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Asymptotic Stability of an Integrodifferential System
with a Nonintegrable Kernel

By
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1. Introduction

Consider the integrodifferential system

t
©) x'=Ax + f B(t, s)x(s)ds ,

0
where 4 is a constant n x n matrix, B(t,s) is a continuous n X n matrix,
O0<s<t<oo,andn>1.

Most of the known stability results for (C) require that B(z, s) be integrable
or absolutely integrable with respect to at least one argument on the interval
[0, o0). Certain examples were given in [1] and [2] to show that some of the
theory that require integrable kernels can be used to provide stability results for
scalar equations with a special form of nonintegrable kernels. In this paper we
consider the problem in general and discuss the stability of solutions of (C)
where B(t, s) is a nonintegrable kernel of the form C(t,s) + D(t —s) + K. We
provide sufficient conditions so that all solutions of (C) approach zero as t — co.

The following notation and terminology are used throughout this paper.
For any t, >0 and any continuous function ¢: [0, t,] — R", the function
x: [0, o) = R" satisfying x(t) = ¢(t) on [0, t,] will be denoted by x(t, to, ). A
solution of (C) is a function of the form x(t, t,, ¢) which satisfies (C) for all
t > to. Under the stated conditions, (C) has a unique solution x(t, ty, #) or
simply x(¢) if no confusion should arise. If D is a matrix or a vector, |D|
represents the sum of the absolute values of its elements. An n x n matrix is
said to be stable if all its eigenvalues have negative real parts.

Stability definitions as well as existence and uniqueness results for (C) can
be found in [1], [3], and [5].

2. Stability
Consider the system

(1) x'=Ax + ft [C(t, s) + D(t — s5) + K]x(s)ds,
0
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where A and K are constant n x n matrices, C(t,s) is a continuous n X n
matrix, 0 < s <t < oo, and D(f) is a continuously differentiable n x n matrix,
0<t<oo,and n>1.
By differentiating both sides of (1) with respect to t, we obtain
¢ d

) x" = Ax" + [D(0) + K]x + J' D'(t — s)x(s)ds + 7
0

ft C(t, s)x(s)ds .
0

If we let x’ = y, then (2) can be written as a system of the form

3) %[z — Jt H(t, s)z(s)ds:l =Lz + Jt R(t — s)z(s)ds ,

0 0

where z = [x, y]7 is a 2n-vector, and L, H, and R are 2n x 2n matrices given
by

o I 0o o0 0 o0
@ L=[D(O)+K A:|’ H(t’s)=|:C(t,s) o]’ and R(t)z[D’(t) -0];

I denotes the n x n identity matrix and O denotes the n x n zero matrix.
Stability results for (1) will be derived from the corresponding stability
results of (3). The analysis below which leads to the main theorem of this
paper concerns System (3).
Let Z(t) be the principal matrix solution of the system

(5) u' =Lu.

Let Q(t, s) be a continuous 2n x 2n matrix,

t

(6) Y(t,s) = H(t,s) + f Z(t —u)[LH(u, s) + R(u — s) — Q(u, s)]du ,

s

and
t
(7 U, z(+)) = z(t) — J ¥(t, s)z(s)ds ,
0
where z(t) is a continuously differentiable 2n-vector on [¢,, o).

Lemma 1. The function z(t) = z(t, ty, @) is a solution of (3) if and only if
U(t, z(*)) satisfies

(8) %U(t, z(1)) = LU, z(*)) + Lt 0(t, s)z(s)yds, t=1,.

Proof. Differentiate U(t, z(-)) with respect to t and make use of (6) to
obtain



Stability of an Integrodifferential System 441

gf Uu,z(-)) = %[z(t) — J: H(t, s)z(s)ds]

— JI [LH(t, s) + R(t — s) — Q(t, s)]z(s)ds
— L Jt Jt Z(t —u)[LH(u, s) + R(u — s) — Q(u, s)]z(s)duds

= % [z(t) - f H(t, s)z(s)ds] — f R(t — s)z(s)ds — L Jt P(t, s)z(s)ds
0

0 0

+ Jt o(t, s)z(s)ds

= %[Z(t)_j’ H(t, S)Z(S)ds:I_JI R(t—s)z(s)ds— Lz(t)+ LU(t, z(*))

0

+ Jt oft, s)z(s)ds .

