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Continuous Dependence on Obstacles in
Variational Inequalities
By

Hiroshi ToyoizuMi

§1. Introduction
We shall study elliptic variational inequalities of the type,
(P) ue K@) = {ve Hy(Q2): v > ¢ a.e. in Q}:
{Au,v —uy = {fyv—uy v e K(Y)

where A is an elliptic operator and (-, -> is the dual bracket between Hj(£2)
and H'(Q).

The aim of this paper is to present some results on the continuous depen-
dence on the obstacle ¥ in (P). To state our problem more precisely, we
consider a sequence of obstacles (,),»; converging to ¥ in suitable sense as
n — oo, and for each n > 1 we consider variational inequalities:

(P,) u, € K(,) = {v € Hp(Q): v = ¢, a.e. in 2}:
<Aunav_un> = <f90*un> VUEK(‘//n)‘

Our purpose here is to study sufficient conditions on (y,) which imply that
the sequence of the solution (u,) converges to u in some sense. This kind of
problems are sometimes called “varying obstacle problems.”

We have already known some results on these problems. In 1969,
U. Mosco [4] introduced a very useful concept for stability of variational
inequalities. First we recall the definition of Mosco sense convergence. Let
K, be a closed convex set in H'(2). A sequence of convex sets (K,) converges
to K in the sense of Mosco, if following two hypotheses hold.
(1) For all ve K there exists v, € K, such that

v, >V strongly in H'(Q).
(2) For any subsequence v, € K, such that
v, >V weakly in H'(Q), we can deduce ve K.

Applying Mosco’s theorem in [4] to obstacle problems, we find that (u,)
converges to u on condition that (K(y,)) converges to K(y) in the sense of
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Mosco. After that, H. Attouch and C. Picard showed that

K, - K@) and K(—y,)—» K(—Vy) in the sense of Mosco

if and only if
Yo~y in LX),

where L2(2) is L*(22)-capacity. To see more detail, we refer to H. Attouch
and C. Picard [1]. Consequently, we find that (u,) converges to u in H'(Q)
provided that (i,) converges to ¥ in L2(€2). Also, by easy computation we
can show that (u,) converges to u in L*(2) when (y,) converges to y in L®(£2).

On the other hand it has been known that the solution (u,) does not
converge to u with highly oscillating obstacles or fakir’s carpets. We will see
a simple example in Section 3. Furthermore readers may find some other
examples in D. Cioranescue and F. Murat [3], and H. Attouch and C. Picard
[2].

In this paper we give new results on these problems. To mention our
results, we offer some definitions of obstacles. We say that a sequence of
obstacles (1,),-; approaches to y from below (resp. above) a.e. in Q if following
two hypotheses holds.

() v, >y ae. in Q2 as n— o,

and for all n > 1,
(ii) v, <y (resp. ¥, > ) ae. in Q.

Also, we say that (y,),~; approaches to ¥ from below in L?*(£2) when (¥,),>1
converges to Y in L%(Q) and ¥, <y ae. in Q. We shall deal with three
different cases; obstacles approaching from below, concave obstacles approach-
ing from above and convex obstacles approaching from above.

This paper is organized as follows: In Section 2 we deal with obstacles
approaching from below. We show that (u,) converges to u in H'(£2) provided
that (y,) approaches to ¢ from below a.. in . (See Theorem 2.2.) In
Section 3, we deal with obstacles approaching from above. We need to assume
some additional hypotheses for obstacles since at the end of Section 3 we
may see a counterexample such that (u,) does not converge to u in any sense.
It was proved in Theorem 3.1 that (u,) converges to u in Hy(2) when (,)
approaches to  from above in L*(Q) and ¢, is convex. Further, we show
in Theorem 3.3 that (u,) converges to u in L*($2) provided that (y,) approaches
to y from above in L*(Q2) and ¥, is concave. In Section 4 we will deal with
singular perturbation problems in variational inequalities when the obstacle
(y,) converges to Y in some sense.
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Throughout this paper we use the following notation:

Q < R"; a bounded domain with its smooth boundary 0Q.

