Oscillation Results for Second Order Neutral Differential Equations*

By

L.H. ERBE and Q. KONG (University of Alberta, Canada)

Introduction

In this paper we deal with the oscillatory behaviour of the neutral differential equation

$$[v(t) - cv(t - \tau)]'' + p(t)f(v(t - \sigma(t))) = 0$$
 (1)

under the assumption

(H) c and τ are positive numbers; p and $\sigma \in C(\mathbf{R}_+, \mathbf{R}_+)$, $p(t) \not\equiv 0$, $t - \sigma(t)$ is increasing and tends to ∞ as $t \to \infty$, $\sigma(t) > \tau$; $f \in C(\mathbf{R}, \mathbf{R})$ is increasing, f(-x) = -f(x), $f(xy) \ge f(x)f(y)$, xy > 0, $f(\infty) = \infty$, and $\frac{f(y)}{v} \to \infty$ or 1 as $y \to 0$.

The oscillation problem of equation (1) has received wide attention [1, 2, 4-9, 11, 12]. Much work has been done for the case where c < 0. In [7, 9, 11], the case c > 0 was studied for linear equations with constant coefficients and constant delay, some conclusions and conjectures were given, but the oscillation result specialized to the case where c > 1 is only a sufficient condition which guarantees that equation (1) has no bounded nonoscillatory solutions. In [4] the oscillatory problem of (1) was considered for the general form of equations, but the results still do not apply to the case $c \ge 1$.

The aim of this paper is to obtain some oscillation criteria for equation (1) for the case where $c \ge 1$ under the assumptions (H) and, along the way, we establish the conjectures in [11]. The results obtained in this paper can be easily extended to the more general form of equations

$$\lceil r(t)(y(t) - cy(t - \tau))' \rceil' + p(t)f(y(t - \sigma(t))) = 0.$$

^{*} Research supported by NSERC-Canada

Main results

For comparison purposes we mention the results for the case 0 < c < 1 obtained in [4]:

Lemma 0. Under the assumptions (H), if the equation

$$z'' + p(t)f\left(\frac{\lambda(t - \sigma(t))}{t}z(t)\right) = 0$$
 (2)

is oscillatory for some $0 < \lambda < 1$, then the nonoscillatory solutions of eq. (1) tend to zero as $t \to \infty$.

Theorem 0. In addition to the conditions of Lemma 0, assume further that

$$\limsup_{t\to\infty} \int_{t-\sigma(t)+\tau}^{t} (u-(t-\sigma(t)+\tau))p(u)du > \begin{cases} c & \text{if } \frac{f(y)}{y} \longrightarrow 1, \ y \longrightarrow 0\\ 0 & \text{if } \frac{f(y)}{y} \longrightarrow \infty, \ y \longrightarrow 0. \end{cases}$$
(3)

Then equation (1) is oscillatory.

Now we state our results below.

Definition: Let E be a subset of R_+ . Define

$$\rho_t(E) = \frac{\mu\{E \cap [0, t]\}}{t}, \text{ and } \rho(E) = \limsup_{t \to \infty} \rho_t(E)$$

where μ is the Lebesgue measure.

Lemma 1. Assume (H) holds and c = 1. Then the nonoscillatory solutions y(t) of eq. (1) are bounded provided the equation

$$z''(t) + p(t)f(Q(t)z(t)) = 0 (4)$$

is oscillatory, where $Q(t) = \frac{1}{3\tau t}(t - \sigma(t))^2$.

Lemma 2. Assume (H) holds and c > 1. Then the nonoscillatory solutions y(t) of eq. (1) satisfy $y(t) < cy(t - \tau)$ eventually provided the following conditions hold:

i)
$$z''(t) + p(t)f(R(t, \lambda)z(t)) = 0$$
 (5)

is oscillatory for all $0 < \lambda < 1$, where $R(t, \lambda) = \frac{\lambda}{t} c^{\frac{t - \sigma(t)}{\tau}}$; and one of the

following:

ii)
$$\int_0^\infty p(u)f(u-\sigma(u)+\tau)du=\infty, \text{ and}$$
 (6)

$$\lim \sup_{\substack{t \to \infty \\ t \notin E}} c_1^{-t/\tau} \int_0^t (t - u) p(u) f(u - \sigma(u) + \tau) du > 0$$
 (7)

holds for some $c_1 > c$ and any set E with $\rho(E) = 0$; or

ii')
$$\lim \sup_{\substack{t \to \infty \\ t \neq E}} c_1^{-t/\tau} \int_0^t (t - u) p(u) f(u - \sigma(u) + \tau) du = \infty$$
 (8)

holds for some $c_1 > c$ and any set E with $\rho(E) = 0$.

