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1. Introduction and preliminaries

In what follows, the symbol X stands for a real Banach space. We denote
by C[a, b] (Lip[a, b]) the space of all continuous (Lipschitz continuous) functions
Sf:[a, b]->X. In this paper we study functional evolution problems of the type

(FDE) x' + A(H)x = G(t, x,), te[0, T],
Xo = ¢’

where, for a function f:[—r, T]>X, f(s)=f(t+s), te[0, T], se[—r, 0].
Here r, T are positive constants. An operator 4: D<= X — X is called “accretive”’
if

Ix=yll < llx=y+A(Ax—Ap)|

for every 1>0 and every x, ye D. It is called “m-accretive’’ if it is accretive
and R(I+1A4)=X for all A1>0. If 4 is m-accretive, we set

|Ax] = lim, o [ 4;x]l, xeX,
where 4,=AJ, with J,=([+14)"'. We also set
D(A) = {xe X; |Ax|<o0}.

We have that D(A)cD(A)c=D(A), ||A,x||<|Ax| for all xe X and |Ax|<
inf | Ax|| for xe D(4). Moreover, x,e D and x,—x imply |Ax|<liminf|Ax,|.
For these facts the reader is referred to Crandall [1]. We let 4={(z, 5); 0<s<
t<T}. Given a mapping U: 4 x K— X (K a subset of X), we say that U is an
“evolution operator’’ if

i) U(t, t)=I(=the identity operator) for all t€ [0, T];

i) U(¢, s)x is continuous on 4 for all xe K;
iii) U(t, s)U(s, r)x=U(t, r)x for all xe K and all
s, t, re[0, T] with 0<r<s<t<T.
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The following conditions will be used in the sequel.
(C.1) A(t): D(A(t))= X — X is m-accretive for every te [0, T].
(C.2) There exists an increasing continuous function L: [0, c0)—[0, o) such that

[ 4:(0x — Ax()xf < |e—=sIL{ix]) (1 + [ A(0O)x])

forall 1>0,xe X, s, te[O0, T].
(C3) G:[0, T]xC[—r, 0]—>X and there exists a positive constant b such that

1GGs, /1) =G, )l < blls—t]+|Lf1 —=f2ll )

for every s, te [0, T1, f,, f,€ C[—r, O].

The symbol || f|,, denotes the sup-norm of f.

The main purpose of this paper is to obtain a “‘generalized solution’’ of
the problem (FDE) which gives rise to an evolution operator U(t, s)x as above.
We will assume that (C.1)—(C.3) hold and that ¢ € Lip[ —r, 0] is a given function
such that ¢(0)e D(A(t)=D. The set D(A(¥)) is constant under our assumptions
(C.1)~«(C.2) and so is D(A(t))=D (see Evans [4, Lemma 3.1]). If (C.2) above is
replaced by a (much stronger) condition without the factor 14| A4,(t)x||, this
problem has been solved, in an otherwise more general settting, by the author and
Parrott [6]. However, the present condition (C.2) has much wider applicability
in the field of partial differential equations and it does not seem possible that
we can apply the fixed point method of [5] to the present setting except locally.
In this vein, see also the note on (C.2)" below.

Evolution equations of the type (FDE) were considered by Webb [7]. Webb
studied constant operators A and functions G= G(¢), ¢ € C[ —r, 0], and considered
an initial value problem with underlying space C[—r, 0] instead of X. Webb’s
results were extended later to time dependent problems by Dyson and Villella
Bressan [2], [3].

Our approach here is direct in the sense that the generalized solution x(),
te[—r, T], of (FDE) provides us with an evolution operator U(t, s)x on 4 x D—
and not on 4 x K with K< C[—r, 0]. Moreover, two generalized solutions with
initial data ¢, y satisfy the fundamental inequality

Ix() =yl < [6(0)—y(0) +f; 1G(s, x)—G(s, y)lds, te[0, T]

(and other inequalities of Bénilan type), which is of great importance in the study
of stability and asymptotic behaviour of (FDE). For a result concerning the
existence of generalized solutions on R, the reader is referred to the author’s
paper [5].

