we have
) flt, x(t —o@®) <ft K), fort=T;
(6) ft, yt—o@®) <ft K), fort=T

Fort>T,0<c < 1, by (3), (4), (6), we have

(U @) + () (1) = 3—“2—”5 — ex(t — 1)

" f e f " £, yls — o(5)) ds ds, ---or-ds, _,

4 4 4 4
UX)(©) + (S9) (1) = 5(—1{1& — ex(t —

T Jsn-1 1
3(1 + 0K K [*[* e
I L S S L S (s, K)ds dsy oo ds, s
4 2 T Jsp-1 S1
3(1 -
SA+9K K (1-9gK _ o
4 2 4

Similarly, for t > T, — 1 < ¢ < 0, we have

3(1 + ¢)K K_ 3 c K
(Ux)(t)'i'(S.V)(t)?—_E——“C'E—(Z"‘Z)K?Ea

1+ K
%_J;_L_C.KJFM:

(Ux) (1) + (Sy) (1) < 4

For T* <t < T, |c| < 1, it is easy to see that
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§ < (UX)(0) + ($9) (1) = (U (T) + (SW(T) < K.

Then Ux + Sye X.

(i) U is a contraction mapping.
Let x, yeX. Thenfor T*<t< T,

(Ux)(t) — (Uy) ()] = lc| [x(T = 1) — (T —7)| < 'C‘i‘lﬁ |x(t) — y(t)]
and for t = T,

(Ux) () — (Up)(@)] = || [x(t — 1) — y(t — 1) < [c| sup [x(2) — ()]

t=T*

Thus | Ux — Uyl <lc|llx — yl.

Since |c| < 1, U is a contraction mapping.

(iii) S is completely continuous.

Let x,eX, ||x,—x||>0 (k— + o). Since X 1s closed, we have
xe X. Then

=0 forT*<t<T,
. t t + oo + o0
1(Sx,) (1) — (Sx) ()] <J J ...... J |Fo(s)|ds dsy - ds,_, fort>T,
T Jspn-1 s

1

where F,(s) = f(s, x,(s — a(s))) — f(s, x(s‘— a(s))). Noting that (5) holds, we
have

|Fi(s)l = 11 (s, xi(s — a(s))) — f(s, x(s — a(s)))| < 2f(s, K).
Using the Lebesgue dominated convergence theorem, we get
lim; ., ;. ,, | Sx, — Sx|| =0.

Then S is continuous. Next, we prove that SX is relatively compact. It suffices
to show that the family of functions {Sx: xe X} is uniformly bounded and
equicontinuous on [T*, + o0). It is easy to see that {Sx: xe X} is uniformly
bounded. We need only to show the equicontinuity. For any &> 0, take
T’ = Tenough large such that, for t > T,

+ o0 + +
J J ...... J‘ f(S, K) dS dSl """ dSn—l <e.
T Sn—-1 S1

Then, for t, > t;, = T', we have
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(50 (t2) — (8% (£)] < f ; J T f (s, K)ds dsy oo dsy s < o

and for T* <t, <t, < T' + 1, we have

[(Sx) (£5) — (Sx)(£4)]
lrz jﬂo ------ Jumof(s, x(s — a(s)))ds dsy ------ ds,_q, T<t, <t,

S1

= t + o0 + o0
f j ...... S5, x(s —o(s)ds dsy - ds,_1, L, <T<t,
T Jsn-1
0,

or

[(Sx)(22) — (Sx) (¢,)]

o + oo + 0
j J ...... f f(s, K)ds dsy ------ ds,_q, T<t <t,
t1 Sn—1 S1

t + oo + o

...... f(S, K)ds dsl......dsn_l’ t1<T<t2

T Sn-1 S1

0, J T*<t, <t, <T

/&
—y

Since t,, t, < T' + 1, there is 6 > 0 such that |t, — t,| < é imply

1(Sx)(t2) — (Sx)(t,)] <e.

Therefore {Sx: xe X} is equicontinuous on [T*, + oco) and SX is relatively
compact. Since S is continuous and SX is relatively compact, S is completely
continuous. By Kranoselskii fixed point theorem (Theorem A), we have a
fixed point x*e€ X of U 4+ S. That means there is x* € X such that

(U + S)x* = x*.
Then, we have

x*(t) —_ M _—

i . K .
It is easy to see that x*(¢) is a solution of (1), By > < x*(@) < K, x*() is a

bounded nonoscillatory solution of (1).
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(b) Case |c| > 1. Take T enough large such that t — 7 >to, t — o(t) > 1
fort = T, and

+ oo + oo + o 1
(7) J f ------ J f(s, K)ds dsy -+ ds,_ 1 < Z(lcl — K.
T Sn—-1 S1
Let T* =inf{t —1,t —o(f): t = T}.
Cs[T*, + ) = {x; xe C([T*, + ), R), sup |x(1)| < + oo},
t>T*

x|l = sup |x(®)],

t=T*

K
X = {xeCB[T*, + 00), Esx(t) < K}.

