On the Global Center of Generalized Liénard Equation and its Application to Stability Problems II

By

Tadayuki HARA and Toshiaki YONEYAMA (University of Osaka Prefecture, Japan)

 \mathbf{n}

In this note we consider the Liénard system

(1)
$$x' = y - F(x)$$
$$y' = -g(x)$$

where F and g are continuous functions on R^1 satisfying

$$F(0) = 0$$
 and $xg(x) > 0$ for $x \neq 0$.

We assume the regularity for F(x) and g(x) which ensures the existence of unique solution to the initial value problem.

Recently, the authors [2] have developed a new method to investigate the asymptotic behavior of the solutions of (1), and gave theorems on the oscillation, the stability and the boundedness. This note is a continuation of [2]. We will present the sufficient conditions under which the zero solution of (1) is asymptotically stable and the solutions of (1) are ultimately bounded. For these definitions, refer to [3] and use the same notations as in [2] to avoid overlapping.

Before beginning to state our results, let us introduce the Poincaré-Bendixson theorem. Consider the two-dimensional autonomous system

(2)
$$\begin{aligned} x' &= f(x, y) \\ y' &= g(x, y) \end{aligned}$$

where f and g are continuous on \mathbb{R}^2 , and we assume that for any $(x_0, y_0) \in \mathbb{R}^2$ there exists a unique solution (x(t), y(t)) of (2) such that $(x(0), y(0)) = (x_0, y_0)$. If the solution (x(t), y(t)) is defined for all $t \ge 0$, the set $T^+_{(2)}(x_0, y_0) = \{(x(t), y(t)) | t \ge 0\}$ is called the semi-orbit of the solution of (2). Let $L(T^+_{(2)})$ be the positive limit set of the solution (x(t), y(t)). The following theorem is well known (see, for example, [1]).

Poincaré-Bendixson Theorem. Let (x(t), y(t)) be a solution of (2), and suppose that $T^+_{(2)}$ is bounded. Then

T. HARA and T. YONEYAMA

- (i) $L(T_{(2)}^+)$ is a nonempty, closed and connected set.
- (ii) If $L(T^+_{(2)})$ contains no critical point, then $L(T^+_{(2)})$ is a periodic orbit.
- (iii) If $L(T^+_{(2)})$ contains a critical point, then $L(T^+_{(2)})$ consists of critical points.

Now we give a result on the asymptotic stability of the zero solution of (1).

Theorem 1. Suppose that -F(-x) and -g(-x) satisfy (A_3) for $x \ge 0$, and for some k > 0

(A₁₄)
$$F(G^{-1}(-w)) < F(G^{-1}(w))$$
 for $0 < w \le k$.

Then the zero solution of (1) is uniformly asymptotically stable.

The uniform stability of the zero solution of (1) follows from [2, Theorem 6.1]. By the uniqueness of solutions of (1), we can apply the Poincaré-Bendixson Theorem to (1). Hence there exists a neighborhood N of the origin such that for any solution (x(t), y(t)) of (1) with $(x(0), y(0)) = (x_0, y_0) \in N$, either $L(T_{(1)}^+)$ is a periodic orbit or $L(T_{(1)}^+)$ consists of the origin. Therefore the proof of Theorem 1 is completed by showing that the system (1) has no non-trivial periodic orbit. In order to prove this we give a simple lemma (cf. [2], Lemma 6.1).

Lemma 1. Let H(x, y) and $\tilde{H}(x, y)$ be continuous on $[a, b] \times \mathbb{R}^1$. Suppose that solutions of scalar equations

(3)
$$\frac{dy}{dx} = H(x, y)$$

and

(4)
$$\frac{dy}{dx} = \tilde{H}(x, y)$$

are unique to the right and

$$H(x, y) < \tilde{H}(x, y)$$
 for all $(x, y) \in [a, b] \times \mathbb{R}^1$.

Let y(x) and $\tilde{y}(x)$ be solutions of (3) and (4) on [a, b] satisfying $y(a) \leq \tilde{y}(a)$, respectively. Then $y(x) < \tilde{y}(x)$ for all $x \in (a, b]$.

Proof of Theorem 1. Define the function $\tilde{F}(x)$ by $\tilde{F}(x) = F(x)$ for $x \leq 0$ and $\tilde{F}(G^{-1}(w)) = F(G^{-1}(-w))$ for $w \geq 0$, and consider the system

(5)
$$\begin{aligned} x' &= y - \tilde{F}(x) \\ y' &= -g(x). \end{aligned}$$

222

Then the origin is a local center of (5), and as in the proof of [2, Theorem 6.1] we can show that there exists a nieghborhood N of the origin such that for any $(x_0, y_0) \in N$ the solution (x(t), y(t)) of (1), with $(x(0), y(0)) = (x_0, y_0)$, remains in the closed region $R_{(5)}(x_0, y_0)$ enclosed by the orbit $T_{(5)}(x_0, y_0)$.

Suppose that there exists a non-trivial periodic orbit $T_{(1)}$ which is contained in N. Choose a point (x_0, y_0) on $T_{(1)}$ such that $x_0 > 0$ and $y_0 > F(x_0)$ and let $(x_1, F(x_1))$ be the intersecting point of $T_{(1)}(x_0, y_0)$ and the characteristic curve. Let (x(t), y(t)) and $(\tilde{x}(t), \tilde{y}(t))$ be the solutions of (1) and (5) satisfying $(x(0), y(0)) = (\tilde{x}(0), \tilde{y}(0)) = (x_0, y_0)$, respectively. Then as in the proof of [2, Lemma 6.2], these define the solutions y(x) and $\tilde{y}(x)$ on $[x_0, x_1]$ of the scalar equations

$$\frac{dy}{dx} = \frac{g(x)}{F(x) - y}$$
 and $\frac{dy}{dx} = \frac{g(x)}{\tilde{F}(x) - y}$

satisfying $y(x_0) = \tilde{y}(x_0)$, respectively. Hence by (A₁₄) and Lemma 1, we have

$$y(x) < \tilde{y}(x)$$
 for all $x \in (x_0, x_1]$.

