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(*Tsing Hua University and Chen Kwok Technical School, Republic of China)

1. Introduction

There is an extensive literature on the topic of oscillation criteria for the
linear second order differential equation

u + p(x)u =0, 0<x< 0.

Oscillation criteria for second order linear difference equation have also been
investigated by a number of authors in recent years [2, 3, 5, 6, 7, 8, 10], but the
literature is relatively limited. In this paper, we are concerned with the
difference equation

(1.1) Azxk_lfi‘ bkxk = 0, k = 1, 2, 3,"‘

where 4 is the forward difference operator defined by 4x, = x,,.; — x;, and
{b,}7 is a nonnegative sequence with infinitely many positive terms. A
nontrivial solution {x,}¢& of (1.1) is said to be oscillatory if for every positive
integer N, there exists n> N such that x,x,,, <0, and nonoscillatory
otherwise. It is known that if (1.1) has an oscillatory solution then all its
nontrivial solutions are oscillatory [2, Theorem 7]. Thus we may classify (1.1)
as being oscillatory or nonoscillatory according to whether it has an oscillatory
solution or not.

We shall derive in this paper a number of oscillation criteria several of
which are discrete analogs of those of Nehari [9] and Hille [11]. As we shall
see in the following development, some of the ideas behind these analogs are
similar to those employed by Nehari, but the details are substantially different
due to the discrete nature of our equation (1.1).

In section two, we shall give a number of preparatory results, one of which
is based on Wirtinger’s type theorems obtained by Cheng [2, 3]. A lemma
which bridges discrete and continuous functions is also given here. In section
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three, oscillation and nonoscillation criteria are derived. In the last section, the
concept of conditional oscillation [9] is introduced and related oscillation
criteria are derived.

2. Preparatory lemmas

We shall make use of several preparatory results the first of which states
that a nonoscillatory solution of (1.1) is eventually monotonic.

Lemma 2.1. ([7, Lemma 4.2]) If {x,}& is a solution of (1.1) such that x,
>0 for all k > M, then Ax, >0 for k > M.

With respect to the real numbers ¢ and &, a real vector v = (vg, Uy, =", Vps ()
is said to be admissible if it is nontrivial and satisfies v, + ov, =0 and v, ,
+ ¢v, =0. A result of Cheng [2, 3] states that if u = (u,, uy,---,u,,,) is an
admissible solution of

Azuk—1+qkuk=09 k=1,2,---,n

then
n—1 n

(2.1) (I +o)ui + Y (du) + 1+ ut = Y, quuf,
k=1 k=1

and if v = (vy, v¢,---,V,+) 1S a solution of the above equation such that v, >0
for 1<k<n and vy, + ov, >0, v,,; + &¢v,>0 with at least one strict
inequality, then for any admissible vector w = (wy, W, =+, W,4 1),

(2.2) (1 + o)w? + nil (Aw)? + (1 + &)wE > i Qw2 .
k=1 k=1

As a consequence, we have the following

Theorem 2.1. Equation (1.1) is nonoscillatory if and only if there is a
positive integer M such that

N N—1

(2.3) Yo @ <Vusr1t+ Y (4w
k=M+1 k=M+1

holds for any nontrivial vector (Yar41s> Ya+2s s VN)-

Proof. 1If (1.1) is nonoscillatory, then there is a solution {x,}¢ which
satisfies x, > 0 for k > M. By Lemma 2.1, we have 4x, > 0 for k > M, so that
(2.3) holds by (2.2).

Conversely, suppose there exists a positive integer M such that (2.3) holds
for any nontrivial vector (Vp+1> Yar+2--5>¥y)- Let {x;}& be the solution of
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(1.1) determined by the conditions x,, = 0 and x,,,; = 1. We assert that Ax,
> 0 for k > M. Suppose to the contrary N is the first integer greater than M
such that 4xy <0 and that x, >0 for M + 1 <k < N. Define the vector
Dms1s Ymr2s5In8) bY e =%, for M +1 <k <N. Then according to (2.1),

N-1 N
y12\4+1+ Z (AJ’k)z_ Z ka’l%
k=M+1 k=M+1
N—1

N
= X1+ Z (4x,)* — _; bixi

k=M+1 k +1

= — (1 — xzv+1>x]2v = xyAdxy <0,

XN
which contradicts our assumption. Q.E.D.
As an illustration of Theorem 2.1, consider the difference equation

