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1. Introduction

In [1] Haruki solved the following functional equation of Pexider type:

(1) $|f(z+w)|^{2}+|g(z-w)|^{2}=|h(z+¥overline{w})|^{2}+|k(z-¥overline{w})|^{2}$

where /, $g$ , $h$ , $k$ are unknown entire functions and $z$ , $w$ are complex vari-
ables. The exponents in (1) play an essential role in Haruki’s argument in
[1]. The purpose of the present paper is to use a simpler argument and solve
the following more general functional equation:

(2) $|f(z+w)|+|g(z-w)|=|h(z+¥overline{w})|+|k(z-¥overline{w})|$

where /, $g$ , $h$ , $k$ are unknown entire functions. We will obtain the following
which immediately implies Haruki’s solutions of equation (1).

Theorem 1. The only systems of entire solutions of equation (2) are the
following:

(i) $¥left¥{¥begin{array}{l}f(z)=(az+b)^{2}¥¥g(z)=(cz+d)^{2}¥¥h(z)=(pz+q)^{2}¥¥k(z)=(rz+s)^{2}¥end{array}¥right.$

where $a$ , $b$ , $c$ , $d$ , $p$ , $q$ , $r$ , $s$ are arbitrary complex constants satisfying

$|a|=|c|=|p|=|r|$ , $|b|^{2}+|d|^{2}=|q|^{2}+|s|^{2}$

(3)
$ab+c¥overline{d}=p¥overline{q}+r¥overline{s}$ , $a¥overline{b}-c¥overline{d}=¥overline{p}q-¥overline{r}s$ ;

(ii) $¥left¥{¥begin{array}{l}f(z)=[a¥mathrm{e}¥mathrm{x}¥mathrm{p}(¥lambda z)+b¥mathrm{e}¥mathrm{x}¥mathrm{p}(-¥lambda z)]^{2}¥¥g(z)=[c¥mathrm{e}¥mathrm{x}¥mathrm{p}(¥lambda z)+d¥mathrm{e}¥mathrm{x}¥mathrm{p}(-¥lambda z)]^{2}¥¥h(z)=[p¥mathrm{e}¥mathrm{x}¥mathrm{p}(¥lambda z)+q¥mathrm{e}¥mathrm{x}¥mathrm{p}(-¥lambda z)]^{2}¥¥k(z)=[r¥mathrm{e}¥mathrm{x}¥mathrm{p}(¥lambda z)+s¥mathrm{e}¥mathrm{x}¥mathrm{p}(-¥lambda z)]^{2}¥end{array}¥right.$
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where $¥lambda$ is an arbitrary real constant and $a$ , $b$ , $c$ , $d$ , $p$ , $q$ , $r$, $s$ are arbitrary
complex constants satisfying

$|a|=|p|$ , $|b|=|q|$ , $|c|=|r|$ , $|d|=|s|$ ,
(4)

$ab=r¥overline{s}$ , $c¥overline{d}=p¥overline{q}$ ;

(iii) $¥left¥{¥begin{array}{l}f(z)=[a¥mathrm{e}¥mathrm{x}¥mathrm{p}(i¥lambda z)+b¥mathrm{e}¥mathrm{x}¥mathrm{p}(-i¥lambda z)]^{2}¥¥g(z)=[c¥mathrm{e}¥mathrm{x}¥mathrm{p}(i¥lambda z)+d¥mathrm{e}¥mathrm{x}¥mathrm{p}(-i¥lambda z)]^{2}¥¥h(z)=[p¥mathrm{e}¥mathrm{x}¥mathrm{p}(i¥lambda z)+q¥mathrm{e}¥mathrm{x}¥mathrm{p}(-i¥lambda z)]^{2}¥¥k(z)=[r¥mathrm{e}¥mathrm{x}¥mathrm{p}(i¥lambda z)+s¥mathrm{e}¥mathrm{x}¥mathrm{p}(-i¥lambda z)]^{2}¥end{array}¥right.$

where $¥lambda$ is an arbitrary real constant and $a$, $b$ , $c$, $d$, $p$ , $q$ , $r$, $s$ are arbitrary
complex constants satisfying

$|a|=|r|$ , $|b|=|s|$ , $|c|=|p|$ , $|d|=|q|$ ,
(5)

$ab=p¥overline{q}$ , $c¥overline{d}=r¥overline{s}$ .