Thus, z(t) is a solution of (3) if and only if U(t, z(-)) satisfies (8). This completes
the proof.

Lemma 2. If every solution z(t) of (3) is in L*[0, o0), then every solution x(t)
of (1) tends to zero as t — co. Furthermore, if z?(t) >0 ast— 0,i=0,1,...,m,
then x?(t)->0ast—>o0,i=0,1,...,m+ 1.

Proof. Suppose that solutions of (3) are in L'[0, o) and let x(t, to, ¢;)
be a solution of (1). Then x'(t,t,, ¢,) satisfies (2) for all t >1¢t,. Let ¢,:
[0, t,] — R" be a continuous function such that @,(ty) = x'(to, to, #;). Define
y(t, to, ¢,) as follows:

y(ta tO: ¢2) = xl(t’ tO: ¢1) for 2 tO

= ¢,(t) for 0<t<t,.
Let ¢ = [¢1> ¢2]T' Then the function Z(t, tOs ¢) = [X(t, tO, ¢1 )a y(ts th ¢2)]T iS a
solution of (3). Thus, z(t, ty, @) is in L'[0, o) and so are x(t,ty, ¢;) and

x'(t, to, ¢;). Hence, x(t,tg, #;) >0 as t—oo. The rest is obvious and the
proof is complete.

If L is a stable matrix, then there is a unique positive definite symmetric
matrix E such that

9) LTE+ EL=—1.
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If o2 and B? denote the smallest and largest eigenvalues of E respectively, then
for any y € R?",

(10) oa?y|* < yTEy < B?|yl?.

We assume throughout this paper that L is a stable matrix, E is the
positive definite symmetric matrix satisfying (9), and «? and B2 are the smallest
and largest eigenvalues of E, respectively. Let

(11) AL, s) = | (1, 5)| + (2B/«)| EQ(t, 5)|

U = U(t, x(*)), and consider the Lyapunov functional

(12) W(t, 2(-) = [UTEUTY* + - J t r Mu, s)|z(s)|duds .
28 Jo J:

By (8) and (9), the derivative W'(t, z(*)) of W(¢, z(-)) with respect to ¢ along the
solution z(t) = z(t, t,, @) of (3) satisfies

W'(t, z(+)) = (1/2)[UTEU ]~ /2 [— UTU + 2UTE ft olt, s)z(s)ds]
0

1 (> 1
+ 2% Ay, t)du|z(t)| — 35 |, l(t s)|z(s)|ds .

By (10), (6), and (7),

Wi, z(+)) < ——IUI + - J‘ |EQ(L, s)|[z(s)|ds + = . Au, t)du|z(t)|

/3

1
~3 ﬁ /l(t s)|z(s)|ds

< ——Bl”(t)l +—j | (2, s)l|z(s)|ds

L L f [@B/IEQ(, 5)| — At, 9)112()lds
28 Jo

1 o0
+ ﬁ Au, t)du|z(t)| .

By (11),

W'(t, z(+)) < -%[1 - ﬁn Au, t)du]lz(t)| .

If f Alu, t)du < r < 1 for some positive constant r, then W'(¢t, z(-)) < —y|z(t)|
t
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for some positive constant y and all ¢ > ¢t,. Integration from ¢, to t yields

(13) 0< W, z() < W(to, 4) — v f |z(s)|ds .

The following theorem is the main result of this paper.

Theorem 1. Suppose L is a stable matrix and there is a positive constant r
such that

(14) ro [P, )] + 2B/ EQ(u, )| 1du <r < 1.

Then the following statements hold:

(i) Every solution z(t) = z(t, to, #) of (3) is in L' [0, c0).

@) If |P(t, s)| < h(t — s) and |Q(t, s)| < q(t — s), where h, q: [0, c0)—[0, c0)
are continuous, in L'[0, c0), and h(t) > 0 as t — oo, then z(t) = 0 as t — 0.

