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In this note we consider the Lienard system

$¥chi^{¥prime}=¥vee v-F(x)$

(1)
$y^{¥prime}=-g(¥mathrm{x})$

where $F$ and $g$ are continuous functions on $R^{1}$ satisfying

$F(0)=0$ and $xg(x)>0$ for $x$ $¥neq 0$ .

We assume the regularity for $F(x)$ and $g(x)$ which ensures the existence of unique
solution to the initial value problem.

Recently, the authors [2] have developed a new method to investigate the
asymptotic behavior of the solutions of (1), and gave theorems on the oscillation,
the stability and the boundedness. This note is a continuation of [2]. We
will present the sufficient conditions under which the zero solution of (1) is
asymptotically stable and the solutions of (1) are ultimately bounded. For
these definitions, refer to [3] and use the same notations as in [2] to avoid
overlapping.

Before beginning to state our results, let us introduce the Poincare-Bendixson
theorem. Consider the two-dimensional autonomous system

$¥mathrm{x}^{¥prime}=f(¥mathrm{x}, y)$

(2)
$y^{¥prime}---g(x, y)$

where $f$ and $g$ are continuous on $R^{2}$ , and we assume that for any $(x_{0}, y_{0})¥in R^{2}$

there exists a unique solution $(x(t), y(t))$ of (2) such that $(x(0), y(0))=(x_{0}, y_{0})$ .

If the solution $(x(t), y(t))$ is defined for all $t¥geqq 0$ , the set $T_{(2)}^{+}(x_{0}, y_{0})=¥{(x(t)$ ,
$y(t))|t¥geqq 0¥}$ is called the semi-orbit of the solution of (2). Let $L(T_{(2)}^{+})$ be the
positive limit set of the solution $(x(t), y(t))$ . The following theorem is well
known (see, for example, [1]).

Poincare-Bendixson Theorem. Let $(x(t), y(t))$ be a solution of (2), and
suppose that $T_{(2)}^{+}$ is bounded. Then
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(i) $L(T_{(2)}^{+})$ is a nonempty, closed and connected set.
(ii) If $L(T_{(2)}^{+})$ contains no critical point, then $L(T_{(2)}^{+})$ is a periodic orbit.
(iii) If $L(T_{(2)}^{+})co’¥iota tains$ a critical point, then $L(T_{(2)}^{+})$ consists $o¥vee’$ critical

points.

Now we give a result on the asymptotic stability of the zero solution of (1).

Theorem 1. Suppose that ? $F(-x)$ and ? $g(-x)$ satisfy $(¥mathrm{A}_{3})$ for $x¥geqq 0$ ,
and for some $k>0$

$(¥mathrm{A}_{14})$ $F(G^{-1}(-w))<F(G^{-1}(w))$ for $0<w¥leqq k$ .

Then the zero solution of (1) is uniformly asymptotically stable.

The uniform stability of the zero solution of (1) follows from [2, Theorem
6. 1]. $¥mathrm{B}.¥mathrm{v}$ the uniqueness of solutions of (I), we can apply the Poincare-Bendixson
Theorem to (1). Hence there exists a neighborhood $N$ of the origin such that
for any solution $(x(t), y(t))$ of (1) with $(x(0), y(0))=(x_{0}, y_{0})¥in N$ , either $L(T_{(1)}^{+})$

is a periodic orbit or $L(T_{(1)}^{+})$ consists of the origin. Therefore the proof of
Theorem 1 is completed by showing that the system (1) has no non-trivial periodic
orbit. In order to prove this we give a simple lemma (cf. [2], Lemma 6.1).

Lemma 1. Let $H(x, y)$ and $¥tilde{H}(x, y)$ be continuous on $[a, b]¥times R^{1}$ . Suppose
that solutions of scalar equations

(3) $¥frac{dy}{dx}=H(x, y)$

and

(4) $¥frac{dy}{dx}=¥tilde{H}(x, y)$

are unique to the right and

$H(¥mathrm{x}, y)<¥tilde{H}(x, y)$ for all $(x, y)¥in[a, b]$ $¥times R^{1}$ .

