One Parameter Semi-Groups of Operators of Schatten Class C_p

 $\mathbf{B}\mathbf{y}$

R. KHALIL and W. DEEB

(University of Kuwait, Kuwait)

I. Introduction

Let H be a Hilbert space. A one parameter family T(t), $0 \le t < \infty$, is called a semi-group of operators if:

- (i) T(0) = I, the identity operator of H
- (ii) T(s+t) = T(s)T(t) for every $t, s \ge 0$.

The semi group T(t) is called C_0 -semi group if $\lim_{t\to 0} T(t)x = x$ for all $x \in H$. The infinitesimal generator of the semigroup T(t) is by definition the linear operator A defined by

$$D(A) = \left\{ x \in H: \lim_{t \to 0} \frac{T(t)x - x}{t} \text{ exists} \right\}$$

and

$$Ax = \lim_{t \to 0} \frac{T(t)x - x}{t}$$
 for every $x \in D(A)$.

It is well known that if T(t) is a C_0 -semigroup, then A is a densely defined closed operator, [1]. The compactness of T(t), $0 < t < \infty$, was discussed in Pazy [2].

The object of this paper is to discuss when T(t), $0 < t < \infty$ is in the Schatten class C_p , $0 . For semigroups on Hilbert spaces, the problem of being in <math>C_p$ is more interesting than of being compact. This is due to the fact that for a C_0 -semigroup T(t), $0 < t < \infty$, $\{\|T(t)\|, 0 < t \le a\}$ is bounded in H for every finite a. But if $T(t) \in C_p$, $0 < t < \infty$, then $\|T(t)\|_p$ need not to be bounded in any interval (0, a) for any finite a. For the basic theory of semigroups we refer to Hille and Phillips [1].

II. When $T(t) \in C_n$

For a Hilbert space H, let L(H) be the space of all bounded linear operator on H. For $1 \le p < \infty$, set:

The authors would like to thank the referee for many sound comments and observations.

$$C_p = \left\{ T \in L(H): \sup \sum_{n=1}^{\infty} |\langle Te_n, f_n \rangle|^p < \infty \right\},$$

where the supremum is taken over all orthonormal bases (e_n) and (f_n) of H. For $T \in C_p$, one defines $||T||_p = \sup (\sum |\langle Te_n, f_n \rangle|^p)^{1/p}$. This defines a norm on C_p . With this norm, C_p is a two sided Banach ideal in L(H). For more on C_p , we refer to Pietsch [4].

The following lemma (whose proof is known in the literiture) will be used oftenly throughout the paper. We give a proof of the lemma for completeness.

Lemma 2.1. Let $T_n \in C_p$ such that $\sup_n \|T_n\|_p < \infty$. If $T_n \to T(n \to \infty)$ in the operator norm, then $T \in C_p$.

Proof. Since $T_n \in C_p$, each T_n is compact. Hence

$$T_n = \sum_{k=1}^{\infty} \sigma_{nk} e_{nk} \otimes f_{nk} ,$$

where $\sum_{k=1}^{\infty} |\sigma_{nk}|^p \le \lambda < \infty$ for all n, (e_{nk}) , (f_{nk}) are orthonormal sequences for each n. Since $||T_n - T|| \to 0$ $(n \to \infty)$, it follows that T is compact. Let $T = \sum_{k=1}^{\infty} \sigma_k e_k \otimes f_k$. Using Theorem 1.20 of [6], we get $\sigma_{nk} \to \sigma_k$ $(n \to \infty)$ for all k. Since

$$\sum_{k=1}^{r} |\sigma_{k}|^{p} = \sum_{k=1}^{r} \lim_{n} |\sigma_{nk}|^{p} = \lim_{n} \sum_{k=1}^{r} |\sigma_{nk}|^{p} \le \lambda$$

is true for every r, it follows that $||T||_p = (\sum_{k=1}^{\infty} |\sigma_k|^p)^{1/p} \le \lambda$. This ends the proof.

Lemma 2.2. Let (T(t)) be a C_0 -semigroup in L(H). If for some $t_0 > 0$, $T(t_0) \in C_p$, then $T(t) \in C_p$ for all $t > t_0$. Further there exists M and a in $(0, \infty)$ such that $||T(t)||_p \le ||T(t_0)||_p Me^{a(t-t_0)}$.

