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Introduction

In this paper we deal with the oscillatory behaviour of the neutral
differential equation

@® —cy@t—01" +pO) f(y(t — o)) =0 (1)
under the assumption

(H) ¢ and 7 are positive numbers;
p and ceC(R,, R,), p(t) #0, t — o(t) is increasing and tends to oo as
t— o0, o(t) > 1;
feC(R, R) is increasing, f(— x) = — f(x), f(xy) = f(x)f(y), xy >0,
J»

f(0) =00, and—— - o0 or 1 as y —» 0.
y

The oscillation problem of equation (1) has received wide attention
[1, 2,4-9, 11, 12]. Much work has been done for the case where ¢ < 0. In
[7,9, 11], the case ¢ >0 was studied for linear equations with constant
coefficients and constant delay, some conclusions and conjectures were given,
but the oscillation result specialized to the case where ¢ > 1 is only a sufficient
condition which guarantees that equation (1) has no bounded nonoscillatory
solutions. In [4] the oscillatory problem of (1) was considered for the general
form of equations, but the results still do not apply to the case ¢ > 1.

The aim of this paper is to obtain some oscillation criteria for equation
(1) for the case where ¢ > 1 under the assumptions (H) and, along the way,
we establish the conjectures in [11]. The results obtained in this paper can
be casily extended to the more general form of equations

[r@ @) — eyt — )T + p(@O) f(y(t — o(1))) = 0.
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Main results

For comparison purposes we mention the results for the case 0 <c <1
obtained in [4]:

Lemma 0. Under the assumptions (H), if the equation
. At —o(t
2+ p(t)f<—t—()) z(t)) 0 @

is oscillatory for some 0 < A <1, then the nonoscillatory solutions of eq. (1)
tend to zero as t— oo.

Theorem 0. In addition to the conditions of Lemma 0, assume further that
if o _, 1, y—0
y

t— oo

lim sup Jt (u—(@— o)+ 7))pu)du >
oo, y — 0.

3)

t—ao(@)tz O !f‘ @ N
y

Then equation (1) is oscillatory.
Now we state our results below.

Definition: Let E be a subset of R,. Define

#{EN[O, 1}
t

p(E) = , and  p(E) = lim sup p,(E)

where u is the Lebesgue measure.

Lemma 1. Assume (H) holds and ¢ = 1. Then the nonoscillatory solutions
y(t) of eq. (1) are bounded provided the equation

z"(t) + p(0) f(Q()z(1)) = 0 (“4)

is oscillatory, where Q(t) = % (t — a(2)?.
Tt

Lemma 2. Assume (H) holds and ¢ > 1. Then the nonoscillatory solutions
y(t) of eq. (1) satisfy y(t) < cy(t — 1) eventually provided the following conditions
hold:

) 2"+ p@Sf(RE )z(1) =0 ©)

is oscillatory for all 0 < A <1, where R(t, A) = %ct_f Y. and one of the
t
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following :
ii) (& pw) f(u— a(u) + t)du = o, and (6)
lim sup ey J.t t—wpwfu—ou) + t)du>0 (7)
t¢E 0

holds for some ¢, > c¢ and any set E with p(E)=0; or

ii") limsup e [, —wpw) f(u— o)+ 1)du = o (8)
t¢E

holds for some ¢, > c and any set E with p(E) = 0.
Corollary 1. In addition to the assumptions of Lemma 1, assume further

that ¢ is a positive constant, and

T+it+a

i ! (u— T)p(uwdu = © 9)

i=0 JT+it
holds for any TeR,, and 0 < o < 1, then all nonoscillatory solutions of eq. (1)

tend to zero as t — 0.

Corollary 2. In addition to the assumptions of Lemma 2, assume further
that o is a positive constant,

foo (u — t)p(u)du = ©

and

T+itta

Of () ( — T)p(u)du = o (10)

T+it

M8

1l

i

holds for any TeR, and 0 < a < 1, then all nonoscillatory solutions of eq. (1)
tend to zero as t — oo.