It should be noted that if an operator A(t): D<= X— X (D constant) satisfies
the condition (C.1) and G satisfies (C.3), then the condition
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(C.2y [A@®)x — A(s)x| < |t —s|L(|x[) (1 + [ A@x1),

for (s, t, x)€[0, T]>x D and L as in (C.2), can be used instead of (C.2). In fact,
(C.2)’ can be used to reduce the problem (FDE) to a problem where (C.1)-(C.3)
are satisfied.

In order to show this, fix x, € D and consider the operators 4,(t): D— X with
A ()x=A(t)x— A(t)xy, t€[0, T], xeD. Then A(t)xq=0 and (I+A4,(t))x,=
Xq, giving JI(O)xo=(I+1A4,(t)) " 1xo=x,. Moreover,

[[41()x —A;(s)x|| < |t—s|L(|x]) (1 + [ A(D)x])
+ 1t =s|L(lxo ) (L + [ A(D)xol1)
< |t =s|Llx[D) (1 + | 4, (Dx] + 11 4@Oxol]) + 18— sIL{Ixol) (1 + | A(1)xo 1)
< [t=s| (LAIx[D) + Ll xo 1) (1 + [ A1 (x| + | 4O, ) ,

where we have used (C.2)" and ||A()x| < [A()x — A()xoll + [|A(H)x0l. We also
have

[A®)xoll < [ 4(0)xoll + TL(llxol) (1+ [|A(0)xo])) -
Letting K denote the right-hand side above, we obtain
|4, (0)x — A ()x]| < lt—sILy(Ix ) (1+ 14, (0)x]),
(s, t,x)e[0, T]*> x D,

where L (||x|)=1+ K)(L(||x|)+ L(||xcll)). Thus, we can now apply Lemma 3.2
of Evans [4] to obtain that the operator A(¢) satisfies (C.2). If we let G,(¢, ¢)=

G(t, §)— A(t)x,, we see that the function G, satisfies (C.3). This proves our
assertion.

2. Main results

We have the following three lemmas.

Lemma 1. Let the operators A(t) satisfy (C.1) and (C.2). Assume that
feLip[0, T]. Then, for every x,cD(A(t))=D, se[0, T), the Crandall-Pazy
solution of the problem /

(1) x'+ A)x = f(), tels, T],
x(s) = x,
is equal to the Evans solution.

By the Crandall-Pazy solution of (1) we mean the function u(t), te[s, T],
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u(s)=x,, whose value at te(s, T] is given by

@ u(t) = U(t, $)xg = im (TT J-npls +i(t=9)/m)xo

where J,()=[I+1A4(t)]"!, A(t)=A(t)—f(t). On the other hand, the Evans
solution of (1) is the function #(t)=lim,_, u,(t), uniformly on [s, T], where the
function u,(7), T (s, t], is given by

(3 uv) = z,;, Te(s+(j—D(t—s)/n, s+jt—s)/n],

where A(tnj)znj+(znj_zn,j—1)/h=f(tnj)’ j=1,'25"'3 n, h=(t—s)/n, Zp0=X0> tnj=
s+jh. Moreover, u,(s)=x,. In particular, u,(t)=z,,.

Proof of Lemma 1. 1t suffices to let in (2) z,,=x, and

} Jo. .
Zpj = (,I;[l J =gyl + it —=s)[m))xo -
Then we have

an = j(t—s)/:z(s+j(t_S)/n)zn,j—1 = [I+[(t_s)/n]"a(tnj)]_lzn,j—l

or
A(tnj)znj + (an—'zn,j—l)/h zf(tnj)'

Thus, z,,=u,(t)-U(t, s)xo=1(t). This completes the proof because ¢ is
arbitrary in (s, T].

The reason we gave this lemma is the fact that from now on we are only
making use of Evans’ paper and Evans’ solution. The reader should have thus
in mind that we are actually dealing with the same solution as that of Crandall
and Pazy.

Lemma 2. Letf,: [0, T]—[0, o) be continuous and such that

a1 <D J‘tf,,(s)ds, te[0, T], n=1,2,-,
0
where b is a positive constant. Then
o1 S LB 0T | f1ll%, te[0, T}, n=1,2,-,
where || f % =supgeo,q | f(s)I.