1
@k + )@k +2) *

2.4 A* x4 + 0, k=1,23,---.

We assert that this equation has a nonoscillatory solution. This can be shown
directly by finding a positive solution of (2.4) or indirectly by means of Theorem
2.1. First of all, consider the Riccati equation [6],

1 1
=2 — k=23,--.
LI @k + 1) (4 + 2)
Let y, = 5/4, then we can show by induction that
>1+ ! k=12
Tk 4k + 1)’ I

Indeed, our assertion clearly holds for k = 1. Assume our assertion holds for k
=n— 1, then

5 1 1
@n+10)@dn+2) y,-4

Yn =

1 1 1
2 _ 1
~ <4n+1 4n+2> Tt

=1+

1
+4

> _—
4n + 2 m+1)’

which completes our proof. Now let x, =43/60, x; =1 and x;. 1, =172 V&
for k > 1, then it is easily seen that {x,}J is a positive solution of (2.4). This
shows that (2.4) is nonoscillatory.
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Next, for ahy nontrivial vector (Va4 1, Var+2-'*»Vn), W€ have

N-1 N 1
2 + Av.)? — 2
Viert 3 M- N DAk
) N—-1 5 2 5 N 1 1 2
Ym+1 k=l‘z{1+1 {vi ViVer1 + Vie1) k=§+1 {4]( +1 4k + 2}3}"

1 N-1 1
=|1—-——" | y2 1 2 __
[ 4(M+1)+1]yM+1+k=§‘+1{|: +4k+2]y" 2VYiers

+ 1 ! 2 + ! 2
dk+ D+ 1 [T TaN 20

- 1 - 1 _16k2+28k+12>1
4k + 2 4k +1)+1 | 16k>+28k+10~

1
0 T S
sz dend - 1~

Since

1+ 0,

we have

1 1
1 2.2 l———— |y2,., >

and equality holds only if y,=y;=0. Since (Vars1> Varsa>-">Vy) IS
nontrivial, we see that

N 1
2
k=§+1(4k T 1)(@dk +2)7%

N-1
< Vh+1 + k—J\Zl:+1 (4y)?,

which, by means of Theorem 2.1, shows that (2.4) is nonoscillatory.
As another example, the second order linear difference equation

1

% =0, k=123
2k2k + 1)k it

(2.5) A*x,_ 1 +

has a positive solution {x,}& defined by x, =1 and

2 4
2k k> 1.

=1-2.2
Xk 13 2%k—1’ =

This shows that (2.4) is nonoscillatory.
Next, for any nontrivial vector (Var+1, Var+2-'"*»Vn), WE have

1

N-1 N
yM+1 k=;+1( yk) k=§+12k(2k+ 1)yk
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M1, i 2k + 2 2k + 1 S PO
oMMt e S| YT kw2 || ToaN 1V =Y
2% + 1
2%k + 2

Va1 =Yy =0. Since (Var+1,> Ym+2-"+"»Yn) is @ nontrivial vector, therefore, we
obtain

N

where equality holds only if y, = [ ]yk+1 fork=M+1,---,N — 1, and

-1

N
- A 2
e §+12k(2k+ 1) )’M+1+ _§,+1( Vi)

Lemma 2.3. If (k) =ak + b, then
(i) Ay ti(k) > a(x + Dy (k) if 120,a>0,y(k)=0,
(ii) AyYri(k) > a(z + DYk + 1) if —1<1t<0,a>0,y(k)=0,

(iii) {At//”z(k)}z_4( 0 Ay k= 1)

fo0<t<2t#1,a>0yk—1)>0,

2

at
(-1

(V) @0z A=) 120 yk—1)20.a>0,

(iv) {4y72(k)}* < Ak +1)  if t>24(k)>0a>0,

(vi) a¢f(k)>“+14¢t+l(k) if 1<0,1%# — 1,k >0,a>0.

Proof. Suppose 1 >0, a>0 and yY(k)>0. Then by the mean value
theorem, we have

Al/lﬁ'l(k) — l//1:+1(k + 1) - l//r+1(k)
=a(t + VY& = a(t + DY'(k), k<é&<k+1,

which proves the validity of (i). The case (i) is similarly proved.
fo<t<2 17#1,a>0, and ¥y (k — 1) > 0, then

{4y} = (Y2 (k + 1) — Y72 (k) }?

at?
=T{a¢"2(uk)} k<p<k+1

< sl 2k
—T{al// (k) }
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2 (k)
art

= T xr_zdx

Yk—1)

at?