HY(Q) = W'2(Q) = {ue L*(R); Vu e [L*(£2)]"}, where Vu is generalized gradient
of u.

H{(Q) = H'-closure of CZ(£).

Q(2) = the vector space of equivalent classes for quasi-continuous functions.

L2(Q) = {Y € Q(Q); ¥ = |y quasi everywhere in Q for some v e Hy(Q)}, where
¥ is quasi-continuous representative of .
(We see the definition of quasi-continuous functions and quasi every-
where in Rodrigues [5] Section 5:8.)

(-, *); the inner product of L*(Q).

(-, ->; the dual bracket between HJ(£2) and its dual space H™(Q).

§2. Obstacles approaching from below

We consider variational inequalities with obstacles approaching from below
in this section. We assume some hypotheses on obstacles, ¢ and ¥,, and the
mapping A:

(H.1) ¢, ¢, € LX),
(H.2) A: H}(2)— H () is Lipschitz and coercive, i.e. for all v and w, we have

| Au — AW”H-l(Q) < Mlv — W”H},(Q)

and

CAv — Aw, v — w) = allv — Wi g

where M and a are positive constants,
and
(H.3) the given function f belongs to H™'(Q).
Then we can consider the following variational inequalities.

(P,) u, e K(,) = {ve H}(Q): v >y, a.e. in Q}:

CAUyy v — Uy ) = {fy 0 — 1) v e K(Y,)
and their limit;
(P) ue K) = {ve Hy(Q): v > a.e. in Q}:

{Au,v —u) > {f, v —u) e K().

By Lions—Stampacchia’s standard theorem for variational inequalities, we
have unique solutions of (P,) and (P), u, and u under the hypotheses (H.1)—-(H.3).
(See Rodrigues [5].) First we give the following a-priori estimate.
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Lemma 2.1. (A-priori Estimate) Suppose there exists v, € (\,=1 K(¥,) and
(Y,) converges to Y ae. in Q. We have the estimate for u,;

1
(2.1) lu, — 00“%1})(9) < &(“f”u—l(sz) + || Avg ||H—1(Q)) .

Moreover we may take a subsequence of (u,), which we denote by (u,)
again, satisfying

(2.2) u, - u* weakly in H}(R2),
(2.3) u, —> u* strongly in L?(R2),
(2.4) u, > u* a.e. in Q,

for some u* € K(y).

Proof of Lemma 2.1. We take v =v, in (P,) to have
(25) CAuy, vo — u, > = {f, 0o — U, .
By coercivity of the mapping 4, we find
(2.6) oflu, — voll* < {Au, — Avg, U, — v .
We use (2.5) and (2.6) to show
2.7) aflu, — voll* < f — Ave, 4, — vo) -
Since A is Lipschitz and fe H 1(Q), we deduce

1
|, — Uoan,(Q) < &(”f“lrl(g) + [|Avg || g-1(0)) -

Then we can take a subsequence which satisfies

(2.8) u, - u* weakly in H}(Q2),
(2.9) u, — u* strongly in L2(Q),
(2.10) u, > u* a.e in Q,

for some u* € H{(Q).
Now we show u* e K(}). Since u, € K(y,), we have

2.11) u, >y, ae. in Q.

Letting n —» oo in (2.11), we find by (2.10) and by the assumption of this lemma,
(2.12) u* >y ae in Q.

Then we deduce u* € K(y). [
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Theorem 2.2. (Obstacles Approaching from Below) Under the hypotheses
(H.1), (H.2) and (H.3), if the sequence of obstacles ({,),~, approaches to Y from
below a.e. in Q, then the solution converges in H}(Q);

(2.13) u, > u strongly in H}(Q).

