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Introduction

This paper establishes some basic results on bilinear control systems of the
form

(1) $¥dot{¥mathrm{X}}=(A+uD)x$

in $¥mathrm{w}$-space, with scalar control functions $u(¥cdot)$ . A crucial subsequent
specialization is that the control matrix have rank one, $D=bc^{*}$ with $¥mathrm{n}$ -vectors
$b$ , $c$ .

This last class arises quite naturally when one switches between two
dynamical systems, $¥mathrm{e}.¥mathrm{g}$ .

$y^{(n)}=¥sum_{0}^{n-1}a_{n-k}y^{(k)}$ and $y^{(n)}=¥sum_{0}^{n-1}¥beta_{n-k}y^{(k)}$ .

Here the standard phase-space description has the coefficient matrix $A$ in

companion form, with $¥frac{1}{2}(a_{k}+¥beta_{k})$ in the last row; and the control matrix $D$

indeed has $D=b¥cdot c^{*}$ for $b^{*}=(0,¥ldots,0,1)$ and $c^{*}$ with entries $¥frac{1}{2}(¥beta_{k}-a_{k})$ . (As Jan

Willems once pointed out, all the entries are constants; however, the zeros and
ones are stiff structure constants, while only the last row has “soft” parameters,
to be encompassed by a rank-one control matrix.)

Section 1 presents a canonic decomposition of the state space of (1) into
linear subspaces (which are controllable or observable, or not, in a suitable
sense); a somewhat surprising analogue of the Kalman decomposition that
applies to linear control systems. What makes this possible is the rather
technical observation (Lemma 1) that, in the Taylor expansion of $Dx(t)$ , the first
nonvanishing term does not depend on the controls.

The basic result of Section 2 is that, for any initial point $p$ and small times
$t$ $>0$, the set $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ attainable from $p$ at time $t$ is convex. Ultimately this
establishes strict convexity of the reachable and attainable sets, and normality
(uniqueness of extremal controls) for small time; and also that time-optimal
controls are bang-bang and piecewise constant.

Some proofs are modifications of known reasonings applying to linear



356 Otomar HAJEK

control systems. The interplay between convexity of attainable sets and bang-
bang controls is classical. The more precise results involving strict convexity
and uniqueness that appear in the present Theorem 6 obviously come from
Sections 14 and 15 of [6]. Our Lemma 7 is almost exactly the Corollary, [7,
p. 72]. Lemma 10 here is an immediate analogue of the fundamental lemma
[3, Lemma 1]. Conjecture 2 would extend the result of Theorem 9.4 in
[4]. None of these techniques could have been unleashed without the key
result of Brockett [1, Lemma 1].

§1. One-dimensional inputs

In this section we shall treat control systems in $¥mathrm{n}$ -space, with dynamical
equation of the form

(1) $¥dot{X}=(A+uD)x$ ;

the data are the constant real $¥mathrm{r}¥mathrm{c}$-square matrices $A$ , $D$ . Thus the control system
is bilinear, homogeneous, autonomous, and single-input, with state space $R^{n}$ and
control space $R^{1}$ .

It will be useful to consider, in parallel, the associated matrix system

(2) $¥dot{X}=(A+uD)X$, $X(0)=I$ ,

where the state space is $R^{n^{2}}$ To each locally integrable control $u:R^{1}¥rightarrow R^{1}$

there then corresponds a unique matrix-valued solution $X=X(u)$ of (2), with
values denoted as in $X_{t}=X_{t}(u)$ . Returning to (1), the solution $t¥mapsto x_{t}$ of (1)
with initial value $x_{¥mathit{0}}=p¥in R^{n}$ is then $x_{t}=X_{t}¥cdot p$ .

In the sequel the control functions $u$ are often $u:R^{1}¥rightarrow[-1,1]$ measurable
(to be called admissible, or relaxed); sometimes we allow $u:R^{1}¥rightarrow R^{1}$ to be
merely locally integrable (unrestricted or unbounded controls), or $ u:R^{1}¥rightarrow$

$¥{-1,1¥}$ (the bang-bang controls).
In (1) and (2) the control matrix $D$ will have some rank $r$ , $0¥leq r¥leq n$. If we

ignore the trivial case $D=0$, it may be decomposed as in

(3) $D=B$ . $C$

with $B$ of type $(n, r)$ and rank $r$, and $C$ of type $(r, n)$ and rank $r$ again (and also
$D=BT¥cdot T^{-1}C$ for any nonsingular $¥mathrm{r}$-square matrix $T$). In a purely formal
manner we then associate with (1) the observed linear control system

(4) $¥dot{x}=Ax+Bv$, $y=Cx$

with $¥mathrm{r}$-dimensional inputs; we will refer to (4) as the system $(C, A, B)$ .

Using (3) in (1) we see that the control term is $u(t)Dx(t)=u(t)B¥cdot Cx(t)$ .

One may recognize here an open loop control term $u(t)B$ and a linear feedback



Bilinear Control 357

term $Cx(t)$ . Since these are multiplied (rather than added), obviously near the
subspace $Cx$ $=0$ the control effect is largely neutralized, and $x_{t}$ evolves
approximately as in the dynamical system $¥dot{¥mathrm{x}}=Ax$ without controls. (More

precisely, if $C¥cdot p$ $=0$, then $¥frac{d}{dt}X_{t}(u)¥cdot p=Ap$ at $t$ $=0.$) An elaboration of this
yields our first result.

Lemma 1. For each point $p¥in R^{n}$ we have an alternative: Either $CA^{k}p=¥mathit{0}$

for all $k=0,1,2$, $¥ldots$ , and then

(5) $X_{t}(u)p$ $=e^{At}p$, $CX_{t}(u)p¥equiv ¥mathit{0}$

for each (unrestricted) control $u(¥cdot)$ and all $t$ . Or $CA^{k}p¥neq 0$ for some first integer
$k¥geq 0$ (necessarily $k¥leq n-1$ ), and then

(6) $CX_{t}(u)p=CA^{k}p¥cdot¥frac{t^{k}}{k!}+O(t^{k+1})$

as $t¥rightarrow 0$, uniformly for all admissible controls $u(¥cdot)$ ; in particular, $t¥mapsto CX_{t}(u)p$ has
only isolated zeros, each of multiplicity $n-1$ at most.

Proof. First assume that (the initial point) $p$ is such that

(7) $CA^{k}p=0$ for $ k=0,1,¥ldots$ .

Consider the Picard iterates $¥Phi_{k}(¥cdot)$ to (2), for an arbitrarily chosen but fixed
unrestricted control $u(¥cdot)$ :

$¥Phi_{0}(t)=I$ , $¥Phi_{k+1}(t)=I+¥int_{0}^{t}(A+u(s)BC)¥Phi_{k}(s)ds$ .

Picard’s theorem yields, in our linear case, that $¥Phi_{k}(t)¥rightarrow X_{t}(u)$ as $ k¥rightarrow¥infty$ .