Remark: Corollaries 1 and 2 establish the conjectures in [11] for n =2
since (9) and (10) are true for the case that p(t) is a positive constant. In
general (i.e. for even order equations) the conjectures can be established by
similar arguments as in this paper.

Theorem. Assume (H) holds and ¢ > 1. In addition to the conditions of
Lemmas 1 and 2 for the cases ¢ =1 and c > 1, respectively, we assume (3)
holds. Then eq. (1) is oscillatory.
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Proofs

Proof of Lemma 1: Assume the contrary, and without loss of generality
let y(¢) be an eventually positive solution of eq. (1). Let z(t) = y(t) — y(t — 7).
Then (1) becomes :

') + p(O) f((t — (1)) =0 (11)

and z"(t) <0, t>1t,=>0. We claim z'(t)>0, t >1t,. Otherwise, z'(t) <O,
t>t; >t,. Then z'(t)< —1<0,t>1t,. This gives that z(t) = y(t) — y(t — 7)
— — o0, contradicting that y(t) is eventually positive.

a) Assume z(t) >0, t >t, >t;. From Erbe’s lemma [3] we see that for
any 0<k<1land i=0, 1, 2,..., there exists T; > t, such that

k(t — a(t) — it)
t

z(t — a(t) — it) > z(t), t—o(t)=T,. (12)

Without loss of generality we may assume t, = T;,. Then we can choose
T, = T, + it for a common k. In fact, from the proof of the lemma, it
suffices to show that for i=0,1, 2,...,

I—-kt—0c®)—in)=>T, 21 -KT,, t—o@®)>T,. (13)
(13) is obviously true for i = 0. And if (13) is true for some i, then for
t—o(t)=>T,,, =T + 1, we have

L=kt —c@®) -+ DDA -k(T—it)=1—k T, = Tp.

Denote Ry, = {t;t+ o(t)> Ty}. Then for any teR;, there is a
positive integer n satisfying

To<t—o(t)—nt < Ty + 1.

Since

n—1

y(t — o)) = Z z(t — o(t) — it) + y(t — o(t) — n1)

i=0

> i z(t — a(t) — it)

(here ) =0), from eq. (1) we have

i=0

z"(t) + p(t)f(i z(t —o(t) —it)) < 0.
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Using (12) we get
k& .
z"(t) + p(t)f<; Y (t—o()— lT)Z(t)) <0,
i=0
ie.,

z"(t) + p(t)f(ltc (n + 1)<t —o(t) — -gf>z(t)) <0.

T

Since n+ 1 > , it <t—oa(t)— T,, we get

k
z"(t) + P(t)f<27 [t —a(®)* — Toz]Z(t)> <0.
(13
Choose T> T, large enough, then it becomes
z"(t) + p(t)f(%(t — a(t))zz(t)> <0, t>T
T

Noting that z(t), z(T) are upper and lower solutions of eq. (1),
respectively, and using Theorem 7.4 in [10], we see there is a solution
y(t) satisfying z(T) < y(t) < z(t), contradicting the fact that eq. (4) is
oscillatory.

Assume z(t) <0, t>t,>t,. Then y({t)—yt—1)<0, t=>t,. It is
obvious that y(t) is a bounded solution since y(t) is eventually positive.

For the proof of Lema 2 we shall need the following lemma.

Lemma 3. Assume set Ec R, and p(E)=p > 0. Then for any toeR,

and integer n, there exists a T€[ty, to + T) such that {T + it}{2, intersects E
at least n times.