Corollary 1. In addition to the assumptions of Lemma 1, assume further that σ is a positive constant, and

$$\sum_{i=0}^{\infty} \int_{T+i\tau}^{T+i\tau+\alpha} (u-T)p(u) du = \infty$$
 (9)

holds for any $T \in \mathbb{R}_+$, and $0 < \alpha \le \tau$, then all nonoscillatory solutions of eq. (1) tend to zero as $t \to \infty$.

Corollary 2. In addition to the assumptions of Lemma 2, assume further that σ is a positive constant,

$$\int_{-\infty}^{\infty} (u-t)p(u)\,du = \infty$$

and

$$\sum_{i=0}^{\infty} f(c^i) \int_{T+i\tau}^{T+i\tau+\alpha} (u-T)p(u) du = \infty$$
 (10)

holds for any $T \in \mathbb{R}_+$ and $0 < \alpha \le \tau$, then all nonoscillatory solutions of eq. (1) tend to zero as $t \to \infty$.

Remark: Corollaries 1 and 2 establish the conjectures in [11] for n = 2 since (9) and (10) are true for the case that p(t) is a positive constant. In general (i.e. for even order equations) the conjectures can be established by similar arguments as in this paper.

Theorem. Assume (H) holds and $c \ge 1$. In addition to the conditions of Lemmas 1 and 2 for the cases c = 1 and c > 1, respectively, we assume (3) holds. Then eq. (1) is oscillatory.

Proofs

Proof of Lemma 1: Assume the contrary, and without loss of generality let y(t) be an eventually positive solution of eq. (1). Let $z(t) = y(t) - y(t - \tau)$. Then (1) becomes

$$z''(t) + p(t)f(y(t - \sigma(t))) = 0$$
(11)

and $z''(t) \le 0$, $t \ge t_0 \ge 0$. We claim z'(t) > 0, $t \ge t_0$. Otherwise, z'(t) < 0, $t \ge t_1 \ge t_0$. Then z'(t) < -l < 0, $t \ge t_1$. This gives that $z(t) = y(t) - y(t - \tau) \to -\infty$, contradicting that y(t) is eventually positive.

a) Assume z(t) > 0, $t \ge t_2 \ge t_1$. From Erbe's lemma [3] we see that for any 0 < k < 1 and i = 0, 1, 2, ..., there exists $T_i \ge t_0$ such that

$$z(t - \sigma(t) - i\tau) \ge \frac{k(t - \sigma(t) - i\tau)}{t} z(t), \quad t - \sigma(t) \ge T_i.$$
 (12)

Without loss of generality we may assume $t_0 = T_0$. Then we can choose $T_i = T_0 + i\tau$ for a common k. In fact, from the proof of the lemma, it suffices to show that for i = 0, 1, 2, ...,

$$(1-k)(t-\sigma(t)-i\tau) \ge \tilde{T}_0 \stackrel{\Delta}{=} (1-k)T_0, \quad t-\sigma(t) \ge T_i. \tag{13}$$

(13) is obviously true for i = 0. And if (13) is true for some i, then for $t - \sigma(t) \ge T_{i+1} = T_i + \tau$, we have

$$(1-k)(t-\sigma(t)-(i+1)\tau) \ge (1-k)(T_i-i\tau) = (1-k)T_0 = \tilde{T}_0.$$

Denote $R_{T_0} = \{t; t + \sigma(t) \ge T_0\}$. Then for any $t \in R_{T_0}$, there is a positive integer n satisfying

$$T_0 \le t - \sigma(t) - n\tau < T_0 + \tau.$$

Since

$$y(t - \sigma(t)) = \sum_{i=0}^{n-1} z(t - \sigma(t) - i\tau) + y(t - \sigma(t) - n\tau)$$
$$\geq \sum_{i=0}^{n} z(t - \sigma(t) - i\tau)$$