We shall prove that

$¥Phi_{k}(t)p=¥sum_{0}^{k}¥frac{1}{j!}A^{j}t^{j}p$,

by induction on $k$ (the case $k=0$ is trivial). For the inductive step assume the
above, and observe that then $C¥Phi_{k}(t)p¥equiv 0$ by (7). We have

$¥Phi_{k+1}(t)p=p+¥int_{0}^{t}(A+u(s)BC)¥sum_{0}^{k}¥frac{1}{j!}A^{j}s^{j}pds$

$=p+¥int_{0}^{t}(¥sum_{0}^{k}¥frac{1}{j!}A^{j+1}s^{j}p+0)ds=p+¥sum_{0}^{k}¥frac{1}{(j+1)!}A^{j+1}t^{j+1}p$ .

$¥mathrm{i}.¥mathrm{e}.$ , the $(k+1)- ¥mathrm{s}¥mathrm{t}$ assertion. Having established this,
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$X_{t}(u)p$ $=¥lim_{k}¥Phi_{k}(t)p=e^{At}p$,

$CX_{t}(u)p=Ce^{At}p=¥sum_{0}^{¥infty}CA^{k}p¥cdot¥frac{t^{k}}{k!}=0$ ;

these are the relations is (5).
Second, assume that $CA^{k}p¥neq ¥mathit{0}$ for some first $k¥geq 0$ . We write the Picard

iteration in the Neumann series form,

$X_{t}(u)=I+¥sum_{1}^{¥infty}¥Psi_{j}(t)$ ,

(8) $¥Psi_{j}(t)=¥mathrm{H}_{00}^{ts_{1}}¥cdots¥int_{¥mathrm{o}}^{s_{j-1}}(A+u(s_{1})BC)¥cdots¥cdot¥cdot(A+u(s_{j})BC)ds_{j}¥cdots ds_{1}$

and note that $I+¥sum_{1}^{k}¥Psi_{j}(t)=¥Phi_{k}(t)$ (for the iterates $¥Phi_{k}$ as above).
Our assumption yields $CA^{j}p=¥mathit{0}$ for $0¥leq j¥leq k-1$ , so that

$C(I+¥sum_{1}^{k-1}¥Psi_{j}(t))p=C¥Phi_{k1}¥_(t)p¥equiv 0$ ,

and

$C¥Psi_{k}(t)p=¥frac{1}{k!}CA^{k}pt^{k}¥neq 0$

(on considering all the remaining terms in the $¥mathrm{k}$-fold product in (8)). Finally,
for all $¥ell>k$,

$|C¥Psi_{g}(t)p|¥leq¥frac{t^{¥ell}}{¥ell!}(|A|+|B|¥cdot|C|)^{q}$ if $|u(s)|¥leq 1$ .

This yields (6), and shows that $CX_{t}(u)p$ has at most an isolated zero of
order $¥leq n-1$ at $t$ $=0$ .

For any other $t$ we write

$CX_{s}(u)p=CX_{st}¥_(v)¥cdot X_{t}(u)p$

(with admissible control $v$ a $¥mathrm{t}$-shift of $u$) and apply the preceding to the initial
point $p_{1}=X_{t}(u)p$ . Note that again $CA^{¥ell}p_{1}¥neq 0$ for some $¥ell$ ; indeed, otherwise
we would also have all $CA^{k}p=0$ . This concludes the proof.

According to (5), the linear subspace $L$ of $R^{n}$ ,

(9) $L=$ {$p:CA^{k}p=0$ for $k=0,1,2$, $¥ldots$ }

is significant. Its points $p$ , and $L$ itself, may be called completely
uncontrollable; and if $L=0$, the system (1) may be termed controllable. From
(9), $L$ is the unobservable subspace of the linear system $(C, A, B)$ in (4).
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Theorem 2. If coordinates are chosen in $R^{n}$ in such a way that $x=¥left(¥begin{array}{l}x_{1}¥¥X_{2}¥end{array}¥right)$ is

in the completely uncontrollable subspace precisely when $x_{1}=0$, then (1)
decomposes, with dynamical equations of the form

$¥dot{x}_{1}=(A_{11}+uB_{1}C_{1})x_{1}$

(10)
$¥dot{x}_{2}=(A_{21}+uB_{2}C_{1})x_{1}+A_{22}x_{2}$ ,

and the system (10) corresponding to $x_{2}=0$ is controllable. Thus in $L$ the
system (1) reduces to $¥dot{¥chi}_{2}=A_{22}¥mathrm{x}_{2}$ without controls.

Proof. First partition (1) conformably, obtaining matrices $A_{ij}$ , $B_{i}$ , $C_{j}$ for
$i$ , $j=1,2$. Now choose any point $x_{2}$ and any constant control $u$ . Then the

point $p=¥left(¥begin{array}{l}0¥¥x_{2}¥end{array}¥right)$ $¥in L$ , so that also $X_{t}(u)p¥in L$ (see (5)), and the $¥mathrm{x}_{1}$ -coordinate

vanishes. Hence the first equation reads

$0=(A_{11}+uB_{1}C_{1})¥cdot 0+(A_{12}+uB_{1}C_{2})x_{2}(t)$ .

On taking $t=0$ we find that $0=(A_{12}+uB_{1}C_{2})x_{2}$ for all $u$ , $x_{2}$ , and therefore
$A_{12}=0$, $B_{1}C_{2}=0$ . Thus the first equation has the form (10).

Next, again for the completely uncontrollable initial point $p=¥left(¥begin{array}{l}0¥¥X_{2}¥end{array}¥right)$ , the
second equation reads

$¥dot{¥chi}_{2}(t)=(A_{21}+uB_{2}C_{1})0+(A_{22}+uB_{2}C_{2})x_{2}(t)$ .

Now, $X_{t}(u)p$ is independent of $u$ by (5); hence so are the components $x_{2}(t)$ ,
$¥dot{¥chi}_{2}(t)$ , and therefore $B_{2}C_{2}=0$ since $x_{2}$ was arbitrary. This concludes the
proof.

Remarks. For linear control systems $¥dot{x}=A¥mathrm{x}+Bv$ we have a unique
(largest) controllable subspace $¥langle A;B¥rangle$ , namely the span of the columns of the
controllability matrix

($B$, AB, $A^{2}B,¥ldots,A^{n-1}B$);

and every complementary subspace is uncontrollable (better: not completely
controllable). The situation is quite different for bilinear systems (1): we have
the unique completely uncontrollable subspace $L$ of (9), and every complemen-
tary subspace is a “controllable” (better: the only uncontrollable point is the
origin).

Another consequence is that the uncontrollable subspace $L$ is strongly
invariant, in both time directions: no point of $L$ can be reached from, nor
steered to, any point outside $L$ even by unrestricted controls.
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If, as in Lemma 1, $k¥geq 0$ is the first integer with $CA^{k}p¥neq 0$, it seems
appropriate to call $n-k$ the degree of controllability of $p$ . Then points $p$ with
$Cp$ $¥neq 0$ have highest degree of controllabililty; and completely uncontrollable
points might be said to have zero degree of controllability.

