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1. Introduction

We investigate when hereditary terms do not affect the global asymptotic
behavior of the nonlinear nonautonomous analog of the prey-predator model.
Consider the simple Lotka-Volterra model for prey-predator interactions

(1) $¥dot{¥mathrm{X}}=x(a_{1}-b_{1}x-c_{1}y)$ , $¥dot{y}=¥prime v(-¥mathit{0}_{--},+b_{2}x-c_{2}y)$ .

Under mild conditions (e.g. the existence of a positive solution of the system
of the algebraic equations ? $b_{1}x-c_{1}y=-a_{1}$ , $b_{2}x-c_{2}y=a_{2}$ and the existence of
a positive diagonal matrix $D$ such that if A is the community matrix of the system,
then $DA+A^{T}D$ is negatively definite) Goh [5] proved that system (1) has a uniform
stable attractor for all paths in the positive quadrant. Similar conditions for
such models with linear “per capita” growth rates have been given by many
authors, see, e.g., [1, 2, 10, 13, 15] with head Volterra himself [11].

The problem however becomes more difficult if the interspecific interaction
terms in (1) are replaced by nonlinear ones, with the simplest case that of Holling
response functionals (i.e. $x/(1+x)$ , $.v/(1+y)$), or if growth rates depend on delay
effects, or, generally, if both of these cases occur. To this direction Kolmogoroff
[9] considered the system

(2) $¥chi^{¥prime}=xf(x, y)$ , $y^{¥prime}=yg(x, y)$

and provided conditions for the existence of either a stable critical point or a
stable limit cycle. Similar properties are examined by Samuelson [12] for the
system (1) while a kind of structural stability for it is examined by Freedmann and
Waltman [4]. For the latter case Cushing [3] is able to provide sufficient con-
ditions for the existence of a local or global attractor.

The methods used in most of these cases are analytical. We recall, for
instance, Cushing [3] who does use linearization and complex Laplace transform.
It is however expected that in such a case a smoothness assumption on the growth
rate is required. It is also notable that for the case of linear per capita growth
rates it can be used the method of graphical representation of the labeled graph
of the system (see, e.g., [13]).



384 G. KARAKOSTAS

The stable attractor for (1) is simply the solution $(¥xi, ¥eta)$ of the system $b_{1}¥xi+$

$c_{1}¥eta=-a_{1}$ , $b_{2}¥xi-c_{2}¥eta=a_{2}$ . We shall be interested in conditions guaranteeing that
the behavior of (1) described above is maintained when the rates $c¥iota_{1}-b_{1}x-c_{1}y$ and
? $a_{2}+b_{2}x-c_{2}y$ are modified to reflect delay and time varying (i.e. nonauto-
nomous) effects. Thus we will consider a system of the form

(3) $x^{¥prime}=f(x)F(t, x, ¥mathrm{x}_{t}, y_{t})$ , $y^{¥prime}=g(y)G(t, y, y_{t}, x_{t})$

where $x_{t}$ , $y_{t}$ represent the past of $x$ , $y$ at the time $t$ . The functions $F$ , $G$ satisfy
some Lipschitz type conditions and no smootheness assumptions are imposed.
The factors /, $g$ are general functions non vanishing on $(0, +¥infty)$ which guarantee
uniqueness of the zero solution of (3).

However the nonautonomous character of (3) does not imply that the attractor
$(¥xi, ¥eta)$ of (3) is itself a solution of (3); it will be if $F$ , $G$ do not depend on time.
Thus we will have an attractor which will be, in a certain sense, an asymptotic
solution of the system. To achieve this fact at infinity we will impose certain
regularity conditions on $F$ , $G$ as the time tends to infinity. Further conditions
are also provided in order to insure a correspondence of the function $x$ with the
prey species and $y$ with the predators.

The paper is organized as follows: In Section 2 we give the basic assumptions
and present the model. Section 3 is devoted to the invariance of the positive
quadrant and the boundedness of the solutions. In Sections 4, 5 we discuss
the behavior of the species when one of them disappears. Boundedness away
from zero is discussed in Section 6 and, in Section 7, we prove our convergence
results. This section is closed with some examples presented to illustrate our
results.

2. The model and the basic assumptions

We start with some terminology and notations, and then present the system
and the basic assumptions.