“ s _pv k=D,

which proves the validity of (iii). The case (iv) is similarly proved.
If 1>0,a>0 and y(k — 1) > 0, then
0]

ay*(k) = a(ak + b)* > J. x*dx
Wik —1)

1 +1 t+1
=H_—1{l// (k) =y ik — 1)}

1
=—— Ay k-1
which proves the validity of (v). The case (vi) is similarly proved.
) Q.E.D.

For sequences {x,} and {y.}, the following summation by parts (also
known as the Abel’s transformation) will be useful:

Z X AV = Xps1Vn+1 — XmVm — kz Vi+14Xy.

k=m

3. Oscillation criteria

We first illustrate how Theorem 2.1 can be applied to yield oscillation
criteria in a very simple case. If equation (1.1) is nonoscillatory, then there
exists a positive integer M such that (2.3) holds for any nontrivial vector
Vpr+1> Yme2o->¥Yn). Let n be a positive integer such that M <n < N, and let

. (k— M)/(n — M) M+1<k<n,

e =11 k> n.
Then

N—1 n—1 N—1
(3.1) y12w+1 + Z (AJ’k)Z = )’12u+1 + Z (A,Vk)2 + Z (Ayk)2 S

k=M+1 k=M+1 K=n n—M
By (2.3), we then have

N N N 1
k=n+1 k=n+1 k=M+1 n—M



Second Order Difference Equation 229
Since N may be taken arbitrarily large, thus (3.2) implies
m—M) > b <1
k=n+1

Letting
b* =limsup n ) b,

R k=n+

[

we see that if b* > 1, then (1.1) is oscillatory.
More generally, we have the following

Theorem 3.1. If (1.1) is nonoscillatory and 0 < oo < 1, f > 1, then for any
real number w, there exists a positive integer M > w, such that

(33)  limsup{(—a)' " Y (k—ofb+m—o)* Y (k—wrb,

k +1 k=n+1

p—a 1
< i)

Proof. Since (1.1) is nonoscillatory, it has a solution {x,} such that x, > 0
for k>M >w. By Lemma 2.2, (2.3) holds for any nontrivial vector
(Vam+15 Ym+2->Yn)- Let n be a positive integer such that M < n < N and let

k—ow Jf?
[ :' M <k <n,

n—w

e = ko T2 .
[ :I n<k<N.
n—ow

Note first that since

_ o/ 2 1 — B2
Aynzl:n—Fl w} _1<[n+ a):| 1
n—m n— o

G4 Vit Y Uy

k=M+1

n _ 8/2 _ /2 2
<Vt ¥ {[k—Fl a):l _[k w} }
k=M+1 n—ao n—aow
N—1 k+1— /2 k — /273 2
R = I e
k=n+1 n—aw n—aw
We have two cases to consider. If 1 < f <2, then by Lemma 2.3 (iii) and (3.4),
we have

it follows that




230 Sui Sun CHENG, Tze Cheung YAN and Horng Jaan L1

N-1
(.5 Ve + 3 (A
' 1 e [kt [k—1-o]
<y12‘4+1+4(ﬁ—1)n—~wk=§+1{|:n_w:| _[‘%—w~:| }
o2 1 N-—1 k—om F1! k—1—w |*7!
+4(cx—1)n—a)k=;+1{|:n-w:| _I:—n—————w_:l }
) g1 M-
=J’M+1+4(ﬁ_1)n_w{1_|:n—a)] }
R [N"—l“w "
+4(oc—1)n~~a) o n—ow:

M+1—o B> o?
<[ ] tiE - Do) Tl =)

n—aow
Since
N n N
(3.6) Y byi=tn—o)t Y (k—ofb+m-—w)* Y (k— )b,
k=M+1 k=M+1 k=n+1

by (2.3) and (3.5), it follows that

(n—ow)*? i (k — w)fb, + (n — w)™* i (k — w)*b,

M+1—o | B> o?
<[ P— ]+4(ﬁ—1)(n—w)+4(1—a)(n—w)'