Naturally, Lemma 1 has a dual version. The proof is omitted; it is
analogous to that of Lemma 1, or may be obtained from it by passing to
adjoint equations

$¥dot{y}=-(A^{*}+uC^{*}B^{*})y$

(the adjoint to (2) has $(X_{t}^{-1})^{*}$ as solution).

Lemma 3. For each point $q¥in R^{n}$ we have an alternative: Either $q^{*}A^{k}B=0$

for all $k=0,1$ , $¥ldots$ , and then

$q^{*}X_{t}^{-1}(u)=q^{*}e^{-At}$ , $q^{*}X_{t}^{-1}(u)B¥equiv 0$

for each {unrestricted) control $u(¥cdot)$ and all $t$ . Or $q^{*}A^{k}B¥neq 0$ for some first
integer $k¥geq 0$ $(k ¥leq n-1)$ , and then

$q^{*}X_{t}^{-1}(u)B=q^{*}A^{k}B¥frac{t^{k}}{k!}+O(t^{k+1})$

as $t¥rightarrow 0$ , uniformly for all admissible controls $u(¥cdot)$ ; in particular, $t¥mapsto q^{*}X_{t}^{-1}(u)B$

has only isolated zeros, of multiplicity $n-1$ at most.

Remarks. As an illustration, consider a single input linear control system
$¥dot{x}=Ax+bu$ in $R^{n}$ . Professor Brockett suggested an interpretation of this as a
bilinear system in $R^{n+1}$ , namely

$¥left(¥begin{array}{l}X¥¥¥xi¥end{array}¥right)$

.

$=(¥left(¥begin{array}{ll}A & 0¥¥0 & 0¥end{array}¥right)$ $+u¥left(¥begin{array}{l}b¥¥0¥end{array}¥right)$ $(0, 1)$ ) $¥left(¥begin{array}{l}X¥¥¥xi¥end{array}¥right)$ ,

with the original system corresponding to the hyperplane $¥xi=1$ . The
completely controllable subspace is the hyperplane $¥xi=0$ (in verifying this note

that $¥left(¥begin{array}{ll}A & 0¥¥00 & ¥end{array}¥right)k$ is $¥left(¥begin{array}{ll}A^{k} & 0¥¥0 & 0¥end{array}¥right)$ for $k¥geq 1$ , but $¥left(¥begin{array}{l}I0¥¥01¥end{array}¥right)$ for $k=0$). As concerns the dual

observation vectors $¥left(¥begin{array}{l}q¥¥¥eta¥end{array}¥right)$ , we have complete unobservability precisely when

$q^{*}A^{k}b=0$ for all $k¥geq 0$, $¥mathrm{i}.¥mathrm{e}.$ , when $q$ is perpendicular to the controllability
subspace $¥langle A;b¥rangle$ .

There is also a dual version of the canonic decomposition in Theorem
2. Actually we may combine these as follows. Choose coordinates in $R^{n}$ in
such a way that a point
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$¥mathrm{x}=$

$¥left¥{¥begin{array}{l}X_{1}¥¥x_{2}¥¥x_{3}¥¥x_{4}¥end{array}¥right¥}$

has all $CA^{k}x=¥mathit{0}$ precisely when $x_{1}=0$, $x_{2}=0$, and has all $x^{*}A^{k}B=0$

precisely when $x_{1}=0$, $x_{3}=0$ . Then the matrices $A$ , $B$, $C$ decompose
conformably into $A_{ij}$ , $B_{i}$ , $C_{j}$ $(i, j=1,2,3, 4)$ ; and the zero entries are as
indicated in

$A=¥left¥{¥begin{array}{lll} & 0 & 0¥¥0 & 0 & 0¥¥0 & 0 & ¥end{array}¥right¥}$

$B=$

$¥left¥{¥begin{array}{l}0¥¥0¥end{array}¥right¥}$ $C=(¥cdot 0 0)$

.

There is an interesting $¥mathrm{r}¥mathrm{e}$-interpretation of Lemma 3, again in terms of the
controllability subspace $¥langle$ $A$ ;By of the linear system $(C, A, B)$ . Take any
vector $q$ perpendicular to $¥langle A;B¥rangle$ . Then $q^{*}A^{k}B=0$ for all $k¥geq 0$, so that
(Lemma 3)

$q^{*}X_{t}^{-1}(u)B=0$

for all $t$ , and even unrestricted controls $u(¥cdot)$ . In other words, $q^{*}x=0$

whenever $x$ can be steered to some point $p$ in the span of columns of $B$, at some
time $t$ via some control $u(¥cdot)$ . Since $q$ was an arbitrary point in $¥langle A;B¥rangle^{¥perp}$ , we
have: the union of reachable sets to points in span $B$ is contained in the
controllability space of $(C, A, B)$ .

It is then natural to ask whether these reachable sets span the
controllability space. A partial answer is provided in Lemma 10 to follow.

Corollary 4 In (1) let $D=b¥cdot c^{*}$ have rank 1, and assume that $(c^{*}, A, b)$ is
controllable and observable ( $i.e.$ , minimal). Then, for any nonzero points
$p$ , $q¥in R^{n}$ , and each admissible control $u(¥cdot)$ , the real-valued function
(11) $t¥mapsto q^{*}X_{t}^{-1}(u)b¥cdot c^{*}X_{t}(u)p$

has a continuous derivative, and only isolated zeros.

Proof. Almost everywhere the derivative of (11) is

? $q^{*}X_{t}^{-1}(A+u_{t}bc^{*})bc^{*}X_{t}p+q^{*}X_{t}^{-1}bc^{*}(A+u_{t}bc^{*})X_{t}p$

$=q^{*}X_{t}^{-1}[bc^{*}, A]X_{t}p$ ,

and this is (locally absolutely) continuous. The rest follows from Lemmas 1, 3
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applied to the factors $q^{*}X_{t}^{-1}b$, $c^{*}X_{t}p$ of (11).

§2. Rank one inputs

Here we shall consider the special case of single input systems $¥dot{x}=$

$(A+uD)x$, for which the control matrix $D$ has rank 1. Thus $D=bc^{*}$ with
$b$ , $c$ nonzero,

(1) $¥dot{X}=(A+ubc^{*})x$

(2) $¥dot{X}=(A+ubc^{*})X$ , $X_{0}=I$ .

The following construction is due to Brockett [1].

Lemma 5. Let $x(¥cdot)$ , $y(¥cdot)$ be solutions of (1) corresponding to controls $u(¥cdot)$ ,
$v(¥cdot)$ ; assume that

$c^{*}(¥mathrm{x}_{t}+y_{t})¥neq 0$ $a.e$ . in $[0, T]$ .

Then the control

(3) $w_{t}:=u_{t}¥cdot¥frac{C^{*}X_{t}}{c^{*}(x_{t}+y_{t})}+v_{t}¥cdot¥frac{c^{*}y_{t}}{c^{*}(x_{t}+y_{t})}$

steers the initial point $¥frac{1}{2}(X_{¥mathit{0}}+y_{o})$ along the midway solution $¥frac{1}{2}(¥mathrm{X}_{t}+y_{t})$ .