Let $R$ be the real line; we denote by $x$ Ol○ $v$ a function from $R$ into $R$ . Given
such a function $x$ we denote by $x_{t}$ the $¥mathrm{f}¥iota¥iota ¥mathrm{n}¥mathrm{c}¥mathrm{t}¥mathrm{i}¥mathrm{o}¥mathrm{n}¥mathrm{x}_{t}$ : ( $-¥infty$ , $¥mathrm{O}]¥rightarrow R$ defined by $x_{t}(s)=$

$¥mathrm{x}(t+s)$ . Namely, $x_{t}$ represents the history of $x$ at $t$ . If $x$ is bounded and con-
tinuous, then, for each $¥mathrm{t}$ , $¥chi_{t}$ belongs to the space of bounded continuous functions
from ( $-¥infty$ , 0] into $R$ . We shall denote this space by $ C¥_$ . We associate $ C¥_$

by two metrics. The first metric is generated by the $¥sup$-norm $||$ . $||$ , namely,

$||¥varphi-¥psi||=¥sup_{-¥propto<t¥leqq 0}|¥varphi(t)-¥psi(t)|$ ,

and the second one will represent the uniform convergence on compact intervals.
For definiteness we set
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$¥rho(¥varphi, ¥psi)=¥sum_{n=0}^{¥infty}¥frac{1}{2^{n}}¥min$
$¥{1,¥sup_{-n-1¥leqq t¥leqq 0}|¥varphi(t)-¥psi(t)|¥}$ .

The subject of this work is the system of functional differential equations

(2.1) $x^{¥prime}=f(x)F(t, x, x_{t}, y_{t})$

(2.2) $y^{¥prime}=g(y)G(t, )^{f}$ , $y_{t}$ , $x_{t})$

where the functions $F$ , $G$ are defined on $ R¥times R¥times C¥_¥times C¥_$ . An initial condition
associated with $(2.1)-(2.2)$ is a requirement $ x_{t_{0}}=¥varphi$ , $ y_{t_{0}}=¥psi$ with $¥varphi$ , $¥psi¥in C¥_$ . The
solution of the initial value problem at $t_{0}$ is then a pair of continuous functions
$(x, y)$ such that $(x_{t_{0}}, y_{t_{0}})¥in C¥_¥times C¥_$

’ and $(2.1)-(2.2)$ holds for all $t>t_{0}$ in the
common domain of $¥mathrm{x}$ , $y$ . We say that $(x, y)$ is a solution for $t>t_{0}$ if it is a solution
of an initial value problem at $t_{0}$ . We say that $(x, y)$ is a full solution of $(2.1)-(2.2)$

if it is defined for all $t¥in R$ and $(2.1)-(2.2)$ is satisfied for all $t$ .
In the sequel we shall use the following assumptions:
(A1) $f$ is a continuous function such that $f(0)=0$, $f(c)>0$ if $c>0$, and the

Cauchy problem $¥dot{¥mathrm{z}}=f(z)$ , $z(0)=0$, admits the unique solution $z=0$. The function
$g$ satisfies the same assumptions.

(A2) $F$, $G:R¥times R¥times C¥_¥times C¥_¥rightarrow R$ are uniformly continuous and bounded
functions on sets of the form $ R¥times$ (bounded subset of $R$) $¥times(||¥cdot||$ -bounded $¥rho-$

compact subset of $ C¥_$ ) $¥times$ ( $||¥cdot||$ -bounded $¥rho$-compact subset of $ C¥_$ ) where the
continuity is meant with respect to the $¥mathrm{p}$ -metric.

(A3) $F(t, c, ¥varphi, ¥psi)$ , $G(t, c, ¥varphi, ¥psi)$ are monotonically decreasing in $c$ for fixed
$t$ , $¥varphi$ , $¥psi$ and there exist constants $L_{1}>M_{1}>0$, $L_{2}>M_{2}>0$ and $N_{1}¥geqq 0$ , $N_{2}¥geqq 0$

such that

$|F(t, c_{1}, ¥varphi, ¥psi)-F(t, c_{2}, ¥varphi, ¥psi)|¥geqq L_{1}|c_{1}-c_{2}|$ ,

$|G(t, c_{1}, ¥varphi, ¥psi)-G(t, c_{2}, ¥varphi, ¥psi)|¥geqq L_{2}|c_{1}-c_{2}|$ ,

$|F(t, c, ¥varphi_{1}, ¥psi_{1})-F(t, c, ¥varphi_{2}, ¥psi_{2})|¥leqq M_{1}||¥varphi_{1}-¥varphi_{2}||+N_{1}||¥psi_{1}-¥psi_{2}||$ ,

$|G(t, c, ¥varphi_{1}, ¥psi_{1})-G(t, c, ¥varphi_{2}, ¥psi_{2})|¥leqq M_{2}||¥varphi_{1}-¥varphi_{2}||+N_{2}||¥psi_{1}-¥psi_{2}||$ .

