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1. Introduction

During the last few years a lot of work has been done on the operator
equation $a+¥alpha^{-1}=¥beta+¥beta^{-1}$ , where $¥alpha$ and $¥beta$ are *-automorphisms of a von
Neumann algebra $M$, say. To mention briefly, this operator equation arose for
modular operators in the new proof of the Tomita-Takesaki theory [10].
Later on, this equation has been studied for arbitrary automorphisms as well
as for one-parameter groups of automorphisms of von Neumann algebras.
For more details on this operator equation and related works, we refer to
[1, 3, 7, 8, 9, 12]. This equation has played an important role in the
geometric interpretation of the Tomita-Takesaki theory [4] and in the
generalization of the Tomita-Takesaki theory for Jordan algebras [5]. It
has been proved in [1] (see also [7]) that if $¥alpha$ , $¥beta$ are commuting $*$ -auto-
morphisms of a von Neumann algebra $M$ such that $a+a^{-1}=¥beta+¥beta^{-1}$ then
$M$ can be decomposed by a (central) projection $p$ in $M$ such that $ a=¥beta$ on
$Mp$ and $¥alpha=¥beta^{-1}$ on $M(1-p)$. A non-commutative version of this result (in
the case of one-parameter groups of automorphisms) has been proved in
[8] with its proof depending on Arveson’s theory of spectral subspaces
[2, 11]. More precisely, it has been shown that if $¥{¥alpha_{t} : t ¥in R¥}$ and $¥{¥beta_{t} : t ¥in R¥}$

are strongly continuous one-parameter groups of *-automorphisms of a von
Neumann algebra $M$ such that $¥alpha_{t}+a_{-t}=¥beta_{t}+¥beta_{-t}$ for all $t¥in R$, then there
exists a (central) projection $p$ in $M$ such that $¥alpha_{t}=¥beta_{t}$ on $Mp$, $¥alpha_{¥mathrm{r}}=¥beta_{¥_}t$ on
$M(1-p)$.

In this note, we consider this operator equation for a more general situ-
ation of unitaries on a Hilbert space. We obtain a decomposition of a Hilbert
space analogous to the decomposition theorem of [8], as mentioned above.
We prove that if $¥{u_{t} : t¥in R¥}$ and $¥{v_{t} : t ¥in R¥}$ are commuting one-parameter
groups of unitary operators on a Hilbert space $H$ such that $u_{t}+u_{¥_}r=v_{t}+v_{¥_}r$

for all $t¥in R$, then $H$ can be decomposed by a projection $p$ on $H$ such that
$u_{t}=v_{t}$ on $pH$ and $u_{¥mathrm{r}}=v_{¥_}t$ on $(1 - p)H$.
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2. Decomposition of a Hilbert space

Notation. Let $T$ be a linear operator on a Hilbert space $H$ into $H$ . We
denote by $N(T)$ the null space of $T$ and by $R(T)$ the range space of $T$.

Our first decomposition result in the following

Proposition 2.1. Let $u$ and $v$ be unitary operators on a Hilbert space $H$ such
that $u+v^{-1}u^{-1}v=v+v^{-1}$ . Then there exists a projection $p$ on $H$ such that
$u=v$ on $pH$ and $u=v^{-1}$ on $(1 - p)H$.

Proof. Consider the normal operator $(u^{-1}v-1)$. Then by [6, p. 332],
$N(u^{-1}v-1)¥oplus¥overline{R(u^{-1}v-1)}=H$. Since

$(u -v^{-1})(u^{-1}v-1)=(v+v^{-1})-(u+v^{-1}u^{-1}v)=0$ ,

it follows that $R(u^{-1}v-1)¥subseteq N(u-v^{-1})$ and hence $¥overline{R(u^{-1}v-1)}¥subseteq N(u-v^{-1})$ .
If $p$ is the (orthogonal) projection associated with $N(u^{-1}v-1)$, we get that $u=v$

on $pH$ and $u=v^{-1}$ on $(1 - p)H$ and this completes the proof.

Remark 2.2. In case $u$ and $v$ commute then it follows (from the above
proposition) that $u+u^{-1}=v+v^{-1}$ and $u=v$ on $pH$, $u=v^{-1}$ on $(1 - p)H$

for a projection $p$ on $H$ . The commutativity of $u$ and $v$ implies that $pH$

and $(1 - p)H$ remain invariant under $u$ and $v$ and hence $p$ commutes with $u$

and $v$ .

We now come to our main result about one-parameter groups of unitary
operators.

Theorem 2.3. Let $¥{u_{t} : t¥in R¥}$ and $¥{v_{t} : t¥in R¥}$ be two commuting one-
parameter groups of unitary operators on a Hilbert space $H$ such that $u_{t}+u_{-t}=$

$v_{t}+v_{¥_}t$ for all $t¥in R$. Then there is a projection $p$ on $H$ such that $u_{t}=v_{t}$ on $pH$,
$u_{¥mathrm{r}}=v_{¥_}t$ on $(1 - p)H$ and $p$ commutes with $u_{t}$ and $v_{¥mathrm{r}}$ for all $t¥in R$.

Proof. Let $p_{n}$ , $n¥in N$, be the projection such that $u_{2}¥_ n=v_{2}¥_ n$ on $p_{n}H$ and
$u_{2}¥_ n=v_{2}^{-1}¥_ n$ on $(1 - p_{n})H$ (by Remark 2.2). We first show that $¥{p_{n}¥}$ is a de-
creasing sequence. Now $ u_{2^{(n+1)}}¥_=v_{2^{(n+1)}}¥_$ on $p_{n+1}H$. Since $p_{n+1}H$ is invariant
under $ u_{2^{(n+1)}}¥_$ and $v_{2^{-(n+1)}}$ , therefore $ u_{2^{(n+1)}}^{2}¥_=v_{2^{(n+1)}}^{2}¥_$ on $p_{n+1}H$. This means that
$u_{2^{-n}}=v_{2}¥_ n$ on $p_{n+1}H$ . It follows that $p_{n+1}H¥subset p_{n}H$ and consequently $¥{p_{n}¥}$ is a
decreasing sequence. Put $p=¥lim_{n¥rightarrow¥infty}p_{n}$ , in the strong operator topology (see
for example, [13, p. 84] $)$ . It is easy to see that $pH$ is also invariant under $u_{2}¥_ n$

and $v_{2}¥_ n$ and hence for any $¥xi¥in pH¥subseteq p_{n}H$, we have $u_{k2}¥_ n(¥xi)=v_{k2}¥_ n(¥xi)$ for any
$k¥in Z$ The density of the set $¥{k2^{-n} : k¥in Z, n¥in N¥}$ in $R$ and the continuity of
$t¥rightarrow u_{t}$ imply that $u_{t}(¥xi)=v_{t}(¥xi)$, $¥xi¥in pH$. Similarly, $u_{t}=v_{-t}$ on $(1 - p)H$ . Since
$p_{n}$ commutes with $u_{2}¥_ n$ and $v_{2}¥_ n$ , then applying the density argument (as above)
we get that $p$ commutes with $u_{t}$ and $v_{t}$ for all $t¥in R$. This completes the proof.
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