Proof. From the semigroup property, we have $T(t) = T(t_0)T(t-t_0)$. Since C_p is a two sided ideal, it follows that $T(t) \in C_p$. Further the Banach ideal property of C_p gives $\|T(t)\|_p \le \|T(t_0)\|_p \|T(t-t_0)\|$. Since (T(t)) is a C_0 -semigroup, then there exists an M and a in $(0, \infty)$ such that $\|T(s)\| \le Me^{as}$, [3]. This gives the result.

Definition 2.3. Let (T(t)) be a C_0 -semigroup in L(H). We say (T(t)) is of type p if:

- (i) $T(t) \in C_p$ for all t > 0
- (ii) There exists an $\varepsilon > 0$ and an $\alpha > 0$ such that $||T(t)||_p \le \alpha$ for all $t \in (0, \varepsilon)$.

Let (T(t)) be a C_0 -semigroup of operators with generator A. Let $\lambda \in \rho(A)$ such that $\text{Re }(\lambda) > a$, where $||T(t)|| \leq Me^{at}$. We define a family of operators

 $(R_t(\lambda, A))$, where $R_t(\lambda, A)x = \int_t^\infty e^{-\lambda s} T(s)x ds$. We say $(R_t(\lambda, A))$ is of type p if

- (i) $R_t(\lambda, A) \in C_p$ for all t and all $\lambda \in \rho(A)$, $\text{Re }(\lambda) > a$.
- (ii) There exists $\beta > 0$ such that $\|\lambda R_t(\lambda, A)\|_p \le \beta$ for all $t \in (0, \infty)$ and $\lambda \in \rho(A)$, Re $(\lambda) > a_1 > a$.

Now we prove.

Theorem 2.4. Let (T(t)) be a C_0 -semigroup with generator A. Then the following are equivalent:

- (i) (T(t)) is of type p
- (ii) $(R_t(\lambda, A))$ is of type p and (T(t)) is uniformly continuous on $(0, \infty)$.

Proof. (i) \rightarrow (ii). Since $T(t) \in C_p$, it follows that T(t) is compact for all $t \in (0, \infty)$. Hence T(t) is uniformly continuous on $(0, \infty)$, [2]. Consequently $R(\lambda, A) = \int_0^\infty e^{-\lambda s} T(s) ds = \lim_{t \to 0} R_t(\lambda, A)$, where the limit is the uniform limit. Now.

$$R_t(\lambda, A) = \int_t^\infty e^{-\lambda s} T(s) dx$$
$$= T(t) \int_t^\infty e^{-\lambda s} T(s - t) ds.$$

Since $T(t) \in C_p$, it follows that $R_t(\lambda, A) \in C_p$. Further

$$||R_t(\lambda, A)||_p \le ||T(t)||_p \int_0^\infty e^{-\lambda s} M e^{a(s-t)} ds$$

$$\le b ||T(t)||_p,$$

where b is a constant that is independent of t and λ . Hence $R_t(\lambda, A) \in C_p$ for all λ and t > 0.

Now, consider:

$$\|\lambda R_t(\lambda, A)\|_p = |\lambda| \left\| \int_t^\infty e^{-\lambda s} T(s) ds \right\|_p$$

$$\leq |\lambda| \|T(t)\|_p \left| \int_t^\infty e^{-\lambda s} M e^{a(s-t)} ds \right|$$

$$\leq \|T(t)\|_p \xi \frac{|\lambda|}{|a-\lambda|}.$$

Consequently, if $t \in (0, \delta)$, $\delta \le \varepsilon$, we get $\|\lambda R_t(\lambda, A)\|_p \le \beta$.