Note that equation (2) immediately yields

(6) $|f(z)|+|g(0)|=|h(x)|+|k(iy)|$ $(z =x+iy)$ .

Here, and later, $z=x+iy$ means that $x=¥mathrm{R}¥mathrm{e}$ $z$ and $y=¥mathrm{I}¥mathrm{m}$ $z$ . It is easily
verified from (6) that $f$ is a solution of the following functional equation:

(7) $|F(z)|+|F(0)|=|F(x)|+|F(iy)|$ $(z =x+iy)$ .

where $F$ is an unknown entire function. Similarly, (2) implies that $g$ , $h$ , and
$k$ are also solutions of equation (7). The simplicity of the present treatment
of Theorem 1 is due mainly to this easy observation that all the solutions of
equation (2) must satisfy the above common functional equation. Note that
equation (7) can be written in the following equivalent form:

(8) $|F(z)|=A(x)+B(y)$ $(z =x+iy)$

where $F$ is an unknown entire funcion and $A$ , $B$ are some real-valued functions,
uniquely determined by $F$ up to an additive constant, on the real line. We
will solve equation (8) on a given nonempty (open and connected) domain $¥Omega$

in the complex plane. So we are now concerned with the following functional
equation:

(9) $|F(z)|=A(x)+B(y)$ $(z=x+iy ¥in¥Omega)$

where $F$ is an unknown analytic function on $¥Omega$ and $A$ , $B$ are some real valued
functions, depending on $F$ and $¥Omega$ .
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Theorem 2. The only analytic solutions of equation (9) are $F(z)=(az+b)^{2}$

and $F(z)=[a¥exp (¥lambda z)+b¥exp (-¥lambda z)]^{2}$ where $a$ , $b$ are arbitrary complex con-
stants and $¥lambda$ is an arbitrary real or purely imaginary constant.

The following is an immediate consequence of Theorem 2 and the
uniqueness of the analytic continuation.

Corollary 3. The only entire solutions of equation (7) are $F(z)=(az+b)^{2}$

and $F(z)=[a¥exp (¥lambda z)+b¥exp (-¥lambda z)]^{2}$ where $a$ , $b$ are arbitrary complex con-
stants and $¥lambda$ is an arbitrary real or purely imaginary constant.

The special case of Corollary 3 where $F(0)=0$ has long been known. See
Hille [2] and [3].

2. Proof of the theorems

We first prove Theorem 2 and then apply it to derive Theorem 1. To
prove Theorem 2, we need a couple of lemmas first.

Lemma 4. If (9) holds for some analytic function $F$, then $A$ and $B$ are
infinitely differentiate on their domains of definition, respectively.

Proof. To avoid triviality we assume that $F$ is not identically 0 on
$¥Omega$ . Fix an arbitrary point $x_{0}$ in the domain of definition of $A$ . There exists
$¥mathcal{Y}¥mathrm{o}$ such that $ z_{0}=x_{0}+iy_{0}¥in¥Omega$ and $|F(z_{0})|¥neq 0$ by the identity theorem (see
for example [4] $)$ . Note that $A(x)=|F(x+iy_{0})|-B(y_{0})$ on some open interval
containing $x_{0}$ . Since $|F|$ is infinitely differentiate at $z_{0}$ (as a function of two
real variables), $A$ is infinitely differentiate at $x_{0}$ . The same argument applies
to B. $¥square $

The following is well-known. See for example [5, Theorem 13.11].

Lemma 5. Suppose that $F$ is analytic and zero-free on a simply connected
domain D. Then there exists on $D$ an analytic function $¥varphi$ such that $F$ $=¥varphi^{2}$

on $D$ .

We may now give a proof of Theorem 2.