(iit) If (ii) is satisfied and |0¥(t, s)/0t| < k(t — s) for some continuous func-
tion k: [0, oo) = [0, oo0) with k(t) - 0 as t —» oo, then zP(t) >0 ast— o0,i =0, 1.

Proof. (i) That z(¢) is in L1[0, o) follows immediately from (13).
(i) From (7), we have

U@, z() < 1z@)] + L h(t — s)|z(s)ds .

Since h(t) and z(¢) are in L![0, c0), then the convolution in the above inequality

is in L[0, o0) (Cf. [4, p. 379]), and hence U(t, z(+)) is in L'[0, c0). Now, by

(8),

(15) li UGt =)
dt

t

<|LIIUG@, z("))| + J q(t — s)|z(s)lds ,

0

and the integral is the convolution of two L'-functions. It follows that the
convolution in (15) is in L![0, c0) and hence U’(t, z(-)) is in L![0, co). Thus,
U, z(*))>0ast—oo. By(7),

t
lz@ < U, ()] + J.O h(t — s)|z(s)lds .
Since z(t) is in L'[0, 0) and h(tf) > 0 as t— oo, then the convolution above
tends to zero and hence z(t) - 0 as t — c0.
(i) Since z(t) > 0 as t - oo and q(t) is in L![0, o), then the convolution
in (15) tends to zero and hence U'(t, z(‘)) = 0 as t - o0. By differentiating both
sides of (7) with respect to ¢, we have

U'(t, 2(-)) = 2/(t) — (¢, t)z(t) — f’ 65”(;;, s)
0

z(s)ds
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and hence

t
12’ < U’ z(-))] + h(0)|z(1)] +f k(t — s)lz(s)lds .
0
Since k(t) =0 and z(¢) is in L'[0, c0), then the convolution in the inequality
above tends to zero and hence z'(t) > 0 as t - co. This completes the proof.

In order to understand Theorem 1 and its implication regarding the stability
of solutions of (1), one needs to look closely at Condition (14) and its effect on
the matrices A4, C, D, and K. Since Q(t, s) is an arbitrary matrix, many values
can be assigned to Q(t,s). However, only two values are of special interest;
namely, Q(t, s) = 0 and Q(t, s) = LH(t, s) + R(t — s). Thus, we let

Qll(ta S) 0:'
QZl(ta S) 0] ’

where Q,,(t,s) and Q,,(t,s) are continuous n x n matrices. Let Z;y(t) and
E;, i =1, 2, be the n x n block submatrices of Z(t) and E respectively; ie.,

Z1(1) Z,(1) E\, E,
Z(t) = d E= .
® |:Zz1(t) Zzz(t):| an [Ezl Ezz]

o, s) = [

Then by (4),

. C(U, t) - Qll(us t) 0
LH@, o+ Rl —1) = Q. 1) = I:AC(U, ) + Do — 1) — Q31 (v, 1) o]
and
[ E11Q11(w ) + E150Q5,(u, 1) O
EQG. 1) = I:E21Q11(u, 1)+ Ez2051(u, 1) 0] .
Let

20 = Z,() + Z;,(nA,
Ef=E; +E,A, i=1,2, and
D, t)=D'(v —t) — Q,, (v, 1)
Then by (6),
Y(u, t)

J'“ [Z¥w —0)C(v, ) + Z1,(u — U)D_(U» 1) —Zi1(u—0)Q4,(v, t)]dv o

u

C(u, t) + J [Z¥wu — v)C(v, t) + Zyp(u — V)D(©, t) — Zp, (u — 0)Q,,(v, 1) O

t
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and Condition (14) reduces to

+ J‘u [Z¥(u — v)C(v, t) + Z;(u — V)D( —t) — Zy;(u — v)Q4 (v, t)]dv|du

(i — HC(u, 1)

28 2 [®
+—f 21 J E;1Q11(u, 1) + EpQp (u, t)ldu <r <1.
i= t

Theorem 2. Suppose L is stable and there is a positive constant r such that

(16) ‘i r

(i — 1)Cu, t) + J “ [ZFu — 1), 0

+ Z,(u—v)D'(v—t)]dvldu<r<1.

Then the following statements hold:

(i) Every solution x(t) = x(t, to, #) of (1) tends to zero as t — oo.