Then $(x_0, y_0) \notin R_{(5)}(x_1, F(x_1))$ and (x(t), y(t)) remains in the region $R_{(5)}(x_1, F(x_1))$, which contradicts that the solution (x(t), y(t)) is periodic. The proof of Theorem 1 is now complete.

Corollary 1. Suppose that $F(-x) \leq 0$ for $0 \leq x \leq k$, F(x) and g(x) satisfy (A₃) for $0 \leq x \leq k$, and (A₁₄) hold. Then the zero solution of (1) is uniformly asymptotically stable.

Proof. The proof is reduced to that of Theorem 1 by the transformation $(x, y) \rightarrow (-x, -y)$.

We next give our results on the utimate boundedness of the solutions of (1).

Theorem 2. Suppose that -F(-x) and -g(-x) satisfy (A_4) and $((A_5)$ or (A_6)) for $x \ge 0$, (A_{13}) holds and there exists K > 0 such that

(A₁₅)
$$F(G^{-1}(-w)) < F(G^{-1}(w))$$
 for all $w \ge K$.

Then the solutions of (1) are uniformly ultimately bounded.

Proof. By [2, Theorem 6.2] any solution of (1) is uniformly bounded, and hence it follows from the Poincaré-Bendixson Theorem that the positive limit set $L(T_{(1)}^+)$ of any solution of (1) is either a periodic orbit or the origin. Therefore it suffices to show that for any $(x_0, y_0) \in \mathbb{R}^2$ with sufficiently large $x_0^2 + y_0^2$, the solution (x(t), y(t)) of (1) such that $(x(0), y(0)) = (x_0, y_0)$ is not periodic.

Define the function $\tilde{F}(x)$ by $\tilde{F}(x) = F(x)$ for $x \leq 0$ and $\tilde{F}(G^{-1}(w)) = \tilde{F}(G^{-1}(-w))$ for $w \geq 0$, and consider the system

T. HARA and T. YONEYAMA

(6)
$$\begin{aligned} x' &= y - \tilde{F}(x) \\ y' &= -g(x). \end{aligned}$$

We have shown in the proof of [2, Theorem 6.2] that there exists M > 0 such that for any $(x_0, y_0) \in \mathbb{R}^2$ with $x_0^2 + y_0^2 > M$, the orbit $T_{(6)}(x_0, y_0)$ is an oval surrounding the origin and that any solution (x(t), y(t)) of (1) remains in the region $R_{(6)}(x_0, y_0)$ as $t \to \infty$ if $(x(0), y(0)) \in R_{(6)}(x_0, y_0)$. Choose c > G(K) such that $c^2 + F(c)^2 > M$.

Suppose that there exists $(x_0, y_0) \notin R_{(6)}(c, F(c))$ such that the solution (x(t), y(t)) of (1) with $(x(0), y(0)) = (x_0, y_0)$ is periodic. Then it is clear that $(x(t), y(t)) \notin R_{(6)}(c, F(c))$ for all $t \ge 0$ and there exists $t_1 \ge 0$ such that $x(t_1) = c$. Let $(x_1, y_1) = (x(t_1), y(t_1))$. Comparing the solutions y(x) and $\tilde{y}(x)$

$$\frac{dy}{dx} = \frac{g(x)}{F(x) - y} = \text{ and } \frac{dy}{dx} = \frac{g(x)}{\tilde{F}(x) - y}$$

such that $y(x_1) = \tilde{y}(x_1) = y_1$, we can show by (A_{15}) and Lemma 1 that the solution (x(t), y(t)) crosses the characteristic curve at a time $t_2 > t_1$ and a point $(x_2, F(x_2))$ in the interior of $R_{(6)}(x_1, y_1)$. Then the solution (x(t), y(t)) remains in the region $R_{(6)}(x_2, F(x_2))$ for all $t \ge t_2$, which contradicts that (x(t), y(t)) is periodic, since $R_{(6)}(x_2, F(x_2))$ is strictly contained in $R_{(6)}(x_1, y_1)$. Thus the proof is complete.

By the transformation $(x, y) \rightarrow (-x, -y)$, we can show the following corollary by the same arguments in the proof of Theorem 2.

Corollary 2. Suppose that $F(-x) \leq 0$ for large x > 0, F(x) and g(x) satisfy (A_4) and $((A_5)$ or $(A_6))$ for $x \geq 0$, and (A_{13}) and (A_{15}) hold. Then the solutions of (1) are uniformly ultimately bounded.

Finally, we give a result on the global asymptotic stability of the zero solution of (1), the proof of which follows by those of Theorems 1 and 2.

Theorem 3. Suppose that -F(-x) and -g(-x) satisfy (A_3) , (A_4) and $((A_5) \text{ or } (A_6))$ for $x \ge 0$, and

(A₁₆)
$$F(G^{-1}(-w)) < F(G^{-1}(w))$$
 for all $w > 0$.

Then the zero solution of (1) is globally asymptotically stable.

References

[1] Coddington, E. A. and Levinson, N., *Theory of ordinary differential equations*, McGraw-Hill, New York, 1955.

224