Proof. The statement to prove is obviously true for n=1. Assume that
it is true for n=k. Then we have
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fora® < b fursds < @+ 11kn [ skasi s

= [y (k+ D | f1ll% -

Lemma 3. Let the conditions (C.1)~(C.3) be satisfied. Then the Evans
solution x(t) of the problem

(Eg) xl + A(t) = G(t’ gt)a te [0’ T] ’
belongs to Lip[0, T] for every ge Lip[ —r, T].
Proof. We follow the notation of Theorems 1 and 2 and their proofs in

Evans [4]. We set h(t)=t, f(1)=G(t, g,) there. The Evans solution of (E,),
u(t), satisfies

llu(s) —u(®)]

< 0y(1=9) + [ [Klt=s|+ 16 90— Gt —s+, g, )Ida

re

t
< oft=s) + | [Klt—s|+b(t=s|+19.—g:-s+all )]de

o

("t
< wys(t—s) + 0[Klt——s[+b(|t—s|—}—Mlt—sl)]doc
< oit—s)+ M, lt—s|, 0<s<t<T,

where K, b, M, M, are appropriate constants. Here we have used the fact that
lg:— sl < M|t—s|, where M is a Lipschitz constant for g on [—r, T]. The
function wy(t—s) is given by

wy(t—s) = Ky(t—s) + f;_ LI G(u, g + K, Julldu + 2| x5—xoll,

where K, K, are constants. We now observe that since x, € D, we may choose
X;=X in Evans [4, proofs of Theorems 1, 2] in order to obtain that wy(t—s)<
K;lt—s|, 0<s<t<T, where K; is another positive constant. This proves the
Lipschitz continuity of u(?), te [0, T].

We are now ready for our first theorem.

Theorem 1. Let (C.1)«(C.3) be satisfied and let ¢ e Lip[—r, 0], ¢(0)e D
be fixed. Assume that y°e Lip[ —r, T] is a given function such that y°(t)= ¢(1),
te[—r,0]. Consider the sequence {y™(t)}, te[—r, T}, n=1, 2,---, such that
y™(t) is the Evans solution of the problem
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(En y + Ay = G(1, yi™1),
(0) = ¢(0)

on [0, T] and equals ¢(t) on [—r, 0) (the sequence is well defined by induction,
in view of Lemma 3 and the Lipschitz continuity of y°(t)).

Then y"(t)—x(t) uniformly as n—oo on [—r, T]. This function x(t) is
independent of the initial function y°(t). Moreover, x(t) is the extension on
[—r, T] of a local Evans solution of the problem

4) u + A(u = G(t, x,)
u(0) = ¢(0).

Proof. 1. Convergence of the approximants. Given a function fe
Lip[ —r, T7], we let U(t, 0, f)¢(0) be the Evans solution of the problem

w'(t) + Alu = G(1, f), te[0, T1,
u(0) = ¢(0).

We have y"(t)=U(, 0, y» )p(0), te[0, T]. At this point, recalling
Theorem 3 of Evans [4], we observe that

Iy () — y (D)) < f 1G(s, y™)— G(s, yr=1)ds

ng‘t “yg—yg_lnoodsa t€[0, T]a n = la 25
[}

If we look at the functions y"*'(t+1)—y"(t+7) for t+te[—r, T], n=0,
1,---,te[—r, 0], te[0, T], we see that

lyrtit+1)—y"(t+1))| = |Pp(t+1)—P(t+7)| =0 for t+1<0, n=>=0,
iD=yl < b Iyttt ds
gbfﬂﬂ—ﬂﬂmm,nzl,t+rza
which imply,
@ =il < b [ 15—yt lods, =1, te[0. T] tel-r,0]

and, finally, by Lemma 2,

et = yille < [(BD" /01Tl f1ll%, t€[0, T], n=1,

where | f[l%=5UPsero,i 175 — 32l
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To show that {y"(t)} converges uniformly on [—r, T], let m>n>1. Then
we have

e —=yille < Iye=yi o +-+ Iy =il

< Ifil% 3 [boy=1 /=11

< IAIE ,§1 [T) (i —D!].
Since X 2, (bT)/i!=ebT, we have that
SUPypo,r1 1V —¥il — 0 as m, n — o0,

which implies easily that there exists a continuous function x(¢), te[—r, T],
such that y"(t)—x(t) uniformly on [—r, T] as n—oo.