If, furthermore, $c^{*}x_{t}$ and $c^{*}y_{t}$ are $both¥geq 0$ or $both¥leq 0a.e$. in $[0, T]$ , and
$u(¥cdot)$ , $v(¥cdot)$ are admissible, then $w(¥cdot)$ is also admissible.

Proof. By direct substitution,

$¥frac{d}{dt}¥frac{1}{2}(X_{t}+y_{t})-(A+w_{t}bc^{*})¥frac{1}{2}(x_{t}+y_{t})$

$=¥frac{1}{2}(AX_{t}+u_{t}bc^{*}x_{t})+¥frac{1}{2}(Ay_{t}+v_{t}bc^{*}y_{t})$

? $(A¥frac{1}{2}(x_{t}+y_{t})+w_{t}bc^{*}¥frac{1}{2}(x_{t}+y_{t}))$

$=¥frac{1}{2}b(u_{t}c^{*}x_{t}+v_{t}c^{*}y_{t}-w_{t}c^{*}(x_{t}+y_{t}))=0$ ,

having used (3).
With the added sign assumptions we have that both

$¥frac{c^{*}x_{t}}{c^{*}(x_{t}+y_{t})}$ , $¥frac{c^{*}y_{t}}{c^{*}(x_{t}+y_{t})}$$¥frac{c^{*}y_{t}}{c^{*}(x_{t}+y_{t})}$
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are in [0, 1] $¥mathrm{a}.¥mathrm{e}$ . ; hence if both $u_{t}$ , $v_{t}$ are in $[- 1, 1]$ , so is their convex
combination $w_{t}$ : admissibility. This concludes the verification.

We recall the concepts of attainable and reachable sets: referring to the
matrix system (2), the attainable set $¥ovalbox{¥tt¥small REJECT}_{t}$ (at time $t$ , from initial value /) consists
of all $X_{t}(u)$ as $u(¥cdot)$ varies over all admissible controls; and $¥ovalbox{¥tt¥small REJECT}_{t}^{-1}$

$=¥{X^{-1} : X¥in¥ovalbox{¥tt¥small REJECT}_{t}¥}$ is the reachable set (of initial values from which I can be
reached at $t$ by using admissible controls). Then for the system (1) in $R^{n}$ , $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$

is the set attainable from $p$ , and $¥ovalbox{¥tt¥small REJECT}_{t}^{-1}$ .
$p$ the reachable set, both at time $t$ .

Theorem 6 (Local convexity of attainable sets). Consider system (1). For
every initial point $p$ there exists $T$, $ 0<T¥leq+¥infty$ , such that the attainable and
reachable sets

$¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ and $¥ovalbox{¥tt¥small REJECT}_{t}^{-1}¥cdot p$ for $0<t<T$

are convex and compact.
Furthermore, in the generic case that the linear system $(c^{*}, A, b)$ is

controllable and observable, and $p¥neq 0$, these attainable and reachable sets are
strictly convex (in particular int $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p¥neq¥emptyset¥neq$ int $¥ovalbox{¥tt¥small REJECT}_{t}^{-1}p$ ); all extremal controls are
bang-bang and piecewise constant, and are determined uniquely $a.e$ . by the initial
point $p$ , terminal point $x$ , and terminal time $t$ .

Proof. In (2) the vectograms $¥{A+ubc^{*} : |u|¥leq 1¥}$ are convex and
compact. By Filippov’s theorem, $¥ovalbox{¥tt¥small REJECT}_{t}$ is compact; hence so are $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ and
$¥ovalbox{¥tt¥small REJECT}_{t}^{-1}¥cdot p$ .

Consider any initial point $p¥in R^{n}$ . If the first alternative of Lemma 1
applies, then $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p=¥{e^{At}p¥}$ , and singleton sets are, of course, convex (in this
case we may take $ T=+¥infty$).

Assume, then, that $c^{*}A^{k}p¥neq 0$ for a first $k¥geq 0$ . Since we are restricting the
controls to admissible ones, (6) in Lemma 1 yields that there exists $T>0$ such
that $c^{*}X_{t}(u)p$ has constant sign in $(0, T)$ (namely, sgnc* $A^{k}p$) for all admissible
controls $u(¥cdot)$ .

We assert that this is the desired $T$ : that each $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ with $t¥in(0, T)$ is
convex. Since $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ is compact, hence closed, one need only verify that

$x$ , $y¥in¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ implies $¥frac{1}{2}(x+y)¥in¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ .

For this we use Brockett’s lemma. The points $x$ , $y$ are values, at time $t$ , of
solutions $x(¥cdot)$ , $y(¥cdot)$ of (1), issuing from the same initial point $p$, and
corresponding to some admissible controls $u(¥cdot)$ , $v(¥cdot)$ . Since

$c^{*}x_{t}=c^{*}X_{t}(u)p$, $c^{*}y_{t}=c^{*}X_{t}(v)p$$c^{*}y_{t}=c^{*}X_{t}(v)p$
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have the same sign in $(0, T)$ (namely $¥mathrm{s}¥mathrm{g}¥mathrm{n}c^{*}A^{k}p$ again), we have the situation
described in Lemma 5. Hence the control $w(¥cdot)$ from (3) is also admissible, and

steers the initial point $¥frac{1}{2}(X_{O}+y_{o})=p$ to the terminal point

$¥frac{1}{2}(x_{t}+y_{t})=¥frac{1}{2}(X+y)$ .

Thus indeed $¥frac{1}{2}(x+y)$ is in $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ . (The assertion on the reachable sets $¥ovalbox{¥tt¥small REJECT}_{t}^{-1}¥cdot p$

is obtained similarly, using initial points $x$ , $y$ and terminal point $p.$ )
Next, assume that $(c^{*}, A, b)$ is minimal ($¥mathrm{i}.¥mathrm{e}.$ , controllable and

observable). Take any admissible control $u(¥cdot)$ on $[0, t]$ steering $p$ to a point $x$

on the boundary of the convex set $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ . (We are not asserting yet that
int $¥epsilon¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p¥neq¥emptyset$ ). Choose a non-zero exterior normal $q$ to $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ at $x$ .

We wish to show that $u(¥cdot)$ is necessarily bang-bang. Begin by choosing
arbitrarily numbers $s<s+h$ in $[0, t]$ , and a constant value $v¥in[-1, 1]$ ; then
consider the admissible control which has value $v$ in $[s, s+h]$ , but coincides
with $u(¥cdot)$ outside this subinterval. The corresponding matrix solution of (2) is
(we abbreviate $X_{s}(u)=X_{s}$)

$X_{t}X_{s+h}^{-1}e^{(A+vbc^{*})h}¥cdot X_{s}$

at $t$, and then the exterior normal condition yields

$q^{*}X_{t}X_{s+h}^{-1}e^{(A+vbc^{*})h}X_{s}p¥leq q^{*}X_{t}p$ .

Subtract the right side, divide by $h>0$, and take $h¥rightarrow 0$ . There results (by

differentiation at $s$ , for almost all $s¥in[0,$ $t))$ ,

$q^{*}X_{t}X_{s}^{-1}(v-u_{s})bc^{*}X_{s}p¥leq 0$.

