PageHeader : Funkcialaj Ekvacioj, 32 (1989) 453-477 Title : Tensor Products of Linear Differential Equations Title : -a study of exterior products of hypergeometric equations? AuthorInfo : By AuthorInfo : Masaki HAR A* , Takeshi SASAKI** and Masaaki YOSHIDA* AuthorInfo : ( Kyushu University and **Kumamoto University, Japan) AuthorInfo : Dedicated to Professor Tosihusa KIMURA on his 60th birthday section : 0. Introduction section : 1. Integrable connections and Pfaffian systems section : 2. Simple examples section : PQE2: 401q $001]dx$ $\left\{\begin{array}{l} z_{0}\\ z_{1}\\ z_{2} \end{array}\right\}$ . section : PE3: d $\left\{\begin{array}{l} \mathcal{Y}\mathrm{o}\\ y_{1}\\ y_{2} \end{array}\right\}=\left\{\begin{array}{lll} 0 & 1 & 0\\ 0 & 0 & 1\\ q & p & 0 \end{array}\right\}$ dx $\left\{\begin{array}{l} \mathcal{Y}\mathrm{o}\\ y_{1}\\ y_{2} \end{array}\right\}$ . section : 3. The hypergeometric differential equation $E(a, b, c)$ section : 4. The dual of $E(a, b, c)$ section : 5. (Ir)reducibility of $E\wedge E(a, b, \mathrm{c})$ ?3-dimensional case? section : 6. Contiguity relations section : 7. Gauge transformations of $E\wedge E(a, $ b, $ $ e) section : 8. An equation corresponding to a 5-dimensional invariant subspace - the uniformizing equation of a Siegel modular orbifold section : References