2. Independence of the first approximant. Let us assume that y°(t), y°(¢)
are two different initial functions in Step 1 with corresponding approximatns
{y"(v)}, {y"(v)}, te[—r, T]. Then, according to Theorem 3.1 of [4], we have

1=l < [ 166, yr7)=G(s, 21ds

<bf Iyt =y ads, 1[0, 7] n> 1.
0
From this inequality we obtain, from Lemma 2,

Iyi — Jille < WBTY /Nt supscro,ry 17 — 72l 0 »

i.e., |y?— 9"l ,—0 uniformly on [0, T] as n—oo. This shows that the sequences
{y"(1)}, {y™(¢)} have the same limit function as n— co.

3. Coincidence with the Evans solution. In this step we are going to
show that there is a number T, € (0, T] such that Problem (4), with x(¢) as in
Step 1, has an Evans solution on the interval [0, T,] and that x(¢) coincides with
this solution on [0, T;]. To this end, we show first that if T, is taken to be
sufficiently small, then the Lipschitz constant of the approximant y"(t) can be
considered fixed for all n>0 and te[—r, T,].

Since y™(t)—»x(t) uniformly on [—r, T] as n—o0, we must have || y"(1)|| <C
uniformly in f, n, where C is a positive constant. We may assume that the
Lipschitz constant ¢, of y°(t) on [ —r, T] satisfies £,> K, + C,, where

C, =sup{||G(t, ®)||; te[0, T], pe C[—r, 0], 9], <C}

and K is specified in the next paragraph.
It is easy to see, from Lemma 3, that
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(5 [y () =y < Ky(t—35) + (C; +K,T)(t—5)
+f0 [K(t—5)+ b((t— )+ Lo(i—s))]do, (1, 5) € 4,

where the constants K, K, depend only on | 4(0)¢(0)|, |¢(0)| and the constant K =
K(4,, T, |40)], |[A(0)p(0)], C, C;). The nature of this constant K can be
confirmed after a careful study of the proof of Theorem 2 of Evans [4] in view

of the fact that the sequence {|x?|} there has an upper bound depending only on
K,, K,, C, and T, and the sequence

I+ O -1 =X/t =t - Dl

there has an upper bound depending on the previous parameters as well as the
variation of the function f(t) (which in our case is bounded above by £,(T+r)).

It is obvious now that if the variable t is restricted on a sufficiently small
interval [0, T,], for some T, €(0, T], then y!(¢) has a Lipschitz constant ¢, on
the interval [0, T,] as well. From this point on we restrict the functions y"(1),
n=1, 2,---, so that they are defined just on the interval [ —r, T;]. We also observe
that a Lipschitz constant of y!(f) on [—r, 0] is £,. Consequently,

Iy (D) =y )| < Lolt—sl, 1, se[—r, T].
Since
“y?—ygnoo = Supue[‘r,O] |]yn(t+”)_yn(5+“)“a S, te [09 Tl]

and t4+u, s+ue[—r, T;] for such s, t, a repetition of the above argument implies
by induction that ¢, is a Lipschitz constant for all functions y"(¢), te[—r, T,],
n=0, 1,---.

Taking the limit as n— oo of the left-hand side of
[y™(6) = y"($)|l < €olt —s|

we obtain

Ix(6) = x(s)| < £olt—sl, s, te[0, T].

This Lipschitz continuity of x(#) implies the existence of a unique Evans
solution u(t) of the problem (4) on the interval [0, T,].
From the inequality

u -yl < [ 166, x)=G(s, ylds, €10, 7,1,

we obtain immediately u(t)=x(t), te[0, T,]. This completes the proof of
the theorem. ’
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The function x(¢), te[—r, T], obtained in Theorem 1 is called the “gene-
ralized solution”’ of the problem (FDE).

3. The evolution operator

The next result shows that the ‘““generalized solution’’ to the problem
6) u + A(Hu = G(t, x,), tels, T],
u(s) = uo,

where x(t), te[ —r, T] is the generalized solution of Theorem 1 and se[0, T1],
gives rise to an evolution operator U(¢, s)u,.