(A4) The constants $L_{i}$ , $M_{i}$ , $N_{i}$ , $i=1,2$ , satisfy

$N_{1}¥cdot N_{2}<(L_{1}-M_{1})(L_{2}-M_{2})$ .

(A5) If $¥psi(s)¥geqq 0$ , $s¥leqq 0$ then $F(t, 0,0, ¥psi)¥leqq F(t, 0,0, 0)$ , for all $t$ .
In the sequel we shall see that these assumptions are appropriate to charac-

terize system $(2.1)-(2.2)$ as a prey-predator model, when $f(w)=g(w)=w$. But in
order to distinguish which of the unknown functions $x$ , $y$ behaves like the preys
or predators we need some more assumptions given later.

The presence of the functions /, $g$ are quite typical and they are imposed to
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insure that any solution $(x, y)$ of $(2.1)-(2.2)$ starting from a point in the first
quadrant stays away from the $¥mathrm{x}$ -axis and $¥mathrm{v}$ -axis in the future. Thus /, $g$ could be
replaced by nonautonomous functions which guarantee such a property, or they
could be dropped at all, but then this property must be imposed as an assumption.

Next we shall establish the existence of a pair of real numbers $(¥xi(t), ¥eta(t))$

such that for each $t¥in R$ it satisfies

(2.3) $F(t, ¥xi(t), ¥xi(t), ¥eta(t))=0$

(2.4) $G(t, ¥eta(t), ¥eta(t), ¥xi(t))=0$

where $F(t, c, d, e)$ stands for the value $F(t, c, ¥varphi, ¥psi)$ with $¥varphi(s)=d$, $¥psi(s)=e$, $s¥leqq 0$ .
Similarly for $G(t, c, d, e)$ .

Lemma 2.1. Assume that assumptions (A2) and (A3) are satisfied. Then
for each $t¥in R$ and $¥varphi$ , $¥psi¥in C¥_$ there exists a unique pair $(X(t, ¥psi), ¥mathrm{Y}(t, ¥varphi))¥in R¥times R$

such that

(2.5) $F(t, X(t, ¥psi), X(t, ¥psi), ¥psi)=0$,

(2.6) $G(t, Y(t, ¥varphi), Y(t, ¥varphi), ¥varphi)=0$ .

Proof. We shall show (2.5) only, since (2.6) can be proved in the same way.
Fix a $t¥in R$ and $¥psi¥in C¥_$ . Then, for any $c>0$, we get

$F(t, c, c, ¥psi)=F(t, c, c, ¥psi)-F(t, 0, c, ¥psi)$

$+F(t, 0, c, ¥psi)-F(t, 0,0, ¥psi)+F(t, 0,0, ¥psi)$

$¥leqq-(L_{1}-M_{1})c+F(t, 0,0, ¥psi)$

namely $F(t, c, c, ¥psi)$ is negative for $c$ large enough. Similarly we can see that
$F(t, c, c, ¥psi)$ is positive for ? $c$ large enough. This and the continuity of $F$ imply
the existence. To show the uniqueness assume that $c,¥overline{c}$ satisfy $c¥neq¥overline{c}$ and
$F(t, c, c, ¥psi)=0=F(t,¥overline{c},¥overline{c}, ¥psi)$ . Then we have

$|F(t, c, c, ¥psi)-F(t,¥overline{c}, c, ¥psi)|=|F(t,¥overline{c},¥overline{c}, ¥psi)-F(t,¥overline{c}, c, ¥psi)|$

and by (A3)

$L_{1}|c-¥overline{c}|¥leqq M_{1}|c-¥overline{c}|$ ,

which is impossible. Thus $c=¥overline{c}$ and the lemma is proved.

Lemma 2.2. Assume that in addition to the conditions of Lemma 2. 1, (A4)
$/s$ satisfied. Then for each $t¥in R$ there exists a unique pair $(¥xi(t), ¥eta(t))¥in R¥times R$

such that (2.3), (2.4) are satisfied.