Let $y(x)$ and $¥tilde{y}(x)$ be solutions of (3) and (4) on $[a, b]$ satisfying $y(a)¥leqq¥tilde{y}(a)$ ,
respectively. Then $y(x)<¥tilde{y}(x)$ for all $x¥in(a,$ $b]$ .

Proof of Theorem 1. Define the function $¥tilde{F}(¥mathrm{x})$ by $¥tilde{F}(¥mathrm{x})=F(x)$ for $x¥leqq 0$

and $¥tilde{F}(G^{-1}(w))=F(G^{-1}(-w))$ for $w¥geqq 0$ , and consider the system

$x^{¥prime}=y-¥tilde{F}(x)$

(5)
$y^{¥prime}=-g(x)$ .
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Then the origin is a local center of (5), and as in the proof of [2, Theorem 6.1]
we can show that there exists a nieghborhood $N$ of the origin such that for any
$(x_{0}, y_{0})¥in N$ the solution $(x(t), v(t))$ of (1), with $(x(0), y(0))=(x_{0}, y_{0})$ , remains
in the closed region $R_{(5)}(x_{0}, y_{0})$ enclosed by the orbit $T_{(5)}(¥mathrm{x}_{0}, y_{0})$.

Suppose that there exists a non-trivial periodic orbit $T_{(1)}$ which is contained
in $N$ . Choose a point $(x_{0}, y_{0})$ on $T_{(1)}$ such that $x_{0}>0$ and $y_{0}>F(x_{0})$ and let
$(x_{1}, F(x_{1}))$ be the intersecting point of $T_{(1)}(X_{0}, y_{0})$ and the characteristic curve.
Let $(x(t), y(t))$ and $(¥tilde{x}(t),¥tilde{y}(t))$ be the solutions of (1) and (5) satisfying $(x(0)$ ,
$y(0))=(¥tilde{¥mathrm{x}}(0),¥tilde{y}(0))=(¥mathrm{x}_{0}, y_{0})$ , respectively. Then as in the proof of [2, Lemma
6.2], these define the solutions $y(x)$ and $¥tilde{y}(x)$ on $[x_{0}, x_{1}]$ of the scalar equations

$¥frac{dy}{dx}=¥frac{g(x)}{F(x)-y}$ and $¥frac{dy}{dx}=¥frac{g(x)}{F(x)-y}$

satisfying $y(x_{0})=¥tilde{y}(x_{0})$, respectively. Hence by $(¥mathrm{A}_{14})$ and Lemma1, we have

$y(x)<¥tilde{y}(x)$ for all $x¥in(x_{0},$ $x_{1}]$ .

Then $(x_{0}, y_{0})¥not¥in R_{(5)}(x_{1}, F(x_{1}))$ and $(x(t), y(t))$ remains in the region $R_{(5)}(x_{1}, F(x_{1}))$ ,

which contradicts that the solution $(x(t), y(t))$ is periodic. The proof of Theorem
1 is now complete.

Corollary 1. Suppose that $F(-x)¥leqq 0$ for $0¥leqq x¥leqq k$ , $F(x)$ and $g(x)$ satisfy
$(¥mathrm{A}_{3})$ for $0¥leqq x¥leqq k$, and $(¥mathrm{A}_{14})$ hold. Then the zero solution of (1) is uniformly
asymptotically stable.

Proof. The proof is reduced to that of Theorem 1 by the transformation
$(x, y)¥rightarrow(-x, -y)$ .

We next give our results on the utimate boundedness of the solutions of (1).

Theorem 2. Suppose that $-F(-x)$ and $-g(-x)$ satisfy $(¥mathrm{A}_{4})$ and ( $(¥mathrm{A}_{5})$ or
$(¥mathrm{A}_{6}))$ for $x¥geqq 0$ , $(¥mathrm{A}_{13})$ holds and there exists $K>0$ such that

$(¥mathrm{A}_{15})$ $F(G^{-1}(-w))<F(G^{-1}(w))$ for all $w¥geqq K$ .

Then the solutions of (1) are uniformly ultimately bounded.