Theorem 2. Assume that the conditions of Theorem 1on A4, G, ¢ are satis-
fied. Let z,(t), te[s, T], be the Evans solution of the differential equation of
(E,) on [s, T] such that z,(s)=uo € D. Then z,(t) converges uniformly on [s, T]
as n—oo to a function z(t) which is independent of the initial function y°e
Lip[—r, T). If we let U(t, s)lug=2z(t), tels, T], then U(t, s)u, 0<s<t<T,
u e D, satisfies the first two properties of an evolution operator. U(t, s) can
also be extended to D, where it is an evolution operator.

Proof. We first remark that z,(¢) exists because the conditions on A(f) hold
on the interval [s, T], uo €D and the function G(t, y?) is a global Lipschitzian
on [s, T]. The uniform convergence of z,(t) on [s, T] follows immediately from

) Iz~ 2uB)] < b f yrteyitlde, s<t<T

To show that z(¢) is independent of the initial function y°, let y° be another
such function in Lip[—r, T] and let z(t) be the corresponding solutions on
[s, T] with Z,(s)=u,. Then

12— 2D < bf’ In-t =yt do, s<t<T

implies immediately our assertion. If we let U, (¢, s)ug=z,(t), te[s, T], we thus
have U,(t, s)uo— U(t, s)u, uniformly in te[s, T]. From (7) we actually obtain
that this convergence is uniform with respect to (¢, s)e 4. Since U, (t, Huy=u,
and U(t, s)U, is uniformly continuous in (¢, s) € 4, because U ,(t, s)u, has this
property, it remains to show the evolution identity:

U(t, )U(s, Duy = U(t, Dug, 0<t<s<t < T.

This identity follows from the triangle inequality provided that U(s, T)u, € D.
We now extend U, (¢, s) and U(t, s) to the operators on D by uniform conti-
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nuity for each 0<s<t<T. It follows (cf. Evans [4]) that the extension of U,,
denoted again by U,, satisfies the properties of the evolution operator on 4 x D

for each n.
We show that for any uoe D, and 0<s<t<T,

(*) 1Um(t, $)uo—U(E, ol — 0 as  m —— oo.

In fact, taking a sequence u, € D with u,—u,, we have
IUm(t, s)uo—U(L, s)uol
< NUWt, Shuo—Uplt, Shuull + U2, $)u, — U(L, s)u,|
+ U, s)u,— U(t, s)u,l|

t
< 2lluy—uo| + bj Iyt —x, | d,

so that
lim sup || U (¢, $)ug— U(t, s)uel < 2||u,—uy| forall n.

m—

This shows that (x) holds.
Using the convergence in (x), we see that

IUm(t, YUp(s, Duo—U(t, s)U(s, Dol — 0 as m — oo,

and that U(t, s)uy e D for uye D and U is an evolution operator 4 x D—D.
We state separately a theorem concerning the fact that U(¢, s)ue D for
every u € D as shown above.

Theorem 3. The evolution operator U(t, s) of Theorem 2 maps D into D
for every (t, s)e A. In particular, the generalized solution x(t) lies in D for all

te[0, T].
The following theorem also follows easily from the proofs of Theorems 1

and 2.

Theorem 4. Assume that we have two generalized solutions x(t), y(t), te
[—r, T] with associated initial functions ¢, ¥ € Lip[ —r, 0], $(0)e D, ¥(0)e D,
and evolution operators U(t, s), V(t, s), respectively. Then

(10) [x(®)— (DI < 16(0)—¥(0)]| + f; 1G(s, xo)—G(s, ylds,
te[0, T],
(11) 1U(t, syu—V(t, sv|| < [[u—v| + r 1G(z, x,)—G(t, y)ldr,

(t,s)ed, u,veD.
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4. Example

Let Q be an open, bounded subset of R" and X =C(£). Assume that 4:
D < C(Q)—C(Q) is any m-accretive operator. Let m: [0, T] x Q— R be such that

i) x—-m(t, x) is continuous for each ¢;

ii) there exists a constant ¢>0 such that

e < m(t, x), (t,x)e[0, T] x Q;
iii) there exists a constant >0 such that
|m(t, x)—m(s, x)| < Alt—s|, s,te[0, T], xe.

Then the operator A(t): D— C(Q) defined by m(x, f)A satisfies (C.1) and (C.2).
For this fact see Evans [4, Proposition 11.1].

