PageHeader : Funkcialaj Ekvacioj, 34 (1991) 39-84 Title : On a 4-Parameter Family of Bounded Solutions of a Title : Nonlinear 4-System with an Irregular Type Singularity Not Title : Satisfying Poincare's Condition AuthorInfo : By AuthorInfo : Masahiro IWANO AuthorInfo : (Chuo University, Japan) AuthorInfo : Dedicated to Professor Tosihusa Kimura on his sixtieth birthday section : 1. Introduction section : Chapter I. Determination of the vector functions $h_{p}(x)$ subsection : 2. Equations on $h_{p}(x)$ subsection : 3. Formal power series solutions for $h_{p}(x)$ subsection : 4. Sectorial domains valid for asymptotic expansions for $h_{p}(x)$ subsection : 5. The functions $\bm{h}_{\bm{p}}\bm{(}\bm{x}\bm{)}$ with $\bm{p}=\bm{(}\bm{0}\bm{,}\bm{p}^{*}\bm{)}$ subsection : 6. The functions $h_{p}(x)$ under Assumption A section : Chapter II. Proof of Theorem 2 subsection : 7. A truncated differential equation subsection : 8. Fundamental existence theorem I subsection : 9. Stability theorem I subsection : 10. The Sketch of the proof of Proposition 2.2 subsection : 11. The function $\eta^{*}(x, z^{*})$ in Theorem 2' section : Chapter III. Proof of Theorem 3 subsection : 12. Formal solution under Assumption A subsection : 13. Equations satisfied by the vectors $\eta_{J}(x, Z^{*}(x))$ subsection : 14. Fundamental existence theorem II subsection : 15. Stability theorem II subsection : 16. A brief proof of Proposition 3.2 section : Chapter IV. Proof of Main Theorem subsection : 17. A truncated differential equation subsection : 18. Fundamental existence theorem III subsection : 19. Stability theorem III section : References