(here $\sum_{i=0}^{-1} = 0$), from eq. (1) we have

$$z''(t) + p(t)f\left(\sum_{i=0}^{n} z(t - \sigma(t) - i\tau)\right) \le 0.$$

Using (12) we get

$$z''(t) + p(t)f\left(\frac{k}{t}\sum_{i=0}^{n}(t-\sigma(t)-i\tau)z(t)\right) \leq 0,$$

i.e.,

$$z''(t) + p(t)f\left(\frac{k}{t}(n+1)\left(t - \sigma(t) - \frac{n}{2}\tau\right)z(t)\right) \le 0.$$

Since $n+1 > \frac{t-\sigma(t)-T_0}{\tau}$, $n\tau \le t-\sigma(t)-T_0$, we get

$$z''(t) + p(t)f\left(\frac{k}{2\tau t}\left[(t-\sigma(t))^2 - T_0^2\right]z(t)\right) \le 0.$$

Choose $T \ge T_0$ large enough, then it becomes

$$z''(t) + p(t)f\left(\frac{1}{3\tau t}(t - \sigma(t))^2 z(t)\right) \le 0, \quad t \ge T.$$

Noting that z(t), z(T) are upper and lower solutions of eq. (1), respectively, and using Theorem 7.4 in [10], we see there is a solution y(t) satisfying $z(T) \le y(t) \le z(t)$, contradicting the fact that eq. (4) is oscillatory.

b) Assume z(t) < 0, $t \ge t_2 \ge t_1$. Then $y(t) - y(t - \tau) < 0$, $t \ge t_2$. It is obvious that y(t) is a bounded solution since y(t) is eventually positive.

For the proof of Lema 2 we shall need the following lemma.

Lemma 3. Assume set $E \subset \mathbf{R}_+$ and $\rho(E) = \rho > 0$. Then for any $t_0 \in \mathbf{R}_+$ and integer n, there exists a $T \in [t_0, t_0 + \tau)$ such that $\{T + i\tau\}_{i=1}^{\infty}$ intersects E at least n times.

Proof: Assume that the contrary holds, i.e., there exist a $t_0 \in \mathbf{R}_+$ and an integer N, such that $\{T+i\tau\}_{i=1}^{\infty}$ intersects E at most N times for any $T \in [t_0, t_0 + \tau)$. This implies that $\mu\{E\} < \infty$. But $\rho(E) = \rho > 0$ means there exist $t_n \to \infty$ such that $\rho_{t_n}(E) \ge \frac{\rho}{2} > 0$. Thus

$$\mu\{E \cap [0, t_n]\} \ge \frac{\rho}{2} t_n \longrightarrow \infty, \quad n \longrightarrow \infty,$$

and this is impossible.

Proof of Lemma 2: Assume the contrary, and without loss of generality let y(t) be an eventually positive solution of eq. (1). Let $z(t) = y(t) - cy(t - \tau)$. Then (1) becomes (11) and $z''(t) \le 0$ eventually. There are three possibilities:

- a) z'(t) > 0, z(t) > 0, b) z'(t) < 0, z(t) < 0, c) z'(t) > 0, z(t) < 0 eventually.
 - a) Assume z'(t) > 0, z(t) > 0, $t \ge t_0 \ge 0$. Then (12) holds and for any $t \in R_{T_0}$ defined as in the proof of Lemma 1, there is also a positive integer n satisfying

$$T_0 \le t - \sigma(t) - n\tau < T_0 + \tau.$$

Since

$$y(t - \sigma(t)) = \sum_{i=0}^{n-1} c^i z(t - \sigma(t) - i\tau) + c^n y(t - \sigma(t) - n\tau)$$
$$\geq \sum_{i=0}^{n} c^i z(t - \sigma(t) - i\tau),$$

from eq. (1) we have

$$z''(t) + p(t)f(\sum_{i=0}^{n} c^{i}z(t - \sigma(t) - i\tau)) \le 0.$$

(12) gives that

$$z''(t) + p(t)f\left(\frac{k}{t}\sum_{i=0}^{n}c^{i}(t-\sigma(t)-i\tau)z(t)\right) \leq 0,$$

i.e.,

$$z''(t) + p(t)f\left[\left(\frac{k}{t}(t - \sigma(t))\frac{c^{n+1} - 1}{c - 1} - \frac{k\tau}{t}\sum_{i=1}^{n}ic^{i}\right)z(t)\right] \le 0.$$
 (14)