() If |C(t, s)| < y(t —s) for some continuous function y: [0, co)— [0, c0)
and if y(t) and D'(t) are in L*[0, ) and y(t) >0 as t — oo, then xP() >0 as
t—>o0,i=0,1.

(i) If (ii) is satisfied and |0C(t, s)/0t| < y,(t — s) for some continuous func-
tion y,: [0, 00) — [0, c0) with y,(t) =0 as t » o and if D'(t) -0, then x?(t) >0
ast—>o0,i=0,1, 2. _

Proof. Let Q,,(t,s) = Q,.(t,s)=0. Then Q(t,s) =0 and hence Condi-

o0

tion (14) reduces to f | ¥(u, t)|du < r < 1 which is precisely (16).

t
(i) This part follows at once from Theorem 1 and Lemma 2.

(i) From (6), we have
[P, 8) <y —s) + J |Z(t — wI[IL|y(u —s) + |D'(u — s)|1du..

Let

h(t) = y(t) + L |Z(t — wI[IL|y(u) + |D'(u)]du .

Then |¥(t, s)| < h(t —s). As L is stable, then Z(¢) is in L'[0, co) and hence
the convolution above is in L![0, c0). Thus, k() is in L'[0, c0). Also, Z(t)
tending to zero implies that the convolution tends to zero and hence h(t) — O as
t — c0. By Theorem 1 and Lemma 2, this part is proved.
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(iii) By differentiating both sides of (6) with respect to ¢, we have
o0¥(t, s)/ ot = OH(t, s)/ot + R(t — s) + LY(t, s),
and hence
|0P(t, s)/0t] < y,(t — s) + |D'(t — s)| + |L|h(t — ).

Let k(t) = y,(¢t) + |D’(t)] + |L|h(t). Then |0¥(t, s)/0t| < k(t — s) with k() » 0 as
t— 00. By Theorem 1 and Lemma 2, the proof is complete.

Theorem 3. Suppose L is stable and there is a positive constant r such that

(17) ZZ: foo [(i — D|Cu, t)| + %IE;"C(u, t)+ E; ,D'(u — t)|:|du <r<l,

Then the following statements hold:

(i) Every solution x(t) = x(t, ty, ¢) of (1) tends to zero as t — c0.

() If |C(t,s)| <yt —s) for some continuous function y: [0, co)— [0, c0)
and if y(t) and D'(t) are in L'[0, ) and y(t)— 0 as t — oo, then xP(t) >0 as
t—>o0,i=0, 1.

(iii) If (ii) is satisfied and |0C(t, 5)/0t| < y,(t — s) for some continuous func-
tion y,: [0, ) — [0, ©) with y,(t) >0 as t— oo, then xP(t)—>0 as t— oo,
i=0,1,2 \

Proof. Let Q,,(,s)=C(t,s) and Q,(t, s)=D'(t—s)+AC(t,s). Then
LH(t, )+ R(t —s) — O(t,s) =0, and hence ¥(t,s) = H(t,s). Thus, Condition

(14) reduces to Jw [ICu, t)] + 2B/ EQ(u, t)|]du < r < 1 which is precisely (17).

(i) This part follows at once from Theorem 1 and Lemma 2.

(i) Since |P(t,s)| =|C(t, s)| <yt —s) and since |Q(t, s)| < |L||H(t, s)| +
[R(t — s)| < |L|y(t — s) + |D'(t — s)|, then, by letting q(¢) = |L|y(t) + |D'(t)], we
have g(t) in L]0, o) and |Q(t, s)| < q(t — s). Thus, (ii) of Theorem 1 is satis-
fied, and this part of the proof follows from Theorem 1 and Lemma 2.

(i) Since WY(t,s)= H(t,s), then |0¥(t,s)/0t| <yt —s). Thus (i) of
Theorem 1 is satisfied and this completes the proof.

Remark 1. Condition (17) of Theorem 3 is often easier to verify than
Condition (16) of Theorem 2. However, (16) may be a lot weaker than (17); see
[6] for an illustration. On the other hand, (iii) of Theorem 3 is stronger than
(iii) of Theorem 2 in that the requirement D'(¢) —» 0 as ¢t — oo is relaxed.

