Set-Valued Solutions of the Pexider Functional Equation

By

Kazimierz NIKODEM (Silesian University, Poland)

In the present paper we characterize set-valued solutions of the Pexider functional equation

$$(1) F(x+y) = G(x) + H(y)$$

with three unknown functions F, G and H. It generalizes a classical theorem giving the solutions of the Pexider equation by means of additive functions (cf. [1]).

Let Y be a topological vector space satisfying the T_0 separation axiom. For real numbers s, t and sets A, $B \subset Y$ we put $sA + tB := \{y \in Y; \ y = sa + tb, \ a \in A, b \in B\}$. We assume that the space 2^Y of all subsets of Y is endowed with the Hausdorff topology (cf. [4]). In this topology the sets $N_W(A) := \{B \subset Y; \ B \subset A + W, \ A \subset B + W\}$, where W runs a base of neighbourhoods of zero in Y, form a base of neighbourhoods of a set $A \subset Y$. The symbol $A_n \to A$ means that the sequence $(A_n)_{n \in \mathbb{N}}$ is converging to A in the Hausdorff topology. A set-valued function (s.v. function) $F: X \to 2^Y$, where X is a semigroup, is said to be additive if it satisfies the Cauchy functional equation $F(x_1 + x_2) = F(x_1) + F(x_2)$, $x_1, x_2 \in X$. By CC(Y) we denote the family of all non-empty, convex and compact subsets of Y. The symbols R, Q, N denote the sets of all real, rational and positive integer numbers, respectively.

Theorem 1. Assume that (X, +) is an abelian semigroup with zero and Y is a T_0 topological vector space. If s.v. functions $F: X \rightarrow CC(Y)$, $G: X \rightarrow CC(Y)$ and $H: X \rightarrow CC(Y)$ satisfy the equation (1), then there exist an additive s.v. function $F_0: X \rightarrow CC(Y)$ and sets $A, B \in CC(Y)$ such that

(2)
$$F(x) = F_0(x) + A + B$$
, $G(x) = F_0(x) + A$ and $H(x) = F_0(x) + B$ for all $x \in X$.

In the proof of this theorem we will use some facts which we list here as lemmas.

Lemma 1 (Rådström [3]). Let A, B be subsets of Y and assume that B is

228 K. Nikodem

closed and convex. If there exists a bounded and non-empty set $C \subset Y$ such that $A+C \subset B+C$, then $A \subset B$.

This cancellation law is formulated in [3] for a real normed space, but the proof given there holds in topological vector space, too.

Lemma 2. If $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ are decreasing sequences of compact subsets of Y, then $\bigcap_{n\in\mathbb{N}} (A_n + B_n) = \bigcap_{n\in\mathbb{N}} A_n + \bigcap_{n\in\mathbb{N}} B_n$.

Lemma 3. If $(A_n)_{n\in\mathbb{N}}$ is a decreasing sequence of compact subsets of Y, then $A_n \to \bigcap_{n\in\mathbb{N}} A_n$.

Lemma 4. If A is a bounded subset of Y and $(s_n)_{n \in \mathbb{N}}$ is a real sequence converging to an $s \in \mathbb{R}$, then $s_n A \to sA$.

Lemma 5. If $A_n \rightarrow A$ and $B_n \rightarrow B$, then $A_n + B_n \rightarrow A + B$.

Lemma 6. If $A_n \rightarrow A$ and $A_n \rightarrow B$, then cl A = cl B.

Lemmas 2-6 are rather known and can be easily verified. Short proofs of some of them can be found in [2].

Proof of Theorem 1. Assume first that $0 \in G(0)$ and $0 \in H(0)$. Then, for every $x \in X$ we have

$$F(2x) = F(x) + H(x) \subset G(x) + H(0) + H(x) + G(0) = F(x) + F(x) = 2F(x)$$

which implies that the sequence $(2^{-n}F(2^nx))_{n\in\mathbb{N}}$ is decreasing. Put $F_0(x)$:= $\bigcap_{n\in\mathbb{N}} 2^{-n}F(2^nx)$, $x\in X$. It is clear that $F_0(x)\in CC(Y)$ for all $x\in X$. Using three times the equation (1) we get

$$G(2x) + H(0) = F(2x) = G(x) + H(x) \subset G(x) + H(x) + G(0)$$

= $G(x) + G(x) + H(0) = 2G(x) + H(0)$.