Proof of Theorem 2.2. Since (Y,),>; approaches to ¥ from below, we
have for all n>1, :

(2.14) K@) = K(,) -

Also, since Y € L2(Q2), K(y) is not empty. (See Rodrigues [5] P 181))
So there exists vy € (),»1 K(,). Using Lemma 2.1, we find

(2.15) u, - u* weakly in H}(Q),

for some u* € K(y).
Now, we show u* =u. By Minty’s Lemma, (See Rodrigues [5] p 99.)

CAv, v —u,y = {fi0 — u, Yve Ky, .
Using (2.14), we can take K(y) instead of K(y,).
CAv, v —u,y = {f, v —u, Yve K().
Then we pass to the limit n — oo, according to the convergence (2.15).
u* e K(Y): {Av, v — u*> > {f, v — u*) we K(y) .
By using Minty’s Lemma again, we have
u* e K(): <Au*,v —u*) > {f,v — u*) “we K(y).
By the uniqueness of the problem (P), we find
u*=u.
Consequently we found

u, > u weakly in H}(Q).

To end this proof, we show strong convergence. Put vy, =u in (2.7) to
have ‘

(2.16) allu, — ullfyo) < f — Au, u, — u) .
Let n—> oo in (2.16), then we find
u, > u strongly in H}(Q). O

Remark 2.4. 1In this paper we consider Dirichlet boundary value problems
with zero boundary data for simplicity. However it is very easy to extend
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our results to the general Dirichlet boundary value problems. In those cases
we need a compatibility condition for the obstacles such that

where § is the usual extension of g e HY?(Q) which is boundary data of
Dirichlet problem. Then, instead of (2.13), we have

u, > u strongly in H(Q).

§3. Obstacles approaching from above

We shall consider obstacles approaching from above in L?(Q2) and give
a counterexample. First we offer a case that the solution converges in Hg(£2)
when the convex obstacle converges in L2(£2).

Theorem 3.1. (Obstacles Approaching from Above 1) Let obstacles ,
belong to H(Q) and satisfy a hypothesis,

(3.1) — Ay, <0  in HYQ).

If (Y,).>1 approaches to Y from above in L*(Q2), then the solution (u,)
converges to u strongly in H}(L2);

u, > u strongly in Hy(Q) .
An important step in the proof of Theorem 3.1 is the following

Lemma 3.2. For all we K(y) we have an approximation of w denoted by
(w,), which satisfies
w, € K(,) for all n>1,

and
W, — W strongly in Hy(9) .

Proof of Lemma 3.2. By (3.1) and the usual maximum principle for — A4,
we find that

v, <0 ae. in Q.

Hence we have
0e K(y,) forall n>1.

Then we can deduce an a-priori estimate by the same technique as in Lemma
2.1.

(3.2) ltnll o) < C s

where C is a positive constant independent of n.
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Define w, as the approximation for each w e K(y) such that
1
(3.3) w, € H}(Q): —;;Aw,, +w,=wVvYy,,

where w v ¥, = max (w, ).

In fact, w, converges to w in H}(£2) by the theory of singular perturbation
problems;

(3.4) wW,SWwWVYy=w strongly in H3(Q).

(See Rodrigues [5] Section 4:9.)
Now, we show that w, e K(y,). Multiplying (3.3) by (¥, — w,)" and inte-
grating by parts, we find

| | = [ v

1
Adding j (—Edlﬁ,, + l//,,> (Y, — w,)" to both sides, we have

Q

1f|wm—nrﬁ+fum—nrﬁ
nJjo Q

1
= J‘ <__A!//n + !//n —wyV lpn)(lpn - wn)+ .
fo) n
By the assumption (3.1) we deduce

1 1
_‘Al/fn+¢n—wv ‘Pn: ”ZA!/jn_(w'—wn)-'- SO
n
Hence we have
1
—j IV, — w) 1> + J |, — w,)"1? <0.
nJjo Q :
Then we find that
w, =Y, ae. in Q.