Multiplying the above inequality by (n — w) and letting N approach infinity, we
obtain

n 0

m—o)t? Y k—ofb+n—w) > (k—w) b

k=M+1 k=n+1
2 2
+ A I S
4—-1) 4(1-o

[M+1~w
S S —
n—w

f—1
:| M+1—ow)

which implies (3.3) as desired.
If B> 2, then by (3.4) and Lemma 3.3 (iii-iv), we have

N-1
(3.7) J’12u+1+ Z (AJ’k)z
k=M+1

2y B> 1 i k+2—ow P! k+1—o P71
Yu+1 40— Dn — 0 x=%'+1 n—am n—w
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o? 1 Nil k—ow P! k—1—ow |*1
4la—Dn—owiF41 || n—o n— o
M+1—ow ”+ B> 1 n+2—ow |f1 M+2—o P!
n—aw 46— DHn—w n—ow n—aw
o? 1 1 n—ao 1-a
41 —o)n— w N—-—1—-w

M+1—o B> [n+2—co p-1 a?
<[ — :|+4(B—1)(n'—a)) n—a):l R TRyt

By (2.3), (3.6) and (3.7), we then have

+r——1+

n

- Y (k- wM+m—@a§(—wwk

k=M+1 k=n+1

M+1—ow P 1 n+2—ow 1 o?
Sl Thte | ThTo 4(/3—1) - tia—a |

Again, multiplying the above inequality by (n — w) and then letting N approach
infinity, we obtain

m—aw)t™? Y (k—ofb+m—w)' Y (k—wrb
k=M-+1 k=n+1
M+1—of! B2 [n+2-—o P! o2
yrr-ae M4+1— _*
S[ " ] (M + w)+{4(ﬁ—1)[ — ] +4(1—<x)}’
which implies (3.3) as desired. Q.E.D.

If we choose w =0 in the above Theorem, then (3.3) is changed to

(3.8) limsup {n' =% Y Kb +n'"* Y kiby)
M

n—co k=M+1 k=n+1

B —a 1
=" %+w—nu—w}

Furthermore, since both terms on the left hand side of (3.8) are nonnegative, we
may let « =0 in (3.8) to obtain

: L B*
limsup nt~# kfb, <
ke 3 ot b 406 — 1)
and let f =2 to obtain
2 —a)?

(3.9) limsup n'™* ) k%, <
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Note that if we let « = 0 in (3.9), then we shall obtain b* < 1, which has been
shown earlier.
For the next result, we shall need the sequence {r,}{ defined by

(3.10) Tk = kl"rl Z jabj,

j=k+1
where 0 < a < 1. Note that if (1.1) is nonoscillatory, then the positive sequence
{r,} is bounded in view of (3.9).

Theorem 3.2 Suppose 0 <a <1, p>1 and (1.1) is nonoscillatory, then
there exists a positive integer M such that

n—1

1 1
3.11 limsup n' # K 2r, <-+ .
G.11) msup n Y K St DA —w

Proof. Note first that if we let

T,=k*"'r,= ) jbj k> M,

j=k+1

then in view of (3.9), T is bounded and
AT, = — (k + 1)*b, 4, <0, k> M,
bk= _k_aATk_l, k2M+1.

Consider first the case f —a — 1> 0. Since

Y Kho=— Y KeAT,_,
=M

k +1 k=M+1

summing the right hand side by parts, we then have

Y, Kbh=—m+ 1T, + M+ 1)\ *Tyy+ Y T, kP~
=M =M

k=M+1 k=M+1

: n—1
= - T,+ M+ 1) Ty + >  TdkP™=
k=M-+1

vn—l
>t T, 4 Y TAkPe

k=M+1

n—1
> —nf T, + Y T — a)kf et

k=M-+1
n—1
==l B0 Y nk2,
k=M+1

where Lemma 2.3 (i) has been used to derive the second inequality.
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Next we consider the case f —a — 1 < 0. Since

b= — Y K 4T >~ Y (k— AT,
M

k=M+1 k=M+1 k=M+1

n

summing the last term by parts again, we obtain

Y Kby —nfT T, + M Ty + > T Ak — 1)
k=M+1 k=M+1
n—1
>—n""T,+ > T(B—o)kf™o?
1

k=M+

n—1

=—nlr,+(f—a) Y nrki?

k=M-+1

where Lemma 2.3 (ii) has been used to derive the second inequality.
In cither case, it follows that

n—1 n 00
B—oyn' % Y nkfF2<n™f Y Kb +n'"* Y k*b,
k=M+1 k=M-+1 k=n+1
Our assertion is now clear from Theorem 3.1. Q.E.D.

