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1. Imtroduction

Let E, F be Banach spaces and let D be a compact subset in the Euclidean
space R™. Denote by LF(D, E) (p > 1) the space of all strongly measurable

functions x: D - E with J || x(¢)||? dt < oo, provided with the norm | x|,
D

1/p
=<f llx(t)ll"dt> .

In this paper we give sufficient conditions for the existence of a solution
xeI?(D, E) of the integral equation

(1) x(t) =f(@) + /lf K(t, s)g(s, x(s))ds

D

with the kernel
K(t, s) = A, s)|t —s| 7" (t,seD, t #5s),

where 0 < r < m and A4 is a bounded strongly measurable function from D x D
into the space of continuous linear mappings F — E.

Throughout this paper we shall assume that
1° felI?(D, E); '
2° (s, x) > ¢g(s, x) is a function from D x E into F such that

(i) g is strongly measurable in s and continuous in Xx;

(i) |lg(s, x)|| £ a(s) + bl x|| for seD and xeE, where aclI’(D, R) and

b=0.

In contrast to the case E = R", the above conditions are not sufficient for
the existence of a solution of (1) when E is infinite dimensional. Therefore one
has imposed additional conditions on g. We shall show that (1) has an I*-
solution whenever g satisfies a Lipschitz condition expressed in terms of
Kuratowski’s measure of noncompactness. Let us recall that another existence »
theorems for I?-solutions of (1), but with a kernel K eI?, were proved in the
papers [6] and [7]. Obviously, in general, a weakly singular kernel is not p-
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integrable.

2. Basic lemmas

It is well known that
) f lt —s|"ds £ Q for all teD,
D

where Q = 2n™2(diam D)"~"/(m — r) I (m/2).
Put ¢ = max{||A(t, s)||: s, te D}, [’ = [P(D, E) and

Sx)(t) = j K(t, s)x(s)ds (xelI?, te D).

Lemma 1. S is a continuous linear mapping of LF into itself and
IS < cQ.
Proof. By (2) for each ze}(D, R) we have

€) JJ It—SI_’IZ(S)Idsdt=J <j It—SI“'dt)lZ(SNdSéQJ |z(s)] ds,

and therefore for almost every te D there exists the integral

J [t — s|7"| z(s)| ds.

This shows that S is well defined. Let q=p/(p — 1). If xel?, then by the
Holder inequality

IS0 < j 1 AG, )1 I1x($)] 1 — sI777P|¢ — |~ ds

gc(j ux(s)nplz—srfds)w(f |t—s|—'ds>”q
écQ”q(J ux(s)npn—sr'ds)”p.

f [(Sx)(®)[|* dt = C"Q”/qJ <J I x(s) 1712 — SI”dS> dt

= CPQ"/"f (f It — SI_'dt> 1(s) |7 ds

Thus
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= C”Q"J 1x(s) 1|7 ds,
D

so that
[Sxll, = cQllx|,.
||

Lemma 2. Put §(x)(s) = g(s, x(s)) for xel? and seD. Then § is a
continuous mapping of LF into itself.

Proof. Let x,, xoel” and lim,, [x, — xo|, = 0. Suppose that | g(x,)
— g(xo)ll, does not converge to 0 as n— oco. Then there are ¢ >0 and a
subsequence {x,} such that

(4) 19(xs)) — G(xo)ll, >  for j=1,2,..

and lim;., . x, (s) = Xo(s) for a.e. seD. By 2° (i) we have lim;. [l g(s, x,,(s))
— g(s, xo(s)) || = 0 for a.e. seD. Moreover, as lim,_ , || x, — Xo |, = 0 implies
that the sequence {x,} has equiabsolutely continuous norms in L7, from 2° (ii) it
follows that the functions |/ g(-, x,) — g(-, xo)||¥ (n = 1, 2,...) are equi-integrable
on D. Hence, by the Vitali convergence theorem, lim;, ,, [|g(-, x,) — g(+, xo) |,
= 0. This contradicts (4). |

Denote by o and o, the Kuratowski measures of noncompactness in E and
LD, E), respectively. The next lemma clarifies the relation between o and
a,. For any set V of functions belonging to L'(D, E) denote by v the function
defined by v(t) = «(V(¢)) for te D (under the convention that a(X) = oo if X is
unbounded), where V(t) = {x(t): xe V}.

Lemma 3. Assume that V is a countable set of strongly measurable
functions D — E and there exists an integrable function u such that | x(t)|| £ u(t)
for all xeV and te D. Then the corresponding function v is integrable on D and

a({—[ x(t)dt: xe V}) < 2j v(t)dt.

If, in addition limsup | ||x(t + h) — x(t)||dt = O, then

h—0 xeV Jp

2, (V) <2 J v(t) dt.