Consequently we have an approximation (w,) for each we K(¥), ie.

w, € K(,) such that

W, > W strongly in H3(Q). O

Then we proceed the proof of Theorem 3.1.
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Proof of Theorem 3.1. Using Minty’s Lemma on (P,), we find
(35) <AW, w— un> = <.f9 w— un> Vw € K(l//n) .

By Lemma 3.2 we have an approximation (v,) of ve K(). Taking w = v, in
(3.5), we find

(36) <Avn’ Uy — un> = <f; v, — un> .
Letting n — oo in (3.6), we find
CAv,v —u*y > {fiv—u*)  "veKW),

where u* is used in Lemma 2.1.
On the other hand we find u* € K(y) by the same technique as we used
in Section 2. Then, using Minty’s lemma, we have

u* e K(y): CAu*, v — u*> > {f, v — u*> Yve K(),

where u* is used in Lamma 3.1.
By the uniqueness of solution of (P), we find

u*=u.
Hence we find
LU weakly in H}(Q).

u

We will proceed strong convergence. From Lemma 3.2 we can take an
approximation of u, denoted by (#,). Since A is the coercive mapping, we have

ollu, — an”%lé(ﬁ) < <{Au, — Ail,, u, — 4, .
Taking into account of (P,), we have

ol — gy < <f — Ay, Uy — 3, .
Let n— oo, and we easily find that

u,—>u strongly in H}(Q). O
Remark 3.3. The assumption (3.1) implies that
Y, <0 ae. in Q,

and V, is convex.

Now we will deal with another case that the solution converges in L?(£2)
when the concave obstacle converges in L?(§2). We need to recall the definition
of strictly T-monotone to use the comparison theorem.
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Definition: Let V be a Hilbert lattice, for example L?(2) or H}(£2). One
says that an operator A is strictly T-monotone in V, if for all v and we V
with (v — w)* # 0, we have

(3.7) | CAv — Aw, (1 — w)t> > 0.

Theorem 3.4. (Obstacles Approaching from Above 2) We assume (H.1),
(H.3) and the following hypotheses:
(H.2) A: H}(Q2)— H () is linear bounded, coercive and strictly T-monotone
operator,
and
(H.4) There exists g, € H () such that

(3.3) gn = AY — AY, in H(Q),
(3.9) g,—0 strongly in H™1(Q) .

If the sequence of obstacles (,),~, approaches to W from above in L*(Q),
then we have

u,—>u strongly in L*(Q).

Remark 3.5. By the standard theory of elliptic problems, we find that
there exists w, € H}(£2) such that

w, >y — 1, ae. in Q,
and
w,—0 strongly in H{(£2)

under the assumption (H.4).
Moreover if g, <0 in H™'(L2), then we find that

(3.10) v, =y ae. in Q.

Hence we need not to assume the hypotheses (3.10) in this case.
If A= —4 and ¥ =0, then (3.9) implies that , is concave.

Proof of Theorem 3.4. Define w, as a unique solution of auxiliary varia-
tional inequality below,

(3.11) w, € K(): CAw,, v — w,> > {f + g, 0 — W, > we K@) .

We can use the classical theorem for stability of variational inequalities
to find

U strongly in HJ(Q).
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On the other hand since A is linear, we have
CAGy — Y + ), 0 — > 2 (f — AP + AY, v —u, > veK(W,).
Put i, = u, — ¥, + Y € K(¥), and we have
(3.12) d,e K(Y): (Aii,, v — i,y = {f — AY, + AY, v — ii,,) v e K().
Comparing (3.11) with (3.12), we find
w, >, ae. in Q.

Here we use (H.4) and the standard comparison theorem for variational

inequalities in aid of the strictly T-monotonicity of the operator 4. Now we
find

(3.13) w, — ¥ + ¥, >u, a.e. in Q.

Since ¥, > ¢ a.e. in £, we can use the same theorem which we used above.
Then, we find easily

(3.14) U, >u a.e. in Q.