For the moment denote $q^{*}X_{t}$ by $q_{1}^{*}$ , and consider the scalar function

$a(s)=q_{1}^{*}X_{s}^{-1}bc^{*}X_{s}p$

as in Corollary 4. We have shown that

va(s) $¥leq u(s)a(s)$

for almost all $s¥in[0,$ $t$). In principle, the exceptional set of times $s$ could depend
on the choice of $v$ . However, we can take $v=¥pm 1$ , and then the union of the
two null sets. This proves that

$u(s)a(s)=¥max_{|v|¥leq 1}v¥cdot a(s)=|a(s)|$ $¥mathrm{a}.¥mathrm{e}$ .
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Since $a(¥cdot)$ has only isolated zeros (Corollary 4), this specifies $u(¥cdot)$ completely
$¥mathrm{a}.¥mathrm{e}.$ , and it must be bang-bang and piecewise constant.

Next we show that $u(¥cdot)$ is uniquely determined by the terminal data $x$ , $t$

(above we showed that it is uniquely determined by the exterior normal $q$ ; but
there might be several of these at $x$). Thus, let $u(¥cdot)$ , $v(¥cdot)$ be admissible
controls, both steering $p$ to $x¥in¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ over $[0, t]$ ; denote by $x(¥cdot)$ , $y(¥cdot)$ the
corresponding solutions; and invoke the admissible control $w(¥cdot)$ from Lemma

5, which steers $p$ along the midway solution to the point $¥frac{1}{2}(X_{t}+y_{t})=¥frac{1}{2}(x+x)$

$=x$ . Since $x¥in¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ , all of $u(¥cdot)$ , $v(¥cdot)$ , $w(¥cdot)$ must be bang-bang and piecewise
constant, as we have just shown. If it were not true that $u=v¥mathrm{a}.¥mathrm{e}.$ , then $u¥neq v$

on a set of positive measure. Now, $w(¥cdot)$ is both bang-bang and pointwise a
convex combination of $u(¥cdot)$ , $v(¥cdot)$ . Thus, on a further subset of positive
measure, $w$ coincides with $u$ or with $v$ , $¥mathrm{e}.¥mathrm{g}.$ , the latter. But then from (3),

$(u(s)-v(s))¥cdot c^{*}¥mathrm{x}(s)=0$

on a set of positive measure, on which also $u¥neq v$ . Thus $c^{*}¥mathrm{x}(¥cdot)=0$ on a set of
positive measure. On the other hand, from minimality and Lemma 1, $c^{*}x(¥cdot)$

has isolated zeros only. This contradiction now yields that indeed $u=v¥mathrm{a}.¥mathrm{e}$.

It remains to show that $¥epsilon¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ is strictly convex. For this take distinct
points $x$ $¥neq y$ in $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ , and assume that their mid-point is not in the interior;

$¥mathrm{i}.¥mathrm{e}.$ , that $¥frac{1}{2}(X+y)¥in¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ . Since $¥epsilon¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ is convex, if either of $x$ , $y$ were interior

points, so would their midpoint; thus both are also on $¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$. Now proceed
as above, choosing controls $u(¥cdot)$ , $v(¥cdot)$ steering $p$ to $x$ , $y$ respectively, and then

$w(¥cdot)$ steering to $¥frac{1}{2}(¥mathrm{x}+y)$ . Since all these endpoints are on the boundary, all

the controls are bang-bang. Again, $u=v¥mathrm{a}.¥mathrm{e}.$ , since the converse would lead to
a contradiction. But then $x=y$ ; and this contradiction with the assumption
yields strict convexity. (Similarly for $¥ovalbox{¥tt¥small REJECT}_{t}^{-1}¥cdot p.$)

Remarks. The preceding result concerns the vector system (1). It would
be a trivial consequence if we could prove the analogous assertion for the
matrix system (1), on applying the linear mapping $X¥mapsto X¥cdot p$ taking $R^{n^{2}}$ to
$R^{n}$ . This, however, is not available. Indeed, if $¥ovalbox{¥tt¥small REJECT}_{t}$ were convex for all times $t$

in some interval $(0, T)$ , then each $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ would be convex, with a time-interval
$(0, T)$ common to all initial points $p$ . However, it seems that the time extent $T$

that appears in Theorem 6 depends strongly on $p$ , and there is no common
positive lower bound.

This result is necessarily local, in the time sense. Indeed, consider the
bilinear system which switches $(u =¥pm 1)$ between the dynamical systems
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$¥{_{¥dot{y}=-x}^{¥dot{x}=y}$ and $¥left¥{¥begin{array}{l}¥dot{¥mathrm{x}}=y¥¥¥dot{y}=0.¥end{array}¥right.$

For the initial point $p=¥left(¥begin{array}{l}1¥¥0¥end{array}¥right)$ and time $ t=¥pi$, the trajectory of the first

dynamical system reaches the point ? $p=¥left(¥begin{array}{l}-1¥¥0¥end{array}¥right)$ , while the second remains

constantly at $p$ . Thus both $¥pm p$ are in $¥ovalbox{¥tt¥small REJECT}_{¥pi}(p)$ ; however, their midpoint is 0,
and this cannot be reached from any point outside the origin. Hence $¥ovalbox{¥tt¥small REJECT}_{¥pi}(p)$

is not convex. (A more detailed examination yields that the last time $T$ that
$¥ovalbox{¥tt¥small REJECT}_{T}(p)$ is convex is $T=¥pi/2.$) A consequence not confined to small time
intervals appears in Theorem 9.

The rank-one assumption seems essential for local convexity; this does not
extend to single-input systems. E. $¥mathrm{g}.$ , in the planar system

$¥dot{X}=ux$, $¥dot{y}=-uy$

we have $¥dot{x}/x+¥dot{y}/y=0$, so that the product $xy$ remains a constant independent
of the control. Thus each attainable set is an arc of a hyperbola $xy$ $=c$, and
hence is not convex for small times.

Local convexity does generalize partly to a larger class of bilinear systems,
namely to

$¥dot{X}=(A+¥Sigma u_{k}¥cdot b_{k}c_{k}^{*})x$

with independent controls $u_{k}(¥cdot)$ : each initial point $p$ in the open set described
by $c_{k}^{*}p¥neq 0$ for all $k$, has convex attainable set for small time. This is the class
of systems introduced in [1].