Since

$$\sum_{i=1}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n-1} + c}{(c-1)^{2}},$$

we have

$$\frac{k}{t}(t-\sigma(t))\frac{c^{n+1}-1}{c-1} - \frac{k\tau}{t}\sum_{i=1}^{n}ic^{i}$$

$$= \frac{k}{(c-1)^{2}t}\left[(t-\sigma(t))(c^{n+2}-c^{n+1}-c+1)\right]$$

$$-\tau(nc^{n+2} - (n+1)c^{n+1} + c)]$$

$$= \frac{k}{(c-1)^2 t} \left[(t - \sigma(t) - n\tau)c^{n+2} - (t - \sigma(t) - (n+1)\tau)c^{n+1} - (t - \sigma(t) + \tau)c + (t - \sigma(t)) \right]$$

$$\geq \frac{k}{(c-1)^2 t} \left[T_0 c^{n+2} - T_0 c^{n+1} - (t - \sigma(t) + \tau)c + (t - \sigma(t)) \right]$$

$$\geq \frac{1}{t} c^{n+2} \geq \frac{1}{t} c^{\frac{t-\sigma(t)-T_0+\tau}{\tau}} = \frac{\lambda}{t} c^{\frac{t-\sigma(t)}{\tau}}$$
(15)

for some $0 < \lambda < 1$ if T_0 and t are sufficiently large. Substituting (15) into (14) we have

$$z''(t) + p(t)f\left(\frac{\lambda}{t}c^{\frac{t-\sigma(t)}{\tau}}z(t)\right) \leq 0.$$

Noting that z(t), $z(T_0)$ are upper and lower solutions of (5), respectively, and using Theorem 7.4 in [10] we see there is a solution y(t) satisfying $z(T_0) \le y(t) \le z(t)$, contradicting the fact that eq. (5) is oscillatory for all $\lambda > 0$.

b) Assume z'(t) < 0, z(t) < 0, $t \ge t_0 \ge 0$. Then $z(t) \le -lt$, $t \ge t_0$, for some l > 0.

We claim $z(t) \ge -c_1^{t/\tau}$ essentially, where $c_1 > c$ is arbitrary, i.e., if $E = \{t : z(t) < -c_1^{t/\tau}\}$, then $\rho(E) = 0$. Otherwise, $\rho(E) = \rho > 0$. By Lemma 3, for any n, there exists a $T_1 \in [t_0, t_0 + \tau]$ such that $\{T_1 + i\tau\}_{i=1}^{\infty}$ intersects E at least n times. Assume $M = \max_{t \in [t_0, t_0 + \tau]} \{y(t)\}$. Then if n is sufficiently large,

$$y(T_1 + n\tau) \le c^n y(T_1) + z(T_1 + n\tau) \le c^n M - c_1^{\frac{T_1 + n\tau}{\tau}}$$
$$= c^n M - c_1^{n + \frac{T_1}{\tau}} < 0,$$

contradicting that y(t) > 0 eventually.

If ii) holds, then we can show that $z'(t) < -\mu$ for all $\mu > 0$ eventually. For otherwise, there exists a $\mu > 0$ such that $z' \ge -\mu$, $t \ge T_2$. From (11) and $y(t - \tau) \ge -\frac{1}{c}z(t)$, we get

$$z''(t) + p(t)f\left(-\frac{1}{c}z(t - \sigma(t) + \tau)\right) \le 0$$

$$z'(t) + \int_{T_2}^t p(u)f\left(-\frac{1}{c}z(u - \sigma(u) + \tau)\right)du \le 0.$$
(16)

Noting that $z(t - \sigma(t) + \tau) \le -l(t - \sigma(t) + \tau)$ we have

$$z'(t) + \int_{T_2}^t p(u) f\left(\frac{l}{c}(u - \sigma(u) + \tau)\right) du \le 0,$$

$$f\left(\frac{l}{c}\right) \int_{T_2}^t p(u) f(u - \sigma(u) + \tau) du \le -z'(t) \le \mu,$$

which is in contradiction with (6). Hence from (16) we see that for any $\mu > 0$, there is a T_{μ} such that

$$z(t) + \int_{T_u}^t (t - u)p(u)f\left(\frac{\mu}{c}(u - \sigma(u) + \tau)\right)du \le 0.$$