D

(c¢f. [1], Th. 2.1 and [8], Th. 1).
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3. Existence theorems

Let H: D —> R, be a measurable function such that the function (¢, )
— || A(t, s)|| H(s) is bounded on D x D. Put

n = sup{| A, s)| H(s): t, se D}.
Theorem 1. If
5) alg(s, X)) = H(s)uX)
for seD and for each bounded subset X of E, then for each A€ R such that
(6) [A]bcQ < 1 and 2|A|nQ <1
there exists a solution xeI?(D, E) of (1).

Proof. As |A1|bcQ < 1, by Lemma 1 and the Banach fixed point theorem
there exists a nonnegative solution ue I’(D, R) of the integral equation

u(t) = 1 f@®1 + I/llf I K(t, s}l a(s)ds + Mlbj 1K (2, s)llu(s)ds.
Put B= {xel?: | x(¢)|| < u(t) for a.c. teD} and
G(x) = f + ASG(x) for xeB.

Since

GO = 1 f@] + Iilj IK(z, s)[l(a(s) + bl x(s)Il) ds

= If@l + IMJ I K(t, s)|| a(s)ds + Illbj I Kz, 5) | u(s) ds

= u(t)

for xe B and teD, Lemmas 1 and 2 prove that G is a continuous mapping B
— B. Moreover,

(7 116Gt + h) — Gx)@) | <d(t, h) for xeB, teD and small |h|,
where
u(t) if teD and t + h¢D,
dit, h) = 3 [ ft+h) —f@O

+ |i|j IK(t + h, s) — K(¢t, s)||(a(s) + bu(s))ds if t, t + heD.
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In view of (3) the function (t, s) = W(t, s) = K(t, s)(a(s) + bu(s)) is integrable on
D x D. Therefore

}iné f (j | K(t + h, s) — K(t, s)||(a(s) + bu(s)) ds> dt

~ lim J f IW(t + h, s) — W(t, s)|| dsdt

=0,

and consequently

(8) lim | d(t, hydt=0 for teD.

h—0 D

This fact, plus (7), implies that

)] limsup | [|G(x)(t + h) — G(x)(¥)] dt = 0.

k=0 xeB J p

Let V be a countable subset of B such that

(10) V < conv (G(V)U{0}).

Then V() = conv(G(V)(t)u {0} for ae. teD, so that
(11) V() < a(G(V)(1)) for a.e. teD.
Put v(t) = aw(V(t)) for teD. From (9) and (10) it is clear that

limsup | |x(t + h) — x(t)||dt = 0.

h=0 xev Jp

Moreover, |[x(t)]| < u(t) for all xeV and a.e. teD. Hence, by Lemma 3,
vel?(D, R) and

(12) o, (V) < 2J o(t) dt.

D

From (3) it follows that

(13) f [t — s| "(a(s) + bu(s))ds < oo for ae. teD.

Fix now teD such that the integral (13) is finite. Since

I K(t, $)g(s, x(s) || = c|t —s|""(a(s) + bu(s))  for xeB and seD,
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owing to (11), (5) and Lemma 3 we get

a(V() < Mlac({f K(t, s)g(s, x(s))ds: xe V})

<2|4| J a({K(t, 5)g(s, x(s)): xe€ V}) ds

< 2|4 J I Kz, s)I| H(s)ou(V(s)) ds,

ie.

u(t) = 2I/llj I K (2, s)|| H(s)o(s) ds .

As the last inequality holds for a.e. teD, from (2) it follows that
j v(t)dt < 2|/llj (f | A, )|l |t — s|~" H(s)v(s) ds) dt
D D D )

§2|1|J (J n[t—sl"dt)v(s)ds§2|i|nQJ‘ v(s) ds.

Because 2|A|nQ < 1, this proves that j v(t)dt = 0. Thus, by (12), o,(V) =0, so
D
that V is relatively compact in I!. On the other hand, the set B has

equiabsolutely continuous norms in I? and V< B. Consequently, V is
relatively compact in I*.

Applying now Monch’s fixed point theorem (see [3], Th. 2.1), we conclude
that there exists xe B such that x = G(x). Clearly x is a solution of (1). H

We shall now present another existence theorem for (1). Using (7) and (8),
and applying the method of proof of Theorem in [7], we can prove the
following

Theorem 2. If for any ¢ > 0 and for any bounded subset X of E there exists
a closed subset D, of D such that mes(D\D,) < ¢ and

() a(g(T x X)) = sup H(s)u(X)

seT

for each closed subset T of D,, then for each A€ R such that
(6) |AlbcQ < 1 and |AlnQ <1

there exists a solution xeI*(D, E) of (1).
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Let us remark that (5) is stronger than (5) while (6') is weaker than (6).

Corollary. Assume now that the functions A and f are continuous. Then
under the assumptions of Theorem 1 or Theorem 2 the equation (1) has a
continuous solution.

Proof. From Theorem 1 or Theorem 2 it is clear that there exists a
solution xeIf of (1). On the other hand, it is well known that if the function A4

is continuous, then for each yel'(D,E) the function Sy is
continuous. Consequently, the function x = f + S§(x) is continuous. |
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