In Theorem 6 is it natural to inquire into the “position” of the convex sets
$¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ ; more precisely, to specify the affine span of $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ (in the nontrivial case
that int $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p=¥emptyset$). The point is, of course, that each convex set has nonvoid
interior in its affine span. The main result of [5] is a direct description of the
affine span of $¥epsilon¥ovalbox{¥tt¥small REJECT}_{t}$ , namely

$¥mathrm{a}¥mathrm{f}$ span $¥ovalbox{¥tt¥small REJECT}_{t}=e^{At}(I+¥gamma)$

where $¥parallel^{¥wedge}$ is the linear space generated by finite products of the matrices

$e^{-As}De^{As}$ $(s ¥geq 0)$ ,

or also by finite products of matrices $[D, A]_{k}$ , where

$[D, A]_{0}=D$ $[D, A]_{k+1}:=[[D, A]_{k}, A]$

(and, as usual, $[M,$ $N]=MN-NM$).
Theorem 6 concerns extremal controls, steering the initial point $p$ to the
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boundary of the attainable set $¥ovalbox{¥tt¥small REJECT}_{t}¥mathrm{p}$ . We are more interested in time-optimal
controls, $¥mathrm{i}.¥mathrm{e}$ . those admissible controls $u$ on [0, 1] such that the point $x$

$=X_{t}(u)¥cdot p$ has $t$ as minimal time. It seems obvious that each optimal control
is extremal (and we shall prove this explicitly in Corollary 8); however, the
converse may well fail. Indeed consider the schematic figure 1. Here $p$ is
steered to $q$ time-optimally; it is also steered to $q$ on the boundary of $¥ovalbox{¥tt¥small REJECT}_{1}¥cdot p$ , but
$t$ $=1$ is obviously not the minimal time for $q$ . Of course, it may happen that
all extremal controls are optimal, if the initial point $p$ is locally controllable
( $¥ovalbox{¥tt¥small REJECT}_{s}¥cdot p¥subset$ int $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ whenever $0¥leq s<t$).

Fig. 1 Point $q$ is on the boundary of the attainable set $¥ovalbox{¥tt¥small REJECT}_{1}¥cdot p$ but the
minimal time is less than 1.

Lemma 7. Assume that $¥epsilon¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ is convex for all $t¥in[0,$ $T$). If $ x¥in$ int $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$

then also xeint $¥ovalbox{¥tt¥small REJECT}_{s}¥cdot p$ for all $s$ sufficiently close to $t$ .

Proof. Choose a ball $U$ centered at $x$ and entirely within int $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ . In $U$

take a simplex $E$ with center $x$ again, and with vertices $v_{1},¥ldots,v_{n+1}¥in U$. Since
each $v_{k}¥in¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$, there exist admissible controls $u_{k}(¥cdot)$ such that $v_{k}=X_{t}(u_{k})p$ . If $s$

is sufficiently close to $t$ , we will still have $x$ in the interior of the simplex $E_{s}$ with
vertices $X_{s}(u_{k})p$. Since $¥ovalbox{¥tt¥small REJECT}_{s}¥cdot p$ is convex (for small $|s$ $-t|$ ),

$x¥in ¥mathrm{i}¥mathrm{n}¥mathrm{t}E_{s}¥subset ¥mathrm{e}¥ovalbox{¥tt¥small REJECT}_{s}¥cdot p$ ,

as we wished to prove.

Corollary 8. If $u(¥cdot)$ is a time-optimal control for initial point $p$ , then $u(¥cdot)$ is
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extremal on $[0, t]$ for small $t>0(i.e., X_{t}(u)p¥in¥partial¥epsilon¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p)$ .

Proof. Choose $T$ as described in Theorem 6. Assume the assertion fails,
and that a point $¥mathrm{x}:=X_{t}(u)p¥not¥in¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ for some $t¥in[0,$ $T$). Since $x¥in¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ ,

necessarily $ x¥in$ int $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ ; by Lemma 7,

$ x¥in$ int $¥mathrm{e}¥ovalbox{¥tt¥small REJECT}_{s}¥cdot p¥subset_{¥epsilon}¥ovalbox{¥tt¥small REJECT}_{s}¥cdot p$

for all times $s<t$ close to $t$ . But this contradicts the assumption that $t$ was the
least time to reach $x$ from $p$ .

Theorem 9. For the system (1) with $(c^{*}, A, b)$ controllable and observable,
every time-optimal control is bang-bang and piecewise constant.

Proof. Let $u(¥cdot)$ be an admissible control on $[0, ¥theta]$ which is time-optimal
for steering between two given points; let $x(¥cdot)$ be the corresponding solution of
(1). We invoke Lemma 1: to each point $x(t)$ there is a $¥delta_{t}>0$ such that

$c^{*}x_{S}¥neq 0$ in ( $t$ , $t+¥delta_{t}]$ and in $[t$ $-¥delta_{t}$ , $t$)

(see (6) in Section 1). The cover $(t -¥delta_{t}, t+¥delta_{t})$ of $[0, ¥theta]$ has a finite
subcover. From the principle of optimality, $u(¥cdot)$ is also time-optimal on each
subinterval, and, in particular, on

$[t -¥delta_{t}, t]$ and $[t, t+¥delta_{t}]$ .

By Corollary 8, $u(¥cdot)$ is extreme on $[t, t+¥delta_{t}]$ for the provisional initial point
$x(t)$ , and so it is bang-bang and piecewise constant there (Theorem
6). Similarly for $[t -¥delta_{t}, t]$ (one may wish to change time orientation). Thus
$u(¥cdot)$ is indeed bang-bang on $[0, ¥theta]$ , and piecewise constant over each member of
the finite cover of $[0, ¥theta]$ .

§3. Synthesis of extreme controls

The setting will again be that of a bilinear system in $R^{n}$ with rank one
inputs,

(1) $¥dot{X}=(A+ubc^{*})x$.

We begin with a technical lemma on which all else will be based. Our aim is
to present the synthesis of extreme controls.

Lemma 10. If the linear system $(c^{*}, A, b)$ is controllable, then there exists
$¥epsilon$ , $ 0<¥epsilon¥leq+¥infty$ , such that, for any $n$ numbers $ t_{0},¥ldots$ , $ t_{n1}¥_$ subject to $t_{k}>0$ , $¥Sigma t_{k}$

$<¥epsilon$ , the $n$ vectors

$e^{A_{0}t_{0}}b$ , $e^{A_{1}t_{1}}e^{A¥mathrm{o}t¥mathrm{o}}b$ , $e^{A_{2}t_{2}}e^{A_{1}t_{1}}e^{A¥mathrm{o}t¥mathrm{o}}b,¥ldots,e^{A_{n-1}t_{n-1}}¥ldots e^{A¥mathrm{o}t¥mathrm{o}}b$
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are linearly independent; here we have denoted $A_{k}:=A+(-1)^{k}bc^{*}$ .

Proof. From continuity it suffices to treat the case of $t_{0}=0$ ; we then wish
to show that

$D(t_{1},¥ldots,t_{n-1}):=¥det(b, e^{A_{1}t_{1}}b, e^{A_{2}t_{2}}e^{A_{1}t_{1}}b,¥ldots,e^{A_{n-1}t_{n-1}}¥ldots e^{A_{1}t_{1}}b)$

is nonzero for small $t_{k}>0$. It is probably obvious that $D(¥cdot)$ is an entire
function of its variables, so that it can be expressed as a power series in the
$t_{k}$ . Evidently $D(¥cdot)$ vanishes when some $t_{k}=0$, so that it has $t_{k}$ (or some higher
power) as root factor. We shall examine this further.