In view of Lemma 1 this implies that $G(2x) \subset 2G(x)$, and consequently the sequence $(2^{-n}G(2^nx))_{n \in \mathbb{N}}$ is decreasing.

Applying Lemma 2 and the equality $F(2^n x) = G(2^n x) + H(0)$, $n \in \mathbb{N}$, we obtain

$$F_0(x) = \bigcap_{n \in \mathbb{N}} 2^{-n} F(2^n x) = \bigcap_{n \in \mathbb{N}} 2^{-n} G(2^n x) + \bigcap_{n \in \mathbb{N}} 2^{-n} H(0).$$

But $\bigcap_{n\in\mathbb{N}} 2^{-n}H(0) = \{0\}$, because the set H(0) is bounded. Therefore $F_0(x) = \bigcap_{n\in\mathbb{N}} 2^{-n}G(2^nx)$ for all $x\in X$. In an analogous way we show that the sequence $(2^{-n}H(2^nx))_{n\in\mathbb{N}}$ is decreasing and $F_0(x) = \bigcap_{n\in\mathbb{N}} 2^{-n}H(2^nx)$ for all $x\in X$. Hence, using once more Lemma 2, we get

$$F_0(x_1 + x_2) = \bigcap_{n \in \mathbb{N}} 2^{-n} F(2^n x_1 + 2^n x_2) = \bigcap_{n \in \mathbb{N}} 2^{-n} [G(2^n x_1) + H(2^n x_2)]$$

$$= \bigcap_{n \in \mathbb{N}} 2^{-n} G(2^n x_1) + \bigcap_{n \in \mathbb{N}} 2^{-n} H(2^n x_2) = F_0(x_1) + F_0(x_2), x_1, x_2 \in X,$$

which means that the s.v. function F_0 is additive.

Now observe that

(3)
$$F(nx) + (n-1)H(0) = F(x) + (n-1)H(x)$$

for all $x \in X$ and $n \in \mathbb{N}$. Indeed, for n = 1 the equality is trivial. Assume that it holds for a natural number k. Then, in virtue of (1), we obtain

$$F((k+1)x) + kH(0) = G(kx) + H(x) + (k-1)H(0) + H(0)$$

$$= F(kx) + H(x) + (k-1)H(0) = F(x) + (k-1)H(x) + H(x) = F(x) + kH(x),$$

which proves that (3) holds for n=k+1. Thus, by induction, it holds for all $n \in \mathbb{N}$. In particular we have

$$F(2^{n}x) + (2^{n}-1)H(0) = F(x) + (2^{n}-1)H(x),$$

whence

$$2^{-n}F(2^nx) + (1-2^{-n})H(0) = 2^{-n}F(x) + (1-2^{-n})H(x).$$

In virtue of Lemma 3, $2^{-n}F(2^nx) \rightarrow \bigcap_{n \in \mathbb{N}} 2^{-n}F(2^nx) = F_0(x)$. On the other hand, by Lemma 4, $(1-2^{-n})H(0) \rightarrow H(0)$, $2^{-n}F(x) \rightarrow \{0\}$ and $(1-2^{-n})H(x) \rightarrow H(x)$. Therefore, using Lemma 5 and Lemma 6, we obtain $\operatorname{cl}[F_0(x) + H(0)] = \operatorname{cl}H(x)$, whence $H(x) = F_0(x) + H(0)$ for all $x \in X$. In an analogous way one can prove that $G(x) = F_0(x) + G(0)$, $x \in X$. Let A := G(0) and B := H(0). Then $G(x) = F_0(x) + A$ and $H(x) = F_0(x) + B$ for all $x \in X$. Moreover, $F(x) = G(x) + H(0) = F_0(x) + A + B$, $x \in X$. This finishes our proof in the case where $0 \in G(0)$ and $0 \in H(0)$. In the opposite case, fix arbitrarily points $a \in G(0)$ and $b \in H(0)$ and consider the s.v. functions F_1 , G_1 , $H_1: X \rightarrow CC(Y)$ defined by $F_1(x) := F(x) - a - b$, $G_1(x) := G(x) - a$ and $G_1(x) := G(x) - b$, $G_1(x) := G(x) - a$ and $G_1(x) := G(x) - b$. These s.v. functions satisfy the equation (1) and moreover $G_1(0) = G(0)$ and $G_1(0) = G(0)$. Therefore, by what we have proved previously, they are of the form (2). Returning to the s.v. functions $G_1(x) := G(x) - a$ and $G_1(x) := G(x) - a$