Remark 2. If C(t,s) = C(t —s), the L'-conditions in (ii) and (iii) of
Theorems 2 and 3 can be relaxed. To see this, one selects the arbitrary matrix
0 to be a convolution matrix. Since C is a convolution matrix, then H(t, s) =
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H(t — s), and hence by (6), P(t, s) = P(t — s) with

(18) Y(t)=H@) + Jt Z(t — u)[LH(u) + R(u) — Q(u)]du
0

and

(19) Y(ty=H'(t) + R(t) — Q(t) + L¥().

In this case, Condition (14) is reduced to

20) r (0| de +%F |EQ()|dt < 1
0 0

or

en 3, f: (i — HC®

+ J[ [Z}(t — S)C(s) + Ziz(t — 5)D(s) — Z;1(t — 5)Q1:(s)]ds|dt

0

2 o0
+ % i; J;) |Ei1Q11(8) + Ei2Q,,(0)de < 1.
It follows from (20) that ¥(t) and EQ(t) are in L'[0, ). Since E is invertible,
then Q(t) is in L'[0, c0). We may now choose h(t) = | ¥(t)| and q(t) = |Q(?)| in
Theorem 1. Since L is stable, then Z(t) is in L![0, c0). If C(t)—0 and
R(t) — Q(t) > 0 as t — oo, then LH(t) + R(t) — Q(t) » 0 and hence, the convolu-
tion in (18) tends to zero as t - oo. Thus, ¥(t) > 0 as t —» oo and hence, all the
conditions in (ii) of Theorem 1 are satisfied. If, in addition, C'(t) - 0 as t — oo,
then by (19), ¥’'(t) » 0 as t > oo and, by letting k() = | ¥’(¢)], all the conditions
in (iii)) of Theorem 1 are satisfied.

In summary, if L is stable, C(t, s) = C(t — s), and (21) is satisfied, then by
Theorem 1 and Lemma 2, the following statements hold:

(a) Every solution x(t) = x(t, ty, ¢) of (1) tends to zero as t — co.

(b) If C(t) >0 and R(t) — Q(t) >0 as t— oo, then x?()—>0 as t— oo,
i=0,1. ;

() fCP?t—0,i=0,1, and R(t) — Q(t) >0 as t — oo, then x?(t) > 0 as
t—>o00,i=0,1,2.

By choosing Q(t) = 0, (a)—(c) yield a result analogous to Theorem 2 with-
out the assumption that C(t) and D’'(¢) are in L'[0, c0). If Q(t) = LH(t) + R(¢),
the result derived from (a)—(c) is analogous to Theorem 3 without the assump-
tion that D’(t) is in L![0, o0). The assumption that C(¢) is in L'[0, o0) is then
implied by Condition (21). As a consequence, interesting stability criteria are



448 W. E. MAHFOUD

obtained for the convolution system
t

(22) x' = Ax + j [B(t — s) + K]x(s)ds,
0

where 4 and K are constant n x n matrices and B(t) is a continuous n X n
matrix for 0 <t < oo.

First, we let C(t,s) = B(t —s) and D(t)=0 in (1). If Q4,(t) = Q,,(t) =0,
then R(t) — Q(¢) = 0 in (b) and (c), and Condition (21) is reduced to

2 o
23) » f
i=1 Jo

If 0,,(t) = B(t) and Q,,(t) = AB(t), then Q(t) — LH(t) = 0, Condition (21) is
reduced to

dt <1.

(i — )B@) + J t Z¥(t — s)B(s)ds

2 o [~ ) 2[;
(24) Zi f (i — D|B@®)| + —&—IE;“B(t)|:| dt <1,

and B(t) » 0 implies Q(t) > 0. Thus, (a)—(c) yield the following result:

K¢
Theorem 4. If L = I] is stable and either (23) or (24) is satisfied,

K 4
then the following statements hold:
(i) Every solution x(t) = x(t, to, @) of (22) tends to zero as t — 0.
(ii) If B(t)—> 0 as t — oo, then x®(t) >0 ast— o0, i =0, 1.
(i) If B?(t)—>0,i=0, 1, then xX?(¢)>0ast— o0,i =0, 1, 2.