By (3.13) and (3.14), we have

(3.15) w,— VY +y,=>u,=>u ae. in Q.
Letting n— oo in (3.15), we easily find

LU strongly in L?*(Q). [

u

Moreover, if we assume the “super-obstacles” which satisfy the hypotheses
in Theorem 3.4, we obtain the same result in the case that obstacles do not
satisfy them.

Corollary 3.6. Let V, be the super-obstacle of V,, i.e.,
U, =¥, ae. in Q.

If i, satisfies (H.1), (H.2'), (H.3) and (H.4), and (Y,)>1 approaches to s
from above in L*(Q), then we have

u, > u strongly in L*(Q2). [

Here we consider a counterexample that (u,) does not converges to u
when (y,) approaches to y from above.

Example 3.7. Let 2 =(—1,1) and
d2

3.16 A= ——
(3.16) 02
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(3.17) =0 in Q,
1
1 in [——, 1]
(3.18) Y, = h n
0 otherwise
(3.19) Yy =0 ae. in Q.

Then we have the following simple variational inequalities,

_ d d

(Pn) u, € K(‘/’n) J‘Q aun;x(v - un) = 0 VU € K(‘ﬁn) .

and k

— d d v

P) ueK(tﬁ):j d—udv(v—u)ZO ve K@) = K(@0).
o adx X

It is easy to show that the solution of (P) is zero;
u=0.

Also, we easily calculate the solution of (P,), since H{(—1, 1) is included
in C>'?(—1,1).

[ n N n E_ ) 1
n—1"  n—1 X | 7
11
(3.20) u,(x) = 9 1 X € —;,;]
n n 1 :l
- x + xel—-,1].
L n—1 n—1 | n

Letting n — oo in (3.20), we find that (u,) converges to u* uniformly, where
x+1 in[—1,0]
u*(x) =
—x +1 in [0, 1] .

Hence we have an example that solution does not converge to the solution
of (P) on condition that the obstacle is not concave.

§4. Singular perturbation problems in variational inequalities

We also obtained nearly the same results of singular perturbation problems
in variational inequalities when the obstacle converges in some sense. Here
we state our results without proof.
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(A.1) B:L*(Q)— L*(Q2) is a Lipshitz and coercive mapping,
(A2) feL*),

and we assume (H.1) and (H.2). Then we have unique solutions of following
variational inequalities and we can consider singular perturbation problems.
(See Rodrigues [5] to find some results of singular perturbation problems.)

®)  uye K,) = {ve HI@Q):v = ), ae. in Q}:

<%Aum v — un> + (Bum v— un) = (fa v — un) Vv € K(wn) B

and their limit problem,
(P) ue KW) = {ve L*(2):v >y ae.in Q}:
(Bu,v —u) > (f, v — u) Yve KY).
Here we denote K(y) is closure of K() in L*(£2).

Theorem 4.1. Under the assumption (A.1), (A.2), (H.1) and (H.2), if the
sequence of obstacles (Y,), -, approaches to Y from below a.e. in Q, then we have

u, > u strongly in L*(Q2). [

Theorem 4.2. We assume that A and B are strictly T-monotone operators.

Let the sequence of obstacles (y,),~1 be monotone approaching to Y from above
in L*(Q), ie.,

v, =Y, ae. in Jor all n<m,
and
v, > ¥ strongly in L?*(Q)
and (A.1), (A.2), (H.1) and (H.2) be satisfied. We have
u,—>u strongly in L?*(2). O

Theorem 4.3. Let A and B be strictly T-monotone and linear operators.
We assume (A.1), (A.2), (H.1), (H.2) and there exists (g,) which is a sequence
in H1(Q) such that

9.2 (AU — A) + By — By, in HN(Q),

and

g,—0 in H1(Q).
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If the sequence of obstacles (,),», approaches to § from above in L*(Q2), then
we have

u, > u strongly in L*(). [

We can obtain all of these results for singular perturbation problems by
the same method as we used in previous sections and by the theory of singular
perturbation.
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