Proof. Set $¥eta_{1}=0$ and for each $ n=1,2,¥cdots$ let $¥xi_{n}=X(t, ¥eta_{l},)$ and $¥eta_{n+1}=Y(t, ¥xi_{n})$,
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where $X(t, ¥cdot)$ , $Y(t, ¥cdot)$ satisfy (2.5), (2.6) respectively. Then we can easily see that
for each $n=2,3,¥cdot*$ . it holds on one hand

$|F(t, ¥xi_{n}, ¥xi_{n}, ¥eta_{n})-F(t, ¥xi_{n-1}, ¥xi_{n}, ¥eta_{n})|=|F(t, ¥xi_{n-1}, ¥xi_{n-1}, ¥eta_{n-1})-F(t, ¥xi_{n-1}, ¥xi_{n}, ¥eta_{n})|$

and so, by (A3),

(2.7) $(L_{1}-M_{1})|¥xi_{n}-¥xi_{n-1}|¥leqq N_{1}|¥eta_{n}-¥eta_{n-1}|$

and on the other hand

$|G(t, ¥eta_{n¥dagger 1}, ¥eta_{n+1}, ¥xi_{n})-G(t, ¥eta_{n}, ¥eta_{n+1}, ¥xi_{n})|=|G(t, ¥eta_{n}, ¥eta_{n}, ¥xi_{n-1})-G(t, ¥eta_{n}, ¥eta_{n+1}, ¥xi_{n})|$

and so, by (A3),

(2.8) $(L_{2}-M_{2})|¥eta_{n+1}-¥eta_{n}|¥leqq N_{2}|¥xi_{n}-¥xi_{n-1}|$ .

Combining (2.7) and (2.8) we get

(2.9) $|¥eta_{n+1}-¥eta_{n}|¥leqq¥theta|¥eta_{n}-¥eta_{n-1}|$ , $|¥xi_{n+1}-¥xi_{n}|¥leqq¥theta|¥xi_{n}-¥xi_{n-1}|$

where

$¥theta=¥frac{N_{1}¥cdot N_{2}}{(L_{1}-M_{1})(L_{2}-M_{2})}$ ,

which is less than 1, because of (A4). Now, (2.9) implies that $(¥xi_{n})$ , $(¥eta_{n})$ are Cauchy
sequences and thus they converge, say, to $¥overline{¥xi},¥overline{¥eta}$ respectively. This proves the
existence.

To prove the uniqueness assume that $¥hat{¥xi},¥hat{¥eta}$ is another pair satisfying $F(t,¥hat{¥xi},¥hat{¥xi},¥hat{¥eta})$

$=0=G(t,¥hat{¥eta},¥hat{¥eta},¥hat{¥xi})$. Then we can easily verify that $|¥hat{¥xi}-¥overline{¥xi}|¥leqq¥theta|¥hat{¥xi}-¥overline{¥xi}|$ and $|¥hat{¥eta}-¥overline{¥eta}|¥leqq$

$¥theta|¥hat{¥eta}-¥overline{¥eta}|$ , which imply $(¥hat{¥xi},¥hat{¥eta})=(¥overline{¥xi},¥overline{¥eta})$ . Put $¥xi(t)=¥overline{¥xi}$ and $¥eta(t)=¥overline{¥eta}$ and the lemma is
proved.

Once the functions $X$ , $Y$, $¥xi$ , $¥eta$ are found we make the following assumptions:
(A6) $(X(t, 0), Y(t, 0))$ converges, as $ t¥rightarrow+¥infty$ , to $(X_{0}, Y_{0})$ , where $X_{0}>0$ and

$Y_{0}<0$ .

(A7) $(¥xi(t), ¥eta(t))$ converges, as $ t¥rightarrow+¥infty$ , to $(¥xi_{0}, ¥eta_{0})$ , where $¥xi_{0}>0$ and $¥eta_{0}>0$ .

(A8) $¥lim¥inf_{t¥rightarrow¥tau¥infty}Y(t, X_{0})>0$.