Now, let C(t,s)=0 and D(t) = B(t) in (1). If Q,,(t) = Q,,(t) =0, then
D(t) = B'(t), and Conditions (21) is reduced to
(25)

Z,,(t — s)B'(s)ds|dt < 1.

The conditions in (b) and (c) are now the same, and therefore we have

0 I
Theorem 5. If L =|: ] is stable and (25) is satisfied, then the

BO)+K 4
following statements hold:
(i) Every solution x(t) = x(t, ty, §) of (22) tends to zero as t — 0.
(i) If B'(t)—>0ast— oo, then x®(t)>0ast— c0,i =0, 1, 2.

If Q,,(t) =0 and Q,,(t) = B'(t), then R(t) — Q(t) = 0, the conditions in (b) and
(c) are satisfied, and (21) is reduced to

(26) 2&[?_ i r |E;,B'(t)|dt < 1.
i=1 Jo
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We now have

(0] I
Theorem 6. If L = I: :| is stable and (26) is satisfied, then every

BO)+K A4
solution x(t) = x(t, ty, ) of (22) has the property that x”(t) >0 as t — o0, i =
0,1, 2.

We illustrate below an application of Theorems 4 and 6 to the scalar
equation

27 x'=Ax + Jr [B(t — s) + K]x(s)ds,

where A and K are real numbers and B(t) is a continuous real valued function
defined on [0, co0).

F A
stable matrix. A simple calculation shows that the positive definite symmetric
matrix E satisfying (9) is given by

o 1
Let F denote either K or B(0) + K, and suppose that L =[ ] is a

A + F 1 1
2F 24 24 2F
E =
1 1 1
_ —_— + —_—
2F 2A 2FA

Furthermore,
ET =E; + E,A= (F - 1)/(214) >
Ef =E;; + E;pA=—-1/2,

and the conditions (24) and (26) reduce respectively to

o A
(28) L B0t < B A+ K = 1)’
and
° o [BO)+K]4
(29) L Bl < —ep e

The following corollaries are immediate consequences of Theorems 4 and 6
respectively.

Corollary 1. If A <0, K <0, and (28) is satisfied, then the conclusions of
Theorem 4 hold.
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Corollary 2. If A <0, B(0)+ K <0, and (29) is satisfied, then the conclu-
sions of Theorem 6 hold.

Example. Consider the equation
t
(30) x'=—x+ J‘ [a(t — s+ 1)7P — b]x(s)ds,
0

where a >0, b > 0, and p > 0.

Here, A = —1, B(0) = a, K = —b, and the eigenvalues of E are solutions of
the equation u?> — gqu + ¢/2 =0, where ¢ =1—(1/F) — (F/2) and F denotes
either K or B(0) + K. Thus,

0?/B* = (q — /4* — 29)/(q + /4* — 2q), and hence,
a/f =2/ —F/(2 — F)[/1 + 2(F — D)F — 2> + \/1 + 2(3F — )/(F — 2)*]
>./—F/2—-F).

[ee]

If p>1, then J |B(t)|dt = a/(p — 1), and for F = K = —b, we have o/ff >
(o]

Vb/(2 + b). Since
AJ[A + B(A + K — D)fo] = /b/[ /b + (b + 2)*],

then (28) is satisfied if a < \/b(p — 1)/[/b + (b + 2)*].
If p < 1, then the integral in (28) does not exist and hence, Corollary 1 does

not apply. However, J |B'(t)|dt = a, and for F=B0)+ K=a—b <0, we
have 0

aFA/B[1 — (F + A)] = (b — a)*?/(2 + b — a)*.

Thus, (29) is satisfied if a <b and a < (b — a)*?/(2 + b — a)* which holds for
sufficiently small a. In summary:

@i p>1and a< \/l;(p — 1)/[\/3 + (b + 2)*], then, by Corollary 1,
xP(t)->0ast—>o00,i=0,1, 2

() If0<p<l1, a<b, and a is sufficiently small, then, by Corollary 2,
xP(t)»0ast—>o00,i=0,1,2.
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