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Set-Valued Solutions of the Pexider Functional Equation
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In the present paper we characterize set-valued solutions of the Pexider
functional equation

(D F(x+y) = G(x) + H(y)

with three unknown functions F, G and H. It generalizes a classical theorem
giving the solutions of the Pexider equation by means of additive functions (cf.

(D).

Let Y be a topological vector space satisfying the T, separation axiom. For
real numbers s, t and sets 4, BcY we put sA+tB:={yeY; y=sa+th, ac A,
be B}. We assume that the space 2¥ of all subsets of Y is endowed with the
Hausdorff topology (cf. [4]). In this topology the sets Ny (A):={BcY; Bc A+
W, A= B+ W}, where W runs a base of neighbourhoods of zero in Y, form a base
of neighbourhoods of a set AcY. The symbol A,— A4 means that the sequence
(4,),n is converging to A in the Hausdorff topology. A set-valued function
(s.v. function) F: X—2Y, where X is a semigroup, is said to be additive if it satisfies
the Cauchy functional equation F(x; + x,)=F(x,)+ F(x,), x;, x,€ X. By CC(Y)
we denote the family of all non-empty, convex and compact subsets of Y. The
symbols R, @, N denote the sets of all real, rational and positive integer numbers,
respectively. ‘

Theorem 1. Assume that (X, +) is an abelian semigroup with zero and Y
is a T, topological vector space. If s.v. functions F: X—>CC(Y), G: X—>CC(Y)
and H: X—-CC(Y) satisfy the equation (1), then there exist an additive s.v.
function Fo: X—-CC(Y) and sets A, Be CC(Y) such that

2) F(x) =Fy(x) + A+ B, G(x)=Fyx)+ A and H(x) = Fyx)+ B
forall xe X.

In the proof of this theorem we will use some facts which we list here as
lemmas.

Lemma 1 (Radstrém [3]). Let A, B be subsets of Y and assume that B is
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closed and convex. If there exists a bounded and non-empty set Cc Y such that
A+C<B+C, then AcB.

This cancellation law is formulated in [3] for a real normed space, but the
proof given there holds in topological vector space, too.

Lemma 2. If (A,),.~y and (B,),.n are decreasing sequences of compact
subsets of Y, then M ,cn (A, + B,)=\pen An+ N\ pen By

Lemma 3. If (A,),.y iS a decreasing sequence of compact subsets of Y,
then A,— N,y A,

Lemma 4. If A is a bounded subset of Y and (s,),.n is a real sequence
converging to an s€ R, then s,A—sA.

Lemma 5. If A,—»A and B,— B, then A,+ B,— A+ B.
Lemma 6. If A,—» A and A,— B, then cl A=cl B.

Lemmas 2-6 are rather known and can be easily verified. Short proofs of
some of them can be found in [2].

Proof of Theorem 1. Assume first that 0e G(0) and 0e H(0). Then, for
every x € X we have

F(2x) = F(x) + H(x) < G(x) + H(0) + H(x) + G(0) = F(x) + F(x) = 2F(x),

which implies that the sequence (27"F(2"X)),.n is decreasing. Put Fy(x):=
Nnen 27 "F(27x), xe X. It is clear that Fy(x)e CC(Y) for all xe X. Using
three times the equation (1) we get

G(2x) + H(0) = F(2x) = G(x) + H(x) < G(x) + H(x) + G(0)
= G(x) + G(x) + H(0) = 2G(x) + H(0).

In view of Lemma 1 this implies that G(2x) =2G(x), and consequently the sequence
(27"G(2"x)),n is decreasing.
Applying Lemma 2 and the equality F(2"x)= G(2"x)+ H(0), n € N, we obtain

Fo(x) = N 27"F(2"x) = N\ 27"G(2"x) + N 27"H(0).

neN neN neN

But M\ ,.x 27 "H(0)={0}, because the set H(0) is bounded. Therefore Fy(x)=
N pen 27"G(27x) for all xe X. In an analogous way we show that the sequence
(2 "H(2"x)),n is decreasing and Fyo(x)=\,ny 2 "H(2"x) for all xe X. Hence,
using once more Lemma 2, we get
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Fo(x1+x3) = N 27"F(2"x, +2"x,) = N 27"[G(2"x) + H(2"x,)]
neN neN