Proof. By [2, Theorem 6.2] any solution of (1) is uniformly bounded, and
hence it follows from the Poincare-Bendixson Theorem that the positive limit
set $L(T_{(1)}^{+})$ of any solution of (1) is either a periodic orbit or tlie origin. Therefore
it suffices to show that for any $(x_{0}, y_{0})¥in R^{2}$ with sufficiently large $x_{0}^{2}+y_{0}^{2}$ , the
solution $(x(t), y(t))$ of (1) such that $(x(0), y(0))=(x_{0}, y_{0})$ is not periodic.

Define the function $¥tilde{F}(x)$ by $¥tilde{F}(x)=F(¥mathrm{x})$ for $x¥leqq 0$ and $¥tilde{F}(G^{-1}(w))=F(G^{-1}(-w))$

for $w¥geqq 0$ , and consider the system
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$x^{¥prime}=y-¥tilde{F}(x)$

(6)
$y^{¥prime}=-g(x)$ .

We have shown in the proof of [2, Theorem 6.2] that there exists $M>0$ such
that for any $(x_{0}, y_{0})¥in R^{2}$ with $x_{0}^{2}+y_{0}^{2}>M$ , the orbit $T_{(6)}(X_{0}, y_{0})$ is an oval
surrounding the origin and that any solution $(x(t), y(t))$ of (1) remains in the
region $R_{(6)}(x_{0}, y_{0})$ as $ t¥rightarrow¥infty$ if $(x(0), y(0))¥in R_{(6)}(x_{0}, y_{0})$ . Choose $c>G(K)$

such that $c^{2}+F(c)^{2}>M$ .

Suppose that there exists $(x_{0}, y_{0})¥not¥in R_{(6)}(c, F(c))$ such that the solution
$(x(t), y(t))$ of (1) with $(x(0), y(0))=(x_{0}, y_{0})$ is periodic. Then it is clear that
$(x(t), y(t))¥not¥in R_{(6)}(c, F(c))$ for all $t¥geqq 0$ and there exists $t_{1}¥geqq 0$ such that $x(t_{1})=c$ .
Let $(x_{1}. y_{1})=(x(t_{1}), y(t_{1}))$ . Comparing the solutions $y(x)$ and $¥tilde{y}(x)$

$¥frac{dy}{dx}=¥frac{g(x)}{F(x)-y}=$ and $¥frac{dy}{dx}=¥frac{g(x)}{¥tilde{F}(x)-y}$

such that $y(x_{1})=¥tilde{y}(x_{1})=y_{1}$ , we can show by $(¥mathrm{A}_{15})$ and Lemma 1 that the solution
$(x(t), y(t))$ crosses the characteristic curve at a time $t_{2}>t_{1}$ and a point $(x_{2}, F(x_{2}))$

in the interior of $R_{(6)}(x_{1}, y_{1})$ . Then the solution $(x(t), y(t))$ remains in the
region $R_{(6)}(x_{2}, F(x_{2}))$ for all $t¥geqq t_{2}$ , which contradicts that $(x(t), y(t))$ is periodic,
since $R_{(6)}(x_{2}, F(x_{2}))$ is strictly contained in $R_{(6)}(x_{1}, y_{1})$ . Thus the proof is
complete.

By the transformation $(x, y)¥rightarrow(-x, -y)$ , we can show the following corollary
by the same arguments in the proof of Theorem 2.

Corollary 2. Suppose that $F(-x)¥leqq 0$ for large $x>0$, $F(x)$ and $g(x)$ satisfy
$(¥mathrm{A}_{4})$ and ( $(¥mathrm{A}_{5})$ or $(¥mathrm{A}_{6})$ ) for $x¥geqq 0$ , and $(¥mathrm{A}_{13})$ and $(¥mathrm{A}_{15})$ hold. Then the solutions
of (I) are uniformly ultimately bounded.

Finally, we give a result on the global asymptotic stability of the zero solution
of (1), the proof of which follows by those of Theorems 1 and 2.

Theorem 3. Suppose that $-F(-x)$ and $-g(-x)$ satisfy $(¥mathrm{A}_{3})$ , $(¥mathrm{A}_{4})$ and
( $(¥mathrm{A}_{5})$ or $(¥mathrm{A}_{6})$ ) for $x¥geqq 0$ , and

$(¥mathrm{A}_{16})$ $F(G^{-1}(-w))<F(G^{-1}(w))$ for all $w>0$.

Then the zero solution of (I) is globally asymptotically stable.
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