Theorem 3.3. [If (1.1) is nonoscillatory and 0 < o« < 1, then

1
3.12 liminf n' k*b, <
( ) n= o k ;+1 , 4(1 - OC)
Proof. If 1 < B < 2, then by Theorem 3.2, there is a positive integer M
such that (3.11) holds. Let z be an integer such that M + 1 <z <n — 1, then

z—1 1
. . 1-8 kﬁ—Z lﬁ B—2
(.13) limsup{n' Y K7+ Z" =g 46— D —a)

k=M+1

Let m, =inf{r, |k =z,z + 1,---}, then

n—1 n=1[ [ —-21
ntTEN kKT >m, Y [ ] -
k=z k=z

n n

n—1 1 kPt m, z 1
ML "[E] =B—1{1_[n] }

where the second inequality is obtained by means of Lemma 2.3 (vi). It
follows that

1 1
> limsup n'~# Z kP~ 2p, >

m,
4 4(ﬁ—1)(1— o) ncw B —
Multiplying throughout by f — 1 and letting f — 1, we have
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<
" =401~ o)
which implies (3.12) as desired. Q.E.D.
As an immediate consequence, we may let « = 0 in Theorem 3.3 to obtain

Theorem 3.4. If (1.1) is nonoscillatory, then

X 1
(3.14) b, =liminf n 5 b, <-.
n=o k=n+1 4

The number 1/4 is the best possible.

To see that (3.14) is sharp, let b, = 1/2k(2k + 1) for k > 1. As we have
seen, the equation (2.5) is nonoscillatory. Also

1 1 o
= — liminf ' _liminf
g=lminln 3 g+ Siminfn 2 b

+

= 1( 1 1 1

— lim inf - - -
pt "k=§+12{2k—1 2k+1} 4

as desired.
A further example can be given. The Riccati equation
1 1

3.15 =2 —— k=23,
(3-15) e RS

has a solution {y,}? which satisfies y, = 11/8 and y, > (2k + 2)/(2k + 1) for
k > 2. Thus the difference equation

1

%, =0 — 1,23,
Ak + 1) > k=123

(3.16) A,y +

has a nonoscillatory solution x,=1/2, x;=1, X4y =772 for
k> 1. Since

® 1 n 1 1 1
lim inf ST WL S T
minfn 2 Gk +1) - amin 4,(:;1[1( k+1] 4
we see that the number 1/4 in (3.14) is the best possible.

Theorem 3.5. (cf. [5, Theorem 5]) If (1.1) is oscillatory, then

limsup n ), b, >

n=o k=n+1

Bl

The proof is essentially as that of Theorem 5 in [5], and is thus
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omitted. Note, however, that an additional assumption is imposed in [5,
Theorem 5].
As an example, the difference equation

2

_t x = -1
Wk =% k=123

A*xp 4 +

is nonoscillatory since

@© 2 2 : o 1
li S -
mSup n ) kGk+2) 9 MW X ikt2/3)

2 © 1 2 © [ 1 1
<Zii Ly LR
<glimsup n D Tk—1) o' msup "k=;+1[k—1 k}
= 2/9 < 1/4.

Indeed, the above equation has a nonoscillatory solution x,=1, x,

3-6 3k for k=1,2,---.

4. Conditional oscillation criteria

As in [9], we can divide the class of equations (1.1) according to the
following definitions:
(a) The equation (1.1) is said to be strongly oscillatory if the equation

(4.1) Axy_ i+ Abx, =0, k=1,23,--

is oscillatory for all positive values of A.
(b) The equation (1.1) is said to be strongly nonoscillatory if (4.1) is
nonoscillatory for all A
(c) The equation (1.1) is said to be conditionally oscillatory if (4.1) is oscillatory
for some positive 4 and nonoscillatory for some other 1 > 0.

By Cheng’s comparison theorem [2, Theorem 6], it follows that in the case
(c) there must exist a positive number u[b] such that (4.1) is oscillatory for A
> u[b] and nonoscillatory for 4 < u[b]. This number u[b] will be called the
oscillation constant of {b,}.