Conversely. (ii) \rightarrow (i). Since (T(t)) is uniformly continuous, it follows that

 $R_t(\lambda, A) \to R(\lambda, A) = \int_0^\infty e^{-\lambda s} T(s) ds$ uniformly. By the assumption, $||R_t(\lambda, A)||_p \le \beta$. It follows from convergence theorems in C_p , [5] that $R(\lambda, A) \in C_p$. Further

$$\|\lambda R(\lambda, A)\|_{p} \leq \underline{\lim}_{t} \|\lambda R_{t}(\lambda, A)\|_{p} \leq \beta.$$

Further; it follows from [3; the proof of Theorem 3.3] that

$$\lambda R(\lambda, A) T(t) \xrightarrow{\lambda} T(t)$$
 uniformly,

and

$$\|\lambda R(\lambda, A)T(t)\|_{p} \le \|T(t)\| \|\lambda R(\lambda, A)\|_{p}$$

$$\le \beta \|T(t)\|.$$

For $t \in (0, \varepsilon]$, $||T(t)|| \le \eta$ for some η . Thus $\lambda R(\lambda, A)T(t)$ is uniformly bounded in C_p . Consequently, [5], $T(t) \in C_p$ for all $t \in (0, \varepsilon]$. It follows from the semi-group property that $T(t) \in C_p$ for all t > 0. Further:

$$||T(t)||_{p} \leq \underline{\lim}_{\lambda} ||\lambda R(\lambda, A) T(t)||_{p}$$

$$\leq \beta ||T(t)||$$

$$\leq \beta \eta$$

for $t \in (0, \varepsilon]$. This ends the proof.

Remarks. (i) If (T(t)) is of type p, then the resolvent operator $R(\lambda, A) \in C_p$. To see that:

$$R_t(\lambda, A) \in C_p$$
 and $||R_t(\lambda, A)||_p \le \beta$.

Further $R_t(\lambda, A) \to R(\lambda, A)$ $(t \to 0)$ uniformly. Hence, [5], $R(\lambda, A) \in C_p$.

(ii) There exists a C_0 -semigroup of operators (T(t)) such that $T(t) \in C_p$ for all $t \in (0, \infty)$, but $||T(t)||_p \to \infty$ as $t \to 0$ as the following example shows:

Example 2.5. Let A be a positive compact operator which is not of finite rank and $||A|| \le 1$. So $A = \sum_{n=1}^{\infty} \lambda_n e_n \otimes e_n$, for some $0 < \lambda_n < 1$ and decreasing, and (e_n) is some orthonormal basis. Define a one parameter family of operators as follows:

$$T(t) = \sum_{n=1}^{\infty} \lambda_n^t e_n \otimes e_n .$$

It is easily seen that (T(t)) is a C_0 -semigroup of operators on H. Choose $(\lambda_n) \in \bigcap_{p>0} l^p$, where l^p is the space of p-summable sequences. Then $T(t) \in C_p$ for all

p and all t. Now, $||T(t)||_p = (\sum_{n=1}^{\infty} \lambda_n^{tp})^{1/p}$. Further $||T(t)||_p \le ||T(s)||_p$ for t > s. The Monotone Convergence Theorem implies that $||T(t)||_p \to \infty$ as $t \to 0$.

Another main result of this section:

Theorem 2.6. Let T(t) be C_0 -semigroup of operators in L(H) with generator A. If $w \in (0, \infty)$ such that $||T(t)|| \le e^{-wt}$, then the following are equivalent.

- (i) $T(t) \in C_p$ for $t \in (0, \infty)$ and $||T(1/n)||_p \le \gamma$ for all $n \ge n_0$, for some n_0 .
- (ii) $R(\lambda, A) \in C_p$ and $||R(\lambda, A)||_p \le \gamma/(\lambda + w)$ for some $\gamma > 0$ and all $\lambda > 0$.

Proof. (i) \rightarrow (ii). Set $R_n(\lambda, A)x = \int_{1/n}^{\infty} e^{-\lambda s} T(s) x ds$. Since $T(t) \in C_p$ and $||T(t)||_p \leq \gamma$, for all t in some neighborhood of zero, then

$$R_n(\lambda, A)x = T\left(\frac{1}{n}\right) \int_{1/n}^{\infty} e^{-\lambda s} T\left(s - \frac{1}{n}\right) x ds$$

is an element of C_p and

$$\|R_n(\lambda, A)\|_p \le \left\|T\left(\frac{1}{n}\right)\right\|_p \frac{1}{\lambda + w}$$

$$\le \frac{\gamma}{\lambda + w}$$

for large values of n. But $R_n(\lambda, A)x \to R(\lambda, A)x$ for all $x \in H$. Consequently Lemma 2.1, implies that $R(\lambda, A) \in C_p$ and $\|R(\lambda, A)\|_p \le \gamma/(\lambda + w)$.