On $E^c \cap [T_u, \infty)$

$$-c_1^{t/\tau} + \int_{T_\mu}^t (t-u)p(u)f\left(\frac{\mu}{c}(u-\sigma(u)+\tau)\right)du \le 0,$$

$$f\left(\frac{\mu}{c}\right)c_1^{-\frac{t}{\tau}}\int_{T_\mu}^t (t-u)p(u)f(u-\sigma(u)+\tau)du \le 1.$$

Hence

$$c_1^{-\frac{t}{\tau}} \int_{T_{\mu}}^t (t-u)p(u)f(u-\sigma(u)+\tau) du \le \frac{1}{f\left(\frac{\mu}{c}\right)}. \tag{17}$$

contradicting (7) since $\mu > 0$ is arbitrary and f(0) = 0.

If ii') holds. Then (17) holds with $\mu = l$, contradicting (8). The proof is complete.

c) Assume z'(t) < 0, z(t) < 0, $t \ge t_0 \ge 0$. Then $y(t) < cy(t - \tau)$ is obvious.

Proof of Corollary 1: If not, there exists an eventually positive solution y(t) satisfying $\limsup_{t\to\infty} y(t) > 0$, and this can only occur when $z'' \le 0$, z'(t) > 0, and z(t) < 0, $t \ge t_0 \ge 0$, hence $z'(t) \to 0$, $z(t) \to 0$ as $t \to \infty$. If $\liminf_{t\to\infty} y(t) > 0$, then $y(t) \ge a > 0$, $t \ge t_1 \ge t_0$. Integrating (11) twice we get

$$z(t) + \int_t^\infty (u - t)p(u)f(a) du < 0.$$

Taking super limits on both sides as $t \to \infty$ we have

$$\limsup_{t\to\infty}\int_t^\infty (u-t)p(u)\,du\leq 0,$$

which is in contradiction with (9). So

$$\lim_{t \to \infty} \sup y(t) > 0 \quad \text{and} \quad \lim_{t \to \infty} \inf y(t) = 0.$$
 (18)

Then we can choose $t_2 > t_1 \ge t_0$ such that $y(t_2 - \sigma) > y(t_1 - \sigma)$. We claim

$$\lim_{n \to \infty} \inf y(t_2 - \sigma + n\tau) > 0.$$
(19)

In fact

$$y(t_2 - \sigma + n\tau) = \sum_{i=1}^{n} z(t_2 - \sigma + i\tau) + y(t_2 - \sigma)$$

and

$$y(t_1 - \sigma + n\tau) = \sum_{i=1}^{n} z(t_1 - \sigma + i\tau) + y(t_1 - \sigma).$$

Since $z(t_2 - \sigma + i\tau) \ge z(t_1 - \sigma + i\tau)$ for i = 1, 2, ..., n, and

$$\lim_{n\to\infty}\inf y(t_1-\sigma+n\tau)\geq 0,$$

we have

$$\lim_{n \to \infty} \inf y(t_2 - \sigma + n\tau) \ge y(t_2 - \sigma) - y(t_1 - \sigma) > 0.$$

Now, choose $t_0 \le t_1 < t_2 < t_3$ such that for any $T \in [t_2, t_3]$,

$$y(t_1 - \sigma) < y(t_2 - \sigma) \le y(T - \sigma).$$

From the above discussion, we see that (19) holds, i.e., there exists a $\mu > 0$ such that $y(t_2 - \sigma + n\tau) \ge \mu$ for all n. It is easy to see that for $T \in [t_2, t_3]$.

$$y(T - \sigma + n\tau) = \sum_{i=1}^{n} z(T - \sigma + i\tau) + y(T - \sigma)$$

$$\geq \sum_{i=1}^{n} z(t_2 - \sigma + i\tau) + y(t_2 - \sigma)$$

$$= y(t_2 - \sigma + n\tau) \geq \mu.$$

From (11) we have

$$-z'(s) + \int_{s}^{t} p(u)f(y(u-\sigma)) du \le 0, \qquad t_{0} \le s \le t,$$

$$z(t_{0}) + \int_{t_{0}}^{t} (u-t_{0})p(u)f(y(u-\sigma)) du \le 0, \qquad t_{0} < t.$$

Hence

$$z(t_0) + f(\mu) \sum_{i=0}^{n} \int_{t_2 + i\tau}^{t_3 + i\tau} (u - t_0) p(u) du \le 0,$$

and then

$$z(t_0) + f(\mu) \sum_{i=0}^{n} \int_{t_0 + i\tau}^{t_3 + i\tau} (u - t_2) p(u) du \le 0,$$

contradicting (9).