Proof of Theorem 2. Assume that (9) holds for some analytic function $F$

on $¥Omega$ . To avoid triviality, we may again assume $F$ is not identically 0 on
$¥Omega$ . Then we have an open disc $ D¥subset¥Omega$ such that $F$ is zero-free on $D$ by the
identity theorem. Taking into account that $D$ is simply connected, we may
apply Lemma 5 to obtain an analytic function $¥varphi$ on $D$ such that $F$ $=¥varphi^{2}$ on
$D$ . By (9) we obtain
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$|¥varphi(z)|^{2}=A(x)+B(y)$

and therefore

(10) $¥varphi(z)¥overline{¥varphi(z)}=A(x)+B(y)$

for all $z=x+iy$ $¥in D$ . Since $¥varphi$ satisfies the Cauchy-Riemann equations and
$A$ , $B$ are continuously differentiate by Lemma 4, an application of the
differential operator $¥partial^{2}/¥partial x¥partial y$ to both sides of (10) yileds

$i[¥varphi^{¥prime¥prime}(z)¥overline{¥varphi(z)}-¥varphi(z)¥overline{¥varphi^{¥prime¥prime}(z)}]=0$

for all $z¥in D$ . Note that $¥varphi$ is zero-free on $D$ . Thus, simplifying and
rearranging the above, we have

$¥frac{¥varphi^{¥prime¥prime}(z)}{¥varphi(z)}=¥overline{(¥frac{¥varphi^{¥prime¥prime}(z)}{¥varphi(z)})}$

for all $z¥in D$ . This shows that the analytic function $¥varphi^{¥prime¥prime}/¥varphi$ maps $D$ into the
real line. It follows from the open mapping theorem that there exists a real
constant $t$ such that

$¥varphi^{¥prime¥prime}=t¥varphi$

on $D$ . Solve this differential equation. It shows that there are complex
contants $a$ , $b$ and a real or purely imaginary constant $¥lambda=J^{-}t$ such that

$¥varphi(z)=¥left¥{¥begin{array}{l}az+b¥¥a¥mathrm{e}¥mathrm{x}¥mathrm{p}(¥lambda z)+b¥mathrm{e}¥mathrm{x}¥mathrm{p}(-¥lambda z)¥end{array}¥right.$ $¥mathrm{i}¥mathrm{i}¥mathrm{f}¥mathrm{f}tt$ $=¥neq 00$

for all $z¥in D$ . Consequently, we have

(11) $F(z)=¥left¥{¥begin{array}{l}(az+b)^{2}¥¥[a¥mathrm{e}¥mathrm{x}¥mathrm{p}(¥lambda z)+b¥mathrm{e}¥mathrm{x}¥mathrm{p}(-¥lambda z)]^{2}¥end{array}¥right.$ $¥mathrm{i}¥mathrm{i}¥mathrm{f}¥mathrm{f}tt$ $=¥neq 00$

for all $z¥in D$ and hence for all $ z¥in¥Omega$ by the uniqueness of the analytic continua-
tion. Finally, a direct substitution shows that the functions in (11) satisfy
equation (9) for arbitrary complex constants $a$ , $b$ and for an arbitrary real or
purely imaginary constant $¥lambda$ . This completes the proof of the theorem. $¥square $

Having proved Theorem 2 and hence its consequence Corollary 3, we
can now easily derive Theorem 1.

Proof of Theorem 1. Suppose that equation (2) holds for entire functions
/, $g$ , $h$ , and $k$ . Each of /, $g$ , $h$ , and $k$ is then a solution of equation (7), as
remarked earlier. Thus, by Corollary 3, each of /, $g$ , $h$ , and $k$ takes one of
the following three forms on the complex plane:
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(i)’ $z¥mapsto(¥alpha z+¥beta)^{2}$ ;

$(¥mathrm{i}¥mathrm{i})$

’
$z¥mapsto[a¥exp (¥lambda z)+¥beta¥exp (-¥lambda z)]^{2}$ ;

(iii)’ $z¥mapsto[a¥exp(i¥lambda z)+¥beta¥exp(-i¥lambda z)]^{2}$ ;

where $a$ , $¥beta$ are arbitrary complex constants and $¥lambda$ is an arbitrary real con-
stant. By (6), there are some constants $c_{1}$ and $c_{2}$ such that $|f(x)|=|h(x)|+c_{1}$

and $|f(ix)|=|k(ix)|+c_{2}$ for all real $x$ . Similarly, $|g(x)|=|k(x)|+c_{3}$ for all
real $x$ and for some constant $c_{3}$ . It follows that all of /, $g$ , $h$ , and $k$ must
be of the same form. The coefficient conditions (3), (4), and (5) are verified
by a routine calculation. $¥square $
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