We now state the following conditions:

iv) K: [0, T]?>x Q— R is continuous and such that

”K(tla S, x)_K(tZa S, x)n < blltl_t2|5 (ta S, X)G [O, T]2 X Q

v) g: R—»[—M, M], M >0 constant, is Lipschitz continuous with Lipschitz
constant C>0.
If iv), v) are true, then the function G: [0, T] x C[—r, 0]— X defined by

(Gt D) = [ K, 5, )g(@Cx, s)ds
satisfies (C.3). In fact, for ¢, y e C[—r, 0], t,, t, € [0, T],
1(G(t1, B (Glta, Y]
< |7 1Kt 5. 09@(x, )= Kz, 5, 0g((x, s)lds

|7 1K, 5, )99, 9) =K1z, 5, g0, s)lds

< Mbyrity—t5] + Chyrilg =Yl < bty =12l + o=Vl ),
where
b, = max {|K(t, s, x)|; (¢, s, x) € [0, T]2x Q},
“(b—l//“oo = Supse[-—r,O] SUPyei |¢(xa S)_l.[’(xa S)I s
b = rmax {Mb,, Cb,}.
It follows that the abstract problem (FDE), with A(t), G as above, possesses a
generalized solution on the interval [—r, T7].
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5. The ordinary case. Discussion

The results of this paper can of course be applied to ordinary problems with
G=G(t, x). Actually, in this case, whenever D(A(t))= D =const., the problem

(ODE) x' + A(t)x = G(t, x), te[0, T],
x(0) = xoe D

can be reduced to a problem of the type

u + A(tyu = bu + f(r), te[0, T],

u(O) = xO s
where b is the Lipschitz constant of G from (C.3)’ (which is (C.3) modified in the
obvious way) and f: [0, T]— X is a Lipschitz continuous function. In fact, we
first let A,(t)x = A(t)x —G(t, x)+ bx, xe D. It is obvious that A,(f)x is accretive
in x for all te[0, T]. To show it is m-accretive, it suffices to show that the
mapping x—A,(t)x + x is onto, or that the equation [A(r)+(b+ DI]x=G(t, x)+v
is solvable in x for each te [0, T], ve X. In fact, the operator

x — [A®)+(b+ DI]G(t, x)+v]

is a contraction on X with contraction constant b/(b+1)<1. The unique fixed
point of this operator is the solution of the above equation.
Now we compute

1A (0x = A, (s)x]l < [¢—=sIL(x]) (1+ | A(D)x]) + blt—s]
< t=s(b+ L(Ix|) (1 + | A()x — G(t, x)+ bx| + [ G(t, x)— bx])
< lt=sILy(IxID (1 + [ 4, (Dx]| + | G(z, 0))| +2b]x])
< lt=sILy(llx) (1 + [ 4, (0)x]),

where L;: [0, c0)—[0, o), i=1, 2, are continuous increasing functions.
On the basis of these facts, the problem (ODE) is reduced to the problem

x' + A,(t)x = bx, te[0, T],
x(o) = xOs

where A,(?) satisfies (C.1) and (C.2) with A4, instead of 4. If we let A (Hx=
A (Dx—A(DXy, te[0, T], for some X,eD, f(H)=—A,(H)%,, we have our
assertion.

Unfortunately we could not show that for t€ [0, T] the generalized solution
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x(t) of Theorem 1 lies in D, except when ¢ is in the initial interval [0, T,] where x()
is Lipschitz continuous. In view of the properties of the function x—|A(f)x|,
x € X, the value x(¢) lies in D if |A(t)y"(t)| < K(t), where K(?) is a constant inde-
pendent of n.

Problems with perturbations G(t, x) which are locally defined with respect to
x are genuine extensions of the present as well as the Crandall-Pazy-Evans theory.

If A(t) is strongly accretive (||x —y + A(A()x — A()y)| = (1 + Ax)||x — y|, «>0),
then inequalities involving the exponential e~* like (10) and (11) hold with the
usual expressions on their right-hand sides. To see this for (10), one solves first
the equation

u + A, (Hu = G(t, yr~1), te[0, T],
u(0) = ¢(0),

to get such an inequality for its solution u,,(t), where A,(H)=A4,,,(1), and then
takes the limit as m— o0 to obtain the same inequality for y"(f) (cf. Crandall and
Pazy [1, Remark following Lemma 4.2]). Taking the limit again as n— o0, we
obtain our assertion.
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