Proof: Assume that the contrary holds, i.e., there exist a t,e R, and an

integer N, such that {T + it};2, intersects E at most N times for any
Te[t,, to + 7). This implies that u{E} < co. But p(E) = p >0 means there

o

exist t, » oo such that p, (E) > > > 0. Thus

w{EnO, tn]}zgt,,~—>oo, n—> oo,

and this is impossible.
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Proof of Lemma 2: Assume the contrary, and without loss of generality
let y(t) be an eventually positive solution of eq. (1). Let z(t) = y(t) — cy(t — 1).
Then (1) becomes (11) and z”(t) < O eventually. There are three possibilities:

a) z'()>0, z(t) >0, b) z'(t) <0, z(t) <0, c) z'()>0, z(t) <0
eventually.

a) Assume z'(1) >0, z(t) >0, t >t,>0. Then (12) holds and for any
te Ry, defined as in the proof of Lemma 1, there is also a positive
integer n satisfying

Iy<t—o(lt)—nt<Ty,+r.

Since

n—1

y(t —o(t) = .ZO c'z(t — o(t) — it) + c"y(t — a(t) — n1)

;;idw—am—m,
from eq. (1) we have
f@+p®ﬂ§kﬁ0—dﬂ—h»£0
(12) gives that

k& .
z"(t) + p(t)f(; 'go ¢t —o(t) — ir)z(t)) <0

ie.,
z"(t) + p(t)f[(k t —o(t) — ¢’ 1 k— i lci>z(t)] <O0. (14)
t c—1 ti=1
Since
Lo, ond"P—(m+ e+
L= c— 1) ’
we have
n+1 _ n
—(t BP0 pa— _Z

-1

=( 1)2 [t —o@)("*2—c""t—c+ 1)
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—t(nc"*? —(n+ D" + 0)]

k +2
= D [(t — o(t) — n7)C
—(t—o(@)—(m+ D" —(t —a(t) + 1)c + (t — ()]
> ko [Toc" "% — Tyt —(t —o(t) + 1) + (t — a(1)]
(c — 1)%t
216”2 > lct~o’(t)T—Tg+t _ %c;:;gg
t t t (15)

for some 0 < A < 1if T, and t are sufficiently large. Substituting (15)
into (14) we have

z"(t) + p(t) f(% e z(t)> <0.

Noting that z(t), z(T,) are upper and lower solutions of (5),
respectively, and using Theorem 7.4 in [10] we see there is a solution
y(t) satisfying z(Tp) < y(t) < z(t), contradicting the fact that eq. (5) is
oscillatory for all 4 > 0.

b) Assume z'(1) <0, z(t) <0, t >t,>0. Then z(t)< —It, t >t,, for
some [ > 0.

We claim z(t) > — ¢Y° essentially, where c¢; > ¢ is arbitrary, i.e., if

E = {t: z(t) < — c{*}, then p(E) = 0. Otherwise, p(E) = p > 0. By Lemma 3,

for any n, there exists a T, €[ty, to + 7) such that {T; + it}2, intersects E at

least n times. Assume M = max ]{y(t)}. Then if n is sufficiently large,
tefto,to + T

T, tnt

W +n) <"y (T) +z(Ty + nt) < "M — ¢y °

n+IJ~
=CnM—C1 T <O,

contradicting that y(t) > O eventually.
If ii) holds, then we can show that z'(f) < — u for all u> 0 eventually.
For otherwise, there exists a u >0 such that z/ > —u, t > T,. From (11)

1
and y(t — 1) > — —z(), we get
c

z"(t) + p(t)f(— %z(t —o(t) + ‘E)) <0
, (16)
zZ'(t) + j p(u)f(— %z(u —o(u) + r)) du < 0.

T2
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Noting that z(t — o(t) + 1) < — I(t — o(t) + ) we have

z'(t) + Ji p(u)f(é(u — o(u) + 'c)) du <0,

T2

f(i) f " ) — o) + Ddu < — 2(0) < 1,

T2
which is in contradiction with (6). Hence from (16) we see that for any u > 0,
there is a T, such that

2(t) + f (t — u)p(u)f<ﬁ(u — o(u) + f)> du <0,
T, 4
On E°N[T,, o)

iy Jt (t — u)p(u)f('u(u — o) + ’L'))du <0,
C

Tu

f<£>01_% JI (t—wpw)fu—ou) + 1)du < 1.

c T,

Hence

_t

f (t—wpw)fu—om) + 1)du < (17)

1

o
(%)

c
contradicting (7) since u > 0 is arbitrary and f(0) = 0.