Proof of Corollary 2: If not, similar to the proof of Corollary 1 we see there exists an eventually positive solution y(t) satisfying (18). From the proof of lemma 2 we see this can only occur when $z''(t) \le 0$, z'(t) > 0 and z(t) < 0, $t \ge t_0 \ge 0$, choose $t_2 > t_1 \ge t_0$ such that $y(t_2 - \sigma) > y(t_1 - \sigma)$. Since

$$y(t_{2} - \sigma + n\tau) = \sum_{i=1}^{n} c^{n-i}z(t_{2} - \sigma + i\tau) + c^{n}y(t_{2} - \sigma)$$

$$y(t_{1} - \sigma + n\tau) = \sum_{i=1}^{n} c^{n-i}z(t_{1} - \sigma + i\tau) + c^{n}y(t_{1} - \sigma)$$

$$z(t_{2} - \sigma + i\tau) \ge z(t_{1} - \sigma + i\tau), \qquad i = 1, 2, ..., n$$

and $y(t_1 - \sigma + n\tau) > 0$, n = 0, 1, ..., we see

$$y(t_2 - \sigma + n\tau) \ge c^n [y(t_2 - \sigma) - y(t_1 - \sigma)] \stackrel{\Delta}{=} Ac^n.$$
 (20)

Similar to the proof of Corollary 1, we can show that there is an interval $[t_2, t_3]$ such that

$$v(T-\sigma+nt) \geq Ac^n$$

for $T \in [t_2, t_3]$ and all n. From (13) we get

$$z(t_0) + f(A) \sum_{i=0}^{n} \int_{t_2+i\tau}^{t_3+i\tau} (u-t_2) p(u) f(c^n) du \le 0,$$

contradicting (10).

Proof of The Theorem: According to the proofs of Lemmas 1 and 2 we

have z'(t) > 0, z(t) < 0 eventually. The remainder of the proof is similar to that of Lemma 2.2 in [4]. We omit it here.

References

- [1] Bainov, D.D. and Zahariev, A.I., Oscillating properties of the solutions of a class of neutral type functional differential equations, Bull. Austral. Math. Soc. 22 (1980), 365–372.
- [2] ——, Oscillating and asymptotic properties of a class of functional differential equations with maxima, Czechoslovak Math. J. 34 (1984), 247–251.
- [3] Erbe, L., Oscillation criteria for second order nonlinear delay equations, Canad. Math. Bull. 16 (1973), 49–56.
- [4] Erbe, L.H. and Zhang, B.G., Oscillation of second order neutral differential equations, Bull. Austral. Math. Soc. 39 (1989), 71–80.
- [5] Grace, S.R. and Lalli, B.S., Oscillation of nonlinear second order neutral delay differential equations, Rad. Mat. 3 (1987), 77–84.
- [6] Grammatikopoulas, M.K., Ladas, G. and Meimaridou, A., Oscillations of second order neutral delay differential equations, Rad. Mat. 1 (1985), 267–274.
- [7] ——, Oscillation and asymptotic behavior of second order neutral differential equations, Ann. Mat. Pura Appl. (4) 148 (1987), 29–40.
- [8] ——, Oscillation and asymptotic behavior of higher order neutral equations with variable coefficients, Chinese Ann. Math. Ser. **B9** (1988), No. 3, 322–338.
- [9] Grammatikopouloas, M. K., Grove, E.A. and Ladas, G., Oscillation and asymptotic behavior of second order neutral differential equations, International Conference of Differential Equations at Univ. of Toronto (July 14–16).
- [10] Jackson, L.K., Subfunctions and second order differential inequalities, Advances in Math. 2 (1968), 307–363.
- [11] Ladas, G. and Sficas, Y.G., Oscillations of higher-order neutral equations, J. Austral. Math. Soc. 27 Ser. B (1986), 502–511.
- [12] Partheniadis, E.C., On bounded oscillations of neutral differential equations, Appl. Anal. **29** (1988), No. 1–2, 63–69.

nuna adreso:
Department of Mathematics
University of Alberta
Edmonton, Alberta
Canada, T6G 2G1

(Ricevita la 17-an de septembro, 1990)