Define operators U and S: X - Cg[T*, + o) by

i(lj_c)ff_lx(Tﬂ), T*<i<T
c c
UOO=9 31 4 ok 1
T x(t+ 1), t=T
4dc c
and
0, T*<t<T
S ) = t+t + o + 0
(8x) (1) {1J I ...... j 15, x(s — o(s)))ds dsy +--dsy_y, t=T
CJT+tJdsn-1 S1
for n even,
1 [+t [(+= + )
- f ...... f(s, x(s — a(s)))ds dsy ------ ds,—1, T*<t<T
($¥)®) =4 “rra P e
Ej f ...... f(s, x(s—o(s)))ds dsy -+ ds,_q, t=T
t+1 Sn—-1 St
for n odd.

By similar arguments as in case (a), we can prove that, for n even, there is
x*e X such that (U + S)x* = x*. Then we have
31+ 0K 1

—x*t + 1)
c

x*(t) =

4c
1 t+t + oo + o0
+ —J J ------ J f(s, x(s —a(s)))ds dsy <+ ds,_, for t =T,
c T+t Jdsn-1 St
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or

_ 3(1 + oK

cx®(t — 1) 4

— x*(t)
t + + oo

+ J j ------ J f(s, x(s, o(s)))ds dsy ----- ds,_, fort>T.
T+t Jsn-1 s1

K .
It follows that x*(t) is a solution of (1), By > < x*(t) < K, x*(¢) is bounded
and nonoscillatory. For n odd, we can similarly prove that (1) has a bounded
nonoscillatory solution. The proof of Theorem 1 is complete.
+ o0
Remark. Since (2) and j s"" Y f(s, K)|ds < + oo are equivalent, (2) of

+ o0
Theorem 1 can be replaced by J s~ f(s, K)|ds < + oo.

Theorem 2. Suppose that |c| # 1, o(t) < 0 < + o0, xf(t, x) > 0 (x # 0) and
|f@& ) <|f @ W for x| < |yl, xy > 0. If

(8) J‘m (s, KR(s — a(s)))]|ds < + o

for some K # 0, where R(t)=1t""", then (1) has an unbounded nonoscillatory
solution.

Proof. Without loss of generality, we assume that K > 0.

(a) Case O <|c|< 1. Take O <cy <1 suchthatO<|c]<c; <1. Since

. R(z
hm,_,+oo<|c|—————() >=|c|<c1,
R(t —t— o)

R(t—r1) 1
R()

liI‘nt—> + oo

1
>1— —(010—-}c
4|C|( lcl)

and (8) holds, we can choose T enough large such that T> [to| + 1 + 0 + 1,

R(t
) lcl——(—)—<c1 fort > T,
R(t —t— o)

R(t — 1
=D - Y aey foresT

1o RO 4]

and
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(11) J OOf(s, KR(s — a(s)))ds < %(l — |¢])K.
Let T*=T—1— 0. By (9), we have
9) ' lc| R(T) <ecy.

R(T*)

We introduce the Banach space

Crl[T*, + o0) = {x: xeC([T*, + o), R), ts;g 11:2(2; < + oo}.

%0k = sgg';{’%(z—)'

Set X = {x: xeCx[T*, + o0), % KR(t) < x(t) < KR(t)}.

Then X is a bounded convex and closed subset of Cx[T*, + o). Define two
operators U and S: X - Cx[T*, + o) by

31+ KR(t) — E%:;;—T—)R(t), T*<t<T
w9w=14 % @
D KR(t) — ex(t — 1), t>T;

0, T*<t<

(Sx)(t) = J‘ J"_l ...... j : J f(s, x(s — o(s)))ds dsy -+~ ds,_1, >
TJT ' T S1
forn =2,
0, T*<t<T

(Sx)() = f‘ Jmﬂ& x(s—o())ds ds;, t>T
T Jsy

We are going to demonstrate that U + S has a fixed point in X. For that,
we show following three properties:
(i) Ux + SyeX for any x, ye X.