If ii’) holds. Then (17) holds with u = I, contradicting (8). The proof is
complete.

c) Assume z'(t) <0, z(t) <0,t >t, > 0. Then y(t) < cy(t — 1) is obvious.

Proof of Corollary 1: 1If not, there exists an eventually positive solution

y(t) satisfying lim sup y(t) > 0, and this can only occur when z” <0, z'(t) > 0,
t— o0

and z(t) <0, t > t, =0, hence z'(t) - 0, z(t) >0 as t > co. If liminf y(¢) > 0,
t— o0

then y(t{) >a >0, t >t, >t,. Integrating (11) twice we get
z(t) + f (u—0)pw)f(a)du < 0.
t
Taking super limits on both sides as t - o0 we have

lim sup j (u —t)p(u)du <0,
t— oo
t
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which is in contradiction with (9). So
lim sup y(t) >0 and liminfy(t) =0. (18)
t— o0 t— 00

Then we can choose t, >t, >t, such that y(¢, — o) > y(t; — o). We
claim

li'rlllci)onfy(t2 — 0o+ nt) > 0. (19)
In fact
y(t, — o + n1) = zn:l z(t, — o +it) + y(t, — o)
and

yit, — o +nt)= ) z(t; — o + it) + y(t, — 0).
i=1

Since z(t, — o +it) > z(t; —o +it) for i=1, 2,...,n, and
linmﬁionfy(t1 —0o+nt)=0,
we have
liggnfy(tz — o +n1t) >y, —o)—yt, —o)>0.

Now, choose t, < t; <t, <t such that for any Te[t,, t5],

y(t; — o) < y(t, — o) < y(T — o).

From the above discussion, we see that (19) holds, i.e., there exists a >0
such that y(t, — o + nt) > u for all n. It is easy to see that for Te[t,, t3].

y(T—o0 + n1) = zn: z2(T— o +it) + y(T— o)

i=1

> zn: z(t, — o +it) + y(t, — o)

i=1
=y(t, — o + n1t) >

From (11) we have
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t
—2'(s) + J p)f(y(u—o0))du<0, 1,<s<t,
t
z(to) + J W —to)p) f(y(u —0))du <0,  t,<t.
to
Hence
n t3 +it
2)+HfWY | - t)p@du<0,
i=0 Jty +it
and then
n t3z t+it
z(to) + f(1) 2 (u — t2)p(w)du <0,
i=0 Jty +it
contradicting (9).
If not, similar to the proof of Corollary 1 we see
From the proof

Proof of Corollary 2:
there exists an eventually positive solution y(t) satisfying (18).

of lemma 2 we see this can only occur when z”(t) <0, z'(t) > 0 and z(t) < O,
t >ty >0, choose t, > t; > t, such that y(t, — o) > y(t; — o). Since

y(it, — o +nt)= ) ""z(t, — o + i1) + c"y(t, — 0)
i=1

yit, —o+n)= ) " 'z(t; — o + it) + c"y(t;, — o)
i=1
z(t, — o + it) > z(t; — o + it), i=1,2,...,n
and y(t; —a+nt)>0,n=0,1,..., we see
y(ty — 0 + n7) = "[y(t, — 6) — y(t, — 0)] 2 Ac". (20)

Similar to the proof of Corollary 1, we can show that there is an interval

[t,, t;3] such that
y(T— o + nt) > Ac"
for Te[t,, t;] and all n. From (13) we get

2+ S Y, | W= t)pw)f () du <0,

i=0 Jity+it

contradicting (10).
Proof of The Theorem: According to the proofs of Lemmas 1 and 2 we



Second Order NDE 555

have z'(t) > 0, z(t) < O eventually. The remainder of the proof is similar to
that of Lemma 2.2 in [4]. We omit it here.
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