Theorem 4.1. Equation (1.1) is strongly oscillatory if and only if

limsup n ) b, = co.

n—o k=n+1

Equation (1.1) is strongly nonoscillatory if and only if
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limsup n i b, = 0.
n= o k=n+1
In view of Theorems 3.4 and 3.5, the proof is similar to that of Theorem II
in [9] and is thus omitted.
By means of the above Theorem, it is not difficult to see that the following
equations
(c + 1)?

Azxk_l‘f c xk==0, k==1,2,3f'3 c>0
Azxk41+k_“xk=0, k:1,2,3,'“, O(Sl,
A?x,_, + [cosk™]x, =0, k=123

2k
Ax 4 X, = k=1,2 3,

are strongly oscillatory; while the following equation
Azxk_1+c_kxk:(), k=1, 2, 3,"', C>1
is strongly nonoscillatory.

Theorem 4.2. Let {b,}? and {a,}7 be two nonnegative sequences each of
which has infinitely many positive terms, and let p[a] (0 < p[a] < oo0) be the
oscillation constant of {a,}y. Let

b,
4.2) ¥ = liminf *=2°1 .

n— oo
ay
k=n+1

If ¥ > ulal, then (1.1) is oscillatory.
Proof. The difference equation
A?x,_ 1 + Aayx, = 0, k=123,
is oscillatory if 4 > u[a]. Thus by Theorem 3.5, we have
limsup n i akzi,
oo k=nt1 4,
so that for any 1/4u[a] > &> 0, there exists a positive integer M such that

— —&, n>M.

As A — u[a], we have
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a0

=Z—————§&, > M,
nk=§;1ak 4plal ’ "
so that
n WZ by 1 -
¥ < liminf <"1 = liminf n Y b,
n— oo 1 . 1 . noo  p=pha
4plal 4ula]
Since this implies
. X 1
liminf n ) b, >-,
n— o k=n+1 4
by Theorem 3.4, (1.1) is oscillatory. Q.E.D.

Theorem 4.3. Let {b.}? and {a,}7 be two nonnegative sequences each of
which has infinitely many positive terms, and let u[b] (0 < u[b] < o) and ula]
(0 < ula]l <o) be the oscillation constants of {b}yY and {a}f
respectively. Then ¥ < ul[al/u[b], where ¥ is defined by (4.2), and (1.1) is
nonoscillatory if

e ¢]

T = lirnnﬁsotlp’f%—}* < ulal.
k=n+1
Proof. Note that by the definition of u[b] the difference equation
A*x,_; + (u[b] — e)byx, = 0, k=1,23,--
is nonoscillatory for any ¢ > 0. Thus by Theorem 4.2,

Wbl —2) Y b,
(4[b] — &) ¥ = liminf— k=ntl < uld].

je o]
Zak

k=n+1

Since ¢ is arbitrary, ¥ < u[a]/u[b] is clear.
Next, since
Ay

.. ok=n+1
— = liminf *—2——
T n— oo

by

k=n+1
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by means of the first part of our Theorem, we have 1/t < u[b]/ul[a], or
equivalently, u[a] < u[b]z. If (1.1) is oscillatory, then u[b] < 1 by definition
of u[b], thus uf[al <t as required. Q.E.D.

As an example, let a,=1/k(k+ 1) for k=1,2,---. Since (3.16)
nonoscillatory, the oscillation constant u[a] of {a,} is greater than or equal to
1/4. Since

liminf n S A
£y "k=§+1k(k+1)

if A>1/4. then by Theorem 3.4,

A
2 _— ==
A xk_1+k(k+1)xk O

is oscillatory, thus u is equal to 1/4. As a consequence, if

lim inf k=;+ ! " > l
n— o 1 4’

k=;+1 k(k + 1)

then (1.1) is oscillatory, and if

2 by
lim sup k_"“l <7

k=;+ 1k(k + 1)

then (1.1) is nonoscillatory. For instance, if b, = 3/4k(4k + 1) for k > 1, then

2 3 3 = 1
i T
ak+ 1 16424 1 k(k — 1
fimsupt= L ARER D up 8 Rk =D g s
n— o0 i 1 n— o i 1
oLkl + 1) ok + D)
Thus
, 3
Axk_1+ =0, kZl,

ak(dk + 1)k

is nonoscillatory. Indeed, it has a nonoscillatory solution x, =1, Xx;
4 8 4k
15 dk—3

=1- for k> 1.
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