Remark 2.1. The assumptions $(¥mathrm{A}6)-(¥mathrm{A}8)$ are essential in characterizing
$(2.1)-(2.2)$ as a prey-predator model. To be more specific, $x(t)$ corresponds to
the preys and $y(t)$ to the predators at each time $t$ . We will see that the solution
$(¥xi(t), ¥eta(t))$ of (2.5), (2.6) is that quantity which attracts any positive path in the
phase space of $(2.1)-(2.2)$ , as $ t¥rightarrow+¥infty$ , i.e. $(¥xi_{0}, ¥eta_{0})$ will be the limit, as $ t¥rightarrow+¥infty$ ,

of any such a path.
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3. Invariance of the positive quadrant and boundedness

For each $K>0$ we denote by $C¥_(K)$ the set of all $¥varphi¥in C¥_$ such that $0¥leqq¥varphi(s)¥leqq K$ ,
$s¥leqq 0$ and $¥varphi(0)>0$.

We shall show the following result:

Proposition 3.1. Assume that (A1). (A2) hold and that $(2.1)-(2.2)$ admits $a$

solution $(x, y)$ on $t¥geqq t_{0}$ , where $(x_{t¥mathrm{o}}, y_{t¥mathrm{o}})¥in C¥_(K_{1})¥times C¥_(K_{2})$ for some $K_{1}>0$ ,

$K_{2}>0$ . Then $(x(t), y(t))¥in(0, +¥infty)¥times(0, +¥infty)$ for each $t>t_{0}$ .

Proof. Let $t_{1}>t_{0}$ be fixed. By (A2) the function

$¥delta(t)=F(t, x(t), x_{t}, y_{t})$ , $t¥in[t_{0}, t_{1}]$

is continuous and thus there is a $¥delta¥in R$ such that $¥delta(t)¥geqq¥delta$ , $t¥in[t_{0}, t_{1}]$ . Since
$.¥mathrm{x}$ satisfies

$¥dot{x}=f(x)¥delta(t)$ on $(t_{0},$ $t_{1}]$

it satisfies $x(t)¥geqq z(t)$ , $t¥in[t_{0}, t_{1}]$ , where $z$ is a minimal solution of

$¥dot{Z}=f(z)¥delta$ , $z(t_{0})=x(t_{0})>0$ .

Defining $w(t)=z(t_{0}+(t-t_{0})/¥delta)$ , $t¥in[t_{0}, t_{0}+¥delta(t_{1}-t_{0})]$ observe that $w$ solves the
initial value problem

$¥dot{w}(t)=f(w)$ , $w(t_{0})=x(t_{0})>0$

on ( $t_{0}$ , $t_{0}+¥delta(t_{1}-t_{0})]$ and, by (A1), $w(t)>0$ , $t¥in[t_{0}, t_{0}+¥delta(t_{1}-t_{0})]$ . This implies
that $x(t)>0$ on $[t_{0}, t_{1}]$ and since $t_{1}$ is arbitrary it follows that $x(t)>0$ for all $t¥geqq t_{0}$ .

The proof for $y$ is similar.

We are now ready to show that any positive path for $(2.1)-(2.2)$ in † he phase
space remains bounded for all $t¥geqq t_{0}$ .

Proposition 3.2. Let $f$, $F$ satisfy (A1), (A2), (A3), (A5), let $g$ , $G$ satisfy (A1),

(A2) and let $(x, y)$ be a solution of $(2.1)-(2.2)$ on $t¥geqq t_{0}$ , with $(x_{t_{0}}, y_{t_{0}})¥in C¥_(K)¥times$

$C¥_(K)$ , for some $K>0$ . Then there exists $B_{1}>0$ such that $0<x(t)¥leqq B_{1}$ , for
all $t¥geqq t_{0}$ .

Proof. The fact that $0<x(t)$ , $t¥geqq t_{0}$ , has been proved above.
Assume that $x$ is unbounded. This implies the existence of a sequence $(t_{n})$

such that $ t_{n}¥rightarrow+¥infty$ , $ x(t_{n})¥rightarrow+¥infty$ , $¥mathrm{x}(s)<x(t_{n})$ for $s<t_{n}$ and $¥dot{¥mathrm{x}}(t_{n})>0$ . The last
inequality implies that

(3.1) $F(t_{n}, x(t_{n}), x_{t_{n}}, y_{t_{n}})>0$ .
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On the other hand we can see that

(3.2) $F(t_{n}, x(t_{n}), x_{t_{n}}, y_{t_{n}})¥leqq-(L_{1}-M_{1})x(t_{n})+¥epsilon_{n}$

where
$¥epsilon_{n}=F(t_{n}, 0,0, y_{t_{n}})$ .

By (A5) and (A2) the sequence $(¥epsilon_{n})$