) 1 1
Since x, ye X, EKR(t) < x(t) < KR(?), 5KR(t) < y(t) < KR(t). By the
conditions of Theorem 2, we have

(12) ft, x(t —o(®)) < f(t, KR(t —0(t)), fort=T;
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(13) [yt —o()<f@E KR(t—o0() fort>T.
Fort > T, 0 < c < 1, by (8)—(12), we obtain

auxa+mwapa“:deRm—cmp—ﬂ>3“:”3Kmo—cKRa—n

=

31 + ¢) (3 ¢ 1
> 2 KR(t) — cKR(t) = <Z 4)KR(t) = 2KR(t).

3(1 + ¢)

(Ux)(@) + (Sy)(1) <

t Sn—-1 szl
+J f ...... f _(1 _C)del. ...... dSn—l
TJT T 8

3(1 + C)KR(t)—— %K'R(;(_t)ﬂ

KRay—gKRa—r)

t—T)y !
(n— 1!

R(t) + ;(1 — oK

<

3(1 + ¢) c 1 1 _
< 3 KR(t) — 5K(l e (1 - c))R(t) + §(1 — ¢) KR(t) = KR(1).

Similarly, for t > T, — 1 < ¢ < 0, by (8)—(12), we have

U O + 690 > 2 KRy — CKR(—1)
L3049 e p_Cx RE=Dp
4 27RO

3140 c 1 _ E c
= 2 KR(t) —§K<1 + Zrc(l + c))R(t) = <8 + 8>KR(t)

1
> —KR().
5 KR(®)

3(1 + ¢

(Ux)(0) + (8y) () < KR(t) — cKR(t — 1)

<“1+QKRm—cKmn+lu+QKnﬁiI£1
8 (n— 1)!

<3U:dKRm_meg+%ﬂ+QKRm=(%—§>KMD<KR@-
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1
For T*<t<T, 0<|c| <1, noting that 5KR(t) < (Ux)(t) + (Sy)(t) < KR(t)

(t = T), we obtain

_ RO _ RO _1
(Ux)(®) + (Sy) (1) = (Ux)(T) + (Sy)(T)) R(T) S KR(T)- R(T) 2KR(t),

_ R() RO _
(Ux)(®) + (Sy) (&) = (Ux)(T) + (Sy)(T)) - R(T)> R(T)- R(T) KR(?).

Then Ux + Sye X.
(i) U is a contraction mapping.
Let x, ye X. Then, for T* <t < T, by (9'), we have

(Ux) () — Uy O] _ le|. |X(T — ©) — (T — 1)|
R2(1) R()R(T)
el x(t — 1) —y(T—7)| R*(T—7)_ <lel |x(T—1) = y(T—1)| R(T)
R*(T — 1) R(t)R(T) R*(T—1) R(T*)
[x(@®) —y@l

Ccqs SU
LR TR

Fort = T, we have

(Ux) () — (Uy) (9)] =lcl_iX(t—f)—y(t—r)|<l |IX(t—‘r)—y(t—T)I
R3(1) R2(2) h R3(t — 1)
<, sup XO IO

IZIE“ R2(¢)

Then ||[Ux— Uyllg <cllx—ylg. Since 0<c;, <1, U is a contraction

mapping.
(iii) S is completely continuous.
(The proof of this result is basically the same as the corresponding proof

of Theorem 1 in [3].)
Let x,€X, | x, — x|g >0 (k> + ). Then xe X and

[(Sx1) (8) — () (9)]
{ =0, T*<t<T

t *sn-1 s2 [t
gJ J ------ j J |G(s)| ds dsy -+ ds,_ 1, t=T,
TJr T Jsi

where

(14) 1G] = 1S5, xi(s — 6(5))) = f (5, X(s — a()))] < 2f(s, KR(s — 0(5))).
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Thus, fort > T,

[(Sx0) (£) — (Sx) ()] < ft f ------ J J |Gi(s)] ds dsy ----- ds,—1

<(| Tiaras)- I < v [ iGuoras

for T* <t < T, |(Sx,)(t) — (Sx)(¢)] = 0. It follows that
+
ISx; — Sx|lg < sup R™* (t)f |Gy (s)| ds.
t=T* T

Using the Lebesgue dominated convergence theorem and noting (14) hold, we get
limy, 4 | Sx, — Sx|lg =0

and S is continuous. Next, we prove that SX is relatively compact. It suffices
to show that the family of functions {R™2Sx: xe X} is uniformly bounded
and equicontinuous on [T*, 4+ o0). The uniform boundedness is trivial. We
need only to show the equicontinuity. For any & > 0, take T’ > T enough
large such that, fort > T’,