(ii) \rightarrow (i) By the expansion formula of T(t), [1, p. 352] we have $T(t)x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} (\lambda^n t^n)/(n!) [\lambda R(\lambda, A)]^n x$, for $\lambda > -w$, where w is as given in the assumption. Then

$$||T(t)||_p \leq \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{\lambda^n t^n}{n!} \lambda^n ||R(\lambda, A)||^{n-1} ||R(\lambda, A)||_p.$$

But
$$||R(\lambda, A)|| \le \int_0^\infty e^{-\lambda s} ||T(s)|| ds \le \frac{1}{\lambda + w}$$
. Hence
$$||T(t)||_p \le \lim_{\lambda \to \infty} e^{-\lambda t} \sum_0^\infty \frac{\lambda^n t^n}{n!} \frac{\lambda^n}{(\lambda + w)^{n-1}} \frac{\gamma}{(\lambda + w)}$$
$$\le \lim_{\lambda \to \infty} e^{-\lambda t} \gamma \sup_n \frac{\lambda^n}{(\lambda + w)^n} \sum_0^\infty \frac{\lambda^n t^n}{n!}$$
$$\le \gamma \lim_{\lambda \to \infty} \sup_n \frac{\lambda^n}{(\lambda + w)^n}.$$

Since $\lambda > 0$ and w > 0, then $\sup \lambda^n/(\lambda + w)^n = \lambda/(\lambda + w)$. Hence $||T(t)||_p \le \gamma$. Consequently $T(t) \in C_p$. This ends the proof.

III. Further Results

In this section we prove:

Theorem 3.1. Let (T(t)) be a C_0 -semigroup. If T(t) is self adjoint in C_p for all t > 0, and some $p_0 > 0$, then $T(t) \in C_{p_0}$ for all t > 0 and all p > 0.

Proof. Since T(t) is self adjoint, then for each t > 0 there exist a positive decreasing sequence $(\lambda_{n,t})$ and an orthonormal sequence $(e_{n,t})$ such that

$$T(t) = \sum_{n=1}^{\infty} \lambda_{n,t} e_{n,t} \otimes e_{n,t} .$$

With no loss of generality, we assume $T(t) \in C_1$ for all t > 0. For simplicity, we show that $T(1) \in C_p$ for all p.

If p > 1, then $C_1 \subseteq C_p$ and there is nothing to prove. Assume p < 1. Thus $p = 1/\varepsilon$ for some $\varepsilon > 1$. Choose a positive integer n such that $n > \varepsilon$. Assume

 $T\left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} \, \xi_k e_k \otimes e_k \,\,,$

 (e_k) is orthonormal basis and (ξ_k) is a positive decreasing sequence in l^1 . Now:

$$T(1) = T^n \left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} \xi_k^n e_k \otimes e_k$$
.

Since $(\xi_k) \in l^1$, it follows that $(\xi_k^n) \in l^{1/n} \subseteq l^p$. Thus $T(1) \in l^p$. In a similar way we can show $T(t) \in l^p$ for t > 0. This ends the proof.

References

- [1] Hille, E. and Phillips, R. S., Functional analysis and semigroups, Amer. Math. Soc. Coll. Publ., 31, 1957.
- [2] Pazy, A., On the differentiability and compactness of linear operators, J. Math. Mech., 17 (1968), 1131-1142.
- [3] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Berlin, Springer Verlag, 1983.
- [4] Pietsch, A., Operator ideals, North Holland, Amsterdam, 1980.
- [5] Weidmann, J., Linear operators in Hilbert spaces, Springer Verlag, New York, 1980.
- [6] Simon, B., Trace ideals and their applications. London Math. Soc. Lecture Notes Series 35, 1979.

nuna adreso:
Department of Mathematics
University of Kuwait
P.O. Box 5969, Safat 13060
Kuwait

(Ricevita la 19-an de novembro, 1987) (Reviziita la 12-an de marto, 1988)