= N 27"G(2"xy) + f\NZ“"H(2"x2) = Fo(xy) + Fo(x3), X1, X, € X,
neN ne
which means that the s.v. function F, is additive.
Now observe that

3) F(nx) + (n—1)H(0) = F(x) + (n—1)H(x)

for all xe X and ne N. Indeed, for n=1 the equality is trivial. Assume that
it holds for a natural number k. Then, in virtue of (1), we obtain

F((k+1)x) + kH(0) = G(kx) + H(x) + (k—1)H(0) + H(0)
= F(kx) + H(x) + (k—1)H(0) = F(x) + (k—1)H(x) + H(x) = F(x) + kH(x),

which proves that (3) holds for n=k+1. Thus, by induction, it holds for all
ne N. In particular we have

FQ2"x) + 2*—1)H(0) = F(x) + 2"—1)H(x),
whence
2-"F(2"x) + (1—=2"")H(0) = 27"F(x) + (1—2"")H(x).

In virtue of Lemma 3, 27"F(2"x)— N,y 27 "F(2"x)=Fy(x). On the other
hand, by Lemma 4, (1—-2"")H(0)— H(0), 2~ "F(x)—{0} and (1 —-2"")H(x)— H(x).
Therefore, using Lemma 5 and Lemma 6, we obtain cl [F(x)+ H(0)}=cl H(x),
whence H(x)=F (x)+ H(0) for all xe X. In an analogous way one can prove
that G(x)=Fy(x)+G(0), xe X. Let A:=G(0) and B:=H(0). Then G(x)=
Fo(x)+ A and H(x)=Fy(x)+ B for all xe X. Moreover, F(x)=G(x)+ H(0)=
Fo(x)+A+B, xe X. This finishes our proof in the case where 0e G(0) and
0e H(0). In the opposite case, fix arbitrarily points a € G(0) and b e H(0) and
consider the s.v. functions F,, G,, H,;: X—CC(Y) defined by F,(x):=F(x)—a—b,
G,(x):=G(x)—a and H,(x):=H(x)—b, xe X. These s.v. functions satisfy the
equation (1) and moreover 0 € G,(0) and O e H,(0). Therefore, by what we have
proved previously, they are of the form (2). Returning to the s.v. functions
F, G and H we see that they are of the form (2), too. This completes the proof.

Remark. 1If X is a group, then the s.v. function F, occuring in the assertion
of Theorem 1 is in fact single valued. Indeed, the set F,(0) is bounded and
Fo(0)+ Fp(0)=F4(0); so Fyo(0)={0}. Hence, for arbitrarily fixed xe X we get
Fo(x)+ Fo(—x)=Fy(0)={0}, which implies that F,(x) is a one-point set.

In [4] Radstrom has proved that a s.v. function F,: [0, c0)— CC(Y), where Y
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is a locally convex Hausdorff space, is additive if and only if there exist an additive
function f: [0, c0)— Yand a set K € CC(Y) such that Fy(x)=f(x)+xK, x € [0, o0).
Applying this result to Theorem 1 we obtain the following

Theorem 2. Let Y be a locally convex Hausdorff space. S.v. functions
F: [0, 0)-»CC(Y), G:[0, 0)-»CC(Y) and H:[0, 0)—>CC(Y) satisfy the
equation (1) if and only if there exist an additive function f: [0, c0)—Y and
sets K, A, Be CC(Y) such that

4) F(x)=f(x)+xK+ A+ B, G(x)=f(x)+xK + A4
and H(x)=f(x)+ xK + B

for all xe [0, ).

Finally, we give some examples showing that the assertions of our theorems
do not hold without the assumption that the values of F, G and H are convex and
compact. Consider the triples (F;, G;, H;) of s.v. functions from [0, o) into 28
defined by the formulas:

C , x€[0,0)nQ

1. Fi{(x):=[0,2], Gx)=H;x):= [ ,
[0, 1], xe[0, 0)~Q

where C denotes the Cantor set;

{0}, xe€[0, 0)nNQ

2. Fyx) =Gy(x):=R, H,(x):= [ ;
R, xe[0, 0)~Q0

[0, x], xe€[0,0)NQ

3. F3(x) = G3(x) :=(0, x+1), H3(x):={ .
0, x), xe[0, 0)~Q0

It is easily seen that these triples satisfy the equation (1) but they are not of the
form (4) (or of the form (2)).
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