1 €
< .
R@) (1 —Jch)K

Then, by (11), (12), for t, > t; > T’,
I(R"ZSX)(tz) - (R_25X)(t1)l < (R728x)(ty) + (R728x)(ty)

2 521
1§1 R """ JT g(l —le)K ds dsy «----- ds, _,
lRZ(,)s(l_‘c')KR(tJ— L —leDK ,Zlmﬁ‘

For T<t; <t,<T' +1,

[((RT28x)(t;) — (R™28x)(¢y)|

J‘tz JS"_I ...... JSz J+°0f(S, KR(s — o(s)))ds ds -+---- ds, .
T st
RZ(II)J\ J' ...... J:z J;:—wf(s, KR(S — O'(S)))ds dS1 ,,,,,, dSn—1

Sn-1 Szl
f J ...... f §(1 —|c|)K dsy -+ ds,_,
T T T

< —_—
‘Rz(tz) R*(t;)

Rz(tz) RZ(H)
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1 ta Sn—1 821
4+ — e —(I —|ep)K dsy -+ ds,_ -
. f f J (1~ [N K s, 1

Fort, <T<t,<T +1,

[(R728x) (22) — (R7*Sx) (¢1)| = |(R™28x) (¢2) — O]

1 [5) Sn—1 821 |
< - j J ------ J‘ —(1 —le])K dsy -+ ds,_.
R*(ty) Jr Jr r 8

For T*<t, <t,<T,

[(R™28x)(t) — (R™28x)(t;)| = 0.
Thus, there is 6 > 0 such that for any xe X
| (R™28x)(t,) — (R™2Sx)(t))| < &, if0<t, —t; <.

If follows that {R™2Sx: xe X} is equicontinuous on [T*, + o) and SX is
relatively compact. Since S is continuous and SX is relatively compact, S is
completely continuous. By Theorem A, there is x* € X such that (U + S)x* = x*.
It is easy to show x*(¢) is an unbounded nonoscillatory solution of (1).

(b) Case c =0. Take T enough large such that T> |t,| + 1 + 6 + 7 and

f+wf(s, KR(s — 0(s)))ds < 1K.
T 4

Let T*=T—1 — o,

. t )
Cr[T*, + ©0) = {x: xeC([T*, + o), R), sup M < + oo},
t2T* Rz(t)
| x(®)|
X||g = su ,
%1 & tZTI")*RZ(t)

1
X = {x: xeCgr[T*, + ), 3 KR(t) < x(t) < KR(t)}.
Define operators U and S: X —» Cx[T*, + o) by
3
(Ux) (1) = ZKR(t);

(8x) ()
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By similar arguments as in the case (a), we can prove that there is x*e X
such that (U + S)x* = x*. It is easy to show x*(¢) is an unbounded solution

of (1).

1
(¢) Case |c| > 1. Take c; such that 0 <-— < ¢; <1 and take T enough

c
large such that T> |t,]| + 1 + ¢ + T and el
1. Rt
—ﬂ c; <1 fort > T,
lc] R2(t — © — o)
R(t 1
Re+9 Y=y foresT
R(?) 4
+ o0

f(s, KR(s — a(s)))ds < %(m ~ K.

T

let T* =T—1 — 0.

t=T* Rz(t)

CrlT*, + oQ) = {x: xeC([T*, + o), R), sup | x(0) < + oo}.

1xlx = sup O
t=T* Rz(t)

X = {x: xeCgr[T*, + ), ;KR(t) < x(t) < KR(t)}.

Define operators U and S: X — Cx[T*, + o0) by

3(1+C)KR(t)—lMR(t), T*<t<T
4¢ c R(T)
(Ux)(t) = 30 + o) 1
T YIRRE — ~x(t + 1), t>T;
4c c
(Sx)(t)

0,

— 1 tt+t Sn—1 S2 + o0
—f J ------ J f f(s, x(s—a(s)))ds ds, -~ ds, ., t=T.
Cir+edr T Jsi

By a similar arguments as in the case (a) of the proof of this Theorem and
as in the case (b) of the proof of Theorem 1, we can prove that there is
x*e X such that (U + S)x* = x*. It is easy to show x*(¢) is an unbounded
nonoscillatory solution of (1). The proof of Theorem 2 is complete.
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