Remark. If X is a group, then the s.v. function F_0 occurring in the assertion of Theorem 1 is in fact single valued. Indeed, the set $F_0(0)$ is bounded and $F_0(0) + F_0(0) = F_0(0)$; so $F_0(0) = \{0\}$. Hence, for arbitrarily fixed $x \in X$ we get $F_0(x) + F_0(-x) = F_0(0) = \{0\}$, which implies that $F_0(x)$ is a one-point set.

In [4] Rådström has proved that a s.v. function $F_0: [0, \infty) \to CC(Y)$, where Y

230 К. Nікорем

is a locally convex Hausdorff space, is additive if and only if there exist an additive function $f: [0, \infty) \to Y$ and a set $K \in CC(Y)$ such that $F_0(x) = f(x) + xK$, $x \in [0, \infty)$. Applying this result to Theorem 1 we obtain the following

Theorem 2. Let Y be a locally convex Hausdorff space. S.v. functions $F: [0, \infty) \rightarrow CC(Y)$, $G: [0, \infty) \rightarrow CC(Y)$ and $H: [0, \infty) \rightarrow CC(Y)$ satisfy the equation (1) if and only if there exist an additive function $f: [0, \infty) \rightarrow Y$ and sets K, A, $B \in CC(Y)$ such that

(4)
$$F(x) = f(x) + xK + A + B$$
, $G(x) = f(x) + xK + A$
and $H(x) = f(x) + xK + B$

for all $x \in [0, \infty)$.

Finally, we give some examples showing that the assertions of our theorems do not hold without the assumption that the values of F, G and H are convex and compact. Consider the triples (F_i, G_i, H_i) of s.v. functions from $[0, \infty)$ into 2^R defined by the formulas:

1.
$$F_1(x) := [0, 2], \quad G_1(x) = H_1(x) := \begin{cases} C, & x \in [0, \infty) \cap \mathbf{Q} \\ [0, 1], & x \in [0, \infty) \setminus \mathbf{Q} \end{cases}$$

where C denotes the Cantor set;

2.
$$F_2(x) = G_2(x) := \mathbf{R}, \quad H_2(x) := \begin{cases} \{0\}, & x \in [0, \infty) \cap \mathbf{Q} \\ \mathbf{R}, & x \in [0, \infty) \setminus \mathbf{Q} \end{cases}$$

3.
$$F_3(x) = G_3(x) := (0, x+1), \quad H_3(x) := \begin{cases} [0, x], & x \in [0, \infty) \cap \mathbf{Q} \\ (0, x), & x \in [0, \infty) \setminus \mathbf{Q} \end{cases}$$

It is easily seen that these triples satisfy the equation (1) but they are not of the form (4) (or of the form (2)).

References

- [1] Kuczma, M., An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. PWN-Uniwersytet Slaski, Warszawa-Kraków-Katowice, 1985.
- [2] Nikodem, K., On Jensen's functional equation for set-valued functions, Radovi Mat., 3 (1987), 23-33.
- [3] Rådström, H., An embedding theorem for space of convex sets, Proc. Amer. Math. Soc., 3 (1952), 165–169.

[4] Rådström, H., One-parameter semigroups of subsets of a real linear space, Ark. Mat., 4 (1960), 87-97.

> nuna adreso: Institute of Mathematics Silesian University 40–007 Katowice Poland

(Ricevita la 17-an de julio, 1986) (Reviziita la 13-an de majo, 1987)