By subtracting the first column from the second we obtain $(e^{A_{1}t_{1}}-I)b$, and
hence

$¥lim_{t_{1}¥rightarrow 0}¥frac{1}{t_{1}}D(t_{1},¥ldots,t_{n-1})=¥det(b, A_{1}b, e^{A¥mathrm{z}¥mathrm{r}_{2}}b,¥ldots,e^{A_{n-1}t_{n-1}}¥ldots e^{A_{2}t_{2}}b)$ .

In the second column

$A_{1}b=(A-bc^{*})b=Ab$ $-$ $b$ . $(c^{*}b)$ ,

so that another column operation, using $b$ , yields

$¥det(¥cdots)=¥det$ ($b$ , Ab, $e^{A_{2}}t^{2}b,¥ldots,e^{A_{n-1}t_{n-1}}¥cdots¥cdot¥cdot e^{A_{2}t_{2}}b$ ).

In processing the third column we shall subtract $(I+A_{2}t_{2})b$, which is a linear
combination of the first two columns:

$¥det(¥cdots)=¥det$ ($b$ , Ab, $(e^{A_{2}t_{2}}-I-A_{2}t_{2})b$, $ e^{A_{3}t_{3}}e^{A_{2}t_{2}}b,¥ldots$ ).

Therefore

$¥lim_{t_{1},t_{2}¥rightarrow 0}¥frac{D(t_{1},,t_{n-1})}{t_{1}t_{2}^{2}}¥ldots=¥det$ ($b$ , Ab, $¥frac{1}{2}A_{2}^{2}b$ , $e^{A_{3}t_{3}}b,¥ldots,e^{A_{n-1}t_{n-1}}¥cdots¥cdot¥cdot e^{A_{3}t_{3}}b$ ).
Again we may operate with the first two columns to replace $A_{2}^{2}b$ by $A^{2}b$ ;
indeed,

$A_{2}^{2}b=(A+bc^{*})^{2}b=A^{2}b+Ab¥cdot(c^{*}b)+b¥cdot(c^{*}Ab +(c^{*}b)^{2})$ .

In point of fact all we need for these operations is the observation that

$A_{k}^{k}b¥in A^{k}b+$ span ($b$ , Ab,... , $A^{k-1}b$).

After $n-1$ such steps we obtain

$¥lim_{t_{k}¥rightarrow 0}¥frac{D(t_{1},,t_{n-1})}{t_{1}t_{2}^{2}t_{n-1}^{n-1}}¥ldots¥cdots=¥frac{1}{1!2!(n-1)!}¥cdots¥det$ ($b$ , Ab,..., $A^{n-1}b$).
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By controllability the last determinant is $¥neq 0$ . We have thus obtained that

$D(t_{1},¥ldots, t_{n1}¥_)=t_{1}t_{2}^{2}¥cdots t_{n1}^{n-1}¥_¥cdot D_{0}(t_{1},¥ldots, t_{n1}¥_)$

where $D_{0}(¥cdot)$ is again entire, and $D_{0}(0,¥ldots,0)¥neq 0$ . Thus indeed $D(t_{1},¥ldots, t_{n-1})¥neq 0$

for small $t_{k}>0$.

Theorem 11 (Synthesis of exteme controls). Consider system (1), assuming
$(c^{*}, A, b)$ is controllable and observable; and any initial point $p¥neq 0$ . Then there
exists $¥epsilon$ , $ 0<¥epsilon¥leq+¥infty$ , such that an admissible control $u(¥cdot)$ on $[0, t]¥subset[0$ , $¥epsilon$) is an
extreme control for steering $p$ if, and only if, $u(¥cdot)$ is a bang-bang piecewise
constant control with at most $n-1$ switches.

Proof. We shall first select $¥epsilon$ ; then show that every extreme control is of
the described type; and last, prove that every such switching control is extremal.

From controllability of $(c^{*}, A, b)$ , each $p¥neq 0$ is completely
controllable. Thus by Lemma 1, there exists $¥epsilon>0$ such that

(2) $c^{*}X_{s}(u)p¥neq 0$ on $(0, ¥epsilon)$

for all admissible controls $u(¥cdot)$ . By decreasing $¥epsilon>0$ further we ensure that all
attainable sets $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ are strictly convex for $ 0<t<¥epsilon$ (Theorem 6). A further
decrease of $¥epsilon>0$ provides the conclusion of Lemma 10.

Consider now any extreme control $u(¥cdot)$ on $[0, t]¥subset[0$, $¥epsilon$). By Theorem 6,
$u(¥cdot)$ is bang-bang and piecewise constant; we wish to check the number of
switches. By the proof of Theorem 6, $u(s)=¥mathrm{s}¥mathrm{g}¥mathrm{n}¥mathrm{a}(¥mathrm{s})$ , where

(3) $a(s)=(q^{*}X_{t}¥cdot X_{s}^{-1}b)¥cdot(c^{*}X_{s}p)$

(and $X_{s}=X_{s}(u)$ ). The second factor in (3) does not vanish in $(0, ¥epsilon)$ , by
(2). Assume now that $u(¥cdot)$ has at least $n$ switches, at points $s_{k}$ ,

$ 0<s_{1}<s_{2}<¥ldots<s_{n}<¥epsilon$ .

Then $a(s)$ must vanish at the $s_{k}$ , and hence also the first factor in (3). In other
terms, the nonzero vector $q_{l}=X_{t}^{*}q$ is perpendicular to the $n$ vectors
$X_{s_{k}}^{-1}(u)¥cdot b$ . This is impossible, since these are independent: Lemma 10 with $t_{o}$

$=s_{1}$ , $ t_{1}=s_{2}-s_{1},¥ldots$ , $ t_{n1}¥_=s_{n}-s_{n1}¥_$ (and ? $A$ in place of $A$). This contrad-
iction shows that indeed an extreme control on $[0, ¥epsilon]$ has at most $n-1$

switches.
Finally, consider any $t¥in(0, ¥epsilon)$ ; let $E$ be the collection of all extreme controls

on $[0, t]$ , steering $p$ to the various points of $¥partial ¥mathrm{e}¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ ; let $F$ be the collection of all
bang-bang admissible controls with at most $n-1$ switches on $[0, t]$ . We have
already shown that

(4) $E¥subset F$ ,
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and now we wish to prove equality.
This will be a little roundabout. From Theorem 6, $¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ is a strictly

convex (and compact nonvoid) subset of $R^{n}$ ; thus its boundary is
homeomorphic to the $n-1$ sphere, $¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p¥approx S^{n-1}$ . Next, the natural mapping
$u(¥cdot)¥mapsto X_{t}(u)p$ maps $E$ onto $¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$. If we use the weak topology (or the $L_{1^{-}}$

topology), the mapping is continuous. Uniqueness in Theorem 6 then yields
$E¥approx¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ , so that $E¥approx S^{n-1}$ . With the same topology, $F¥approx S^{n-1}(¥mathrm{e}.¥mathrm{g}$ . use a
linear control system in $R^{n}$ , controllable and single-input (hence, normal) and
the natural correspondence between $F$ and the boundary of a reachable set $R_{t}$ ,
$¥partial R_{t}¥approx S^{n-1}$ ; the details are in [3] $)$ .

Thus in (4) we have $E¥approx S^{n-1}¥approx F$ . Now use the Preservation of Domain
Theorem, $¥mathrm{e}.¥mathrm{g}$ . in the formulation of [2, Thm. 3.9, p. 303]: if two subsets of an
$¥mathrm{m}$-manifold $M$ are homeomorphic, and one is open in $M$, then so is the
other. Indeed, $F¥approx S^{n-1}$ is an $(n -1)$-manifold, open in itself; then $E¥subset F$ is
homeomorphic to $S^{n-1}¥approx F$ , so $E$ is also open in $F$ . In addition, $E$ is compact
and non-void, and $F$ is connected. Thus necessarily $E=F$.

This concludes the proof.

The synthesis of extreme controls from Theorem 11 provides a construction
of attainable and reachable sets. Given (1) and $p¥neq 0$, one finds (at least in
principle) $¥epsilon>0$ as described in the statement. For each $t¥in(0, ¥epsilon)$ and $k$

$=0,1$ , $¥ldots$ , $n-1$ let $E_{k}^{+}(t)$ be the collection of all bang-bang control functions
$[0, t]$ with precisely $k$ switches, and with value 1 on the last interval; and
similarly for $E_{k}^{-}(t)$ , and last value ? 1. ($E_{k}^{+}(t)$ is a $¥mathrm{k}$-manifold, and
$¥bigcup_{k=0}^{n-1}E_{k}^{+}(t)¥cup E_{k}^{-}(t)$ is a disjoint decomposition of $S^{n-1}.$)

Next, let

(5) $M_{k}^{+}(t)=¥{X_{t}(u)p:u¥in E_{k}^{+}(t)¥}$ ,

and analogously for $M_{k}^{-}(t)$ . Then we obtain that

$¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p=n¥overline{k=0}M_{k}^{+}(t)1¥cup M_{k}^{-}(t)$ ,

a disjoint composition into $/¥mathrm{c}$-manifolds.
In practice one might carry this through for trial values of terminal time $t$

$>0$ without first checking that $t$ $<¥epsilon$ . This is particularly simple in the case of
$n=2$ : with $t$ $>0$ fixed, the extreme controls are

$u(r)=¥left¥{¥begin{array}{l}-1¥mathrm{f}¥mathrm{o}¥mathrm{r}r¥in[0,s]¥¥1¥mathrm{f}¥mathrm{o}¥mathrm{r}r¥in(s,t]¥end{array}¥right.$

(or ? $u(¥cdot)$ ), with a single switch parameter $s¥in[0, t]$ . The resulting trajectory
end-points $¥mathrm{t}¥mathrm{r}¥mathrm{a}¥mathrm{c}¥mathrm{e}$ two parametric curves with common end-points; these
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Fig. 2 Control $¥mathrm{o}¥mathrm{i}$ $¥dot{x}=y,¥dot{y}=(1-u)¥mathrm{x}$ , ? $1¥leq u¥leq 1$ ; attainable sets at
times 0.7 and 1.7 from initial point (2, 0.5).

constitute the boundary of an attainable set $¥epsilon¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ . Obvious misbehavior of
these boundary curves signals that the time length $t$ has been taken too large;
see Fig. 2.

Implicit in the above is a construction of feedback controls: still given $p$

and $¥epsilon$ , define $¥psi(¥cdot)$ thus: for $t¥in(0, ¥epsilon)$ let

$¥psi(x, t)=¥left¥{¥begin{array}{l}1¥mathrm{i}¥mathrm{f}¥mathrm{x}¥in¥bigcup_{k=1}^{n-1}M_{k}^{+}(t)¥¥-1¥mathrm{i}¥mathrm{f}¥mathrm{x}¥in¥bigcup_{k=1}^{n-1}M_{k}^{-}(t)¥end{array}¥right.$

(see (5)); then the extreme solutions $x(¥cdot)$ issuing from $p$ satisfy

(6) $¥dot{x}(t)=(A+¥psi(x(t), t)bc^{*})x(t)$ .

Here the domain of $¥psi$ consists of all $(x, t)$ subject to

$¥mathrm{x}¥in¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ , $ 0<t<¥epsilon$

(from Corollary 8, $¥mathrm{u}¥partial¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p=¥cup¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p$ ).
Uniqueness provides a state-dependent feedback for optimal

controls. Indeed, consider any $ x¥in¥cup$ $¥{¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p:0¥leq t<¥epsilon¥}$ ; let
$¥theta=T(x)$ be the minimal time,

$T(x)=¥min¥{t ¥geq 0:x¥in¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p¥}$ .

Then $x¥in¥partial¥ovalbox{¥tt¥small REJECT}_{¥theta}¥cdot p$ (Corollary 8); thus $x$ is attained by an admissible control $u(¥cdot)$

on $[0, ¥theta]$ uniquely determined by $x$ , and $u(¥cdot)$ is bang-bang (Theorem 6). One
may then define
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$¥varphi(x):=¥lim_{s¥rightarrow¥theta-}u(s)$ ,

and time-optimal solutions $¥mathrm{x}(¥cdot)$ issuing from $p$ satisfy

(7) $¥dot{X}=(A+¥varphi(x)bc^{*})x$

$¥mathrm{a}.¥mathrm{e}$ . Here the domain of $¥varphi$ is $¥cup$ $¥{¥ovalbox{¥tt¥small REJECT}_{t}¥cdot p:0¥leq t<¥epsilon¥}$ .

§4. Concluding remarks

In Section 3, a complete description was given for the class of exteme
controls (over short time intervals). The time-optimal controls form a subset
of these (Corollary 8); it is natural to ask how can one distinguish them.

Conjecture 1. For (1) with $(c^{*}, A, b)$ minimal, let $u(¥cdot)$ be extremal, and
$q¥neq 0$ an exterior normal to $¥ovalbox{¥tt¥small REJECT}_{t}$

.
$p$ at $x=X_{t}(a)p$. Then $u(¥cdot)$ is time-optimal if

$q^{*}X_{s}(u)p¥leq q^{*}X_{t}(u)p$

for $s¥rightarrow t-$ .

This is suggested by Fig 1, which also shows that the condition is not
necessary ($¥mathrm{e}.¥mathrm{g}$ . see the corner points).

In constructing feedback controls, it is rather superficial to present
equations such as (6) and (7), observing that extreme and optimal solutions also
satisfy these feedback equations. This is often quite irrelevant: it is the
converse that is of some practical interest (whether solutions of the feedback
equation are necessarily the optimal solutions to the original control problem).

Conjecture 2. For (1) with $(c^{*}, A, b)$ minimal and $p¥neq 0$, the time-optimal
feedback equation (7) has stability with respect to measurement (in the sense of
[4] $)$ ; in particular, every generalized solution $x(¥cdot)$ of (7) with initial value $x(0)$

$=p$ is a time-optimal solution of (1).

Added in proof: An obvious modification of the proof of Theorem 9
extends the conclusion to all controls that are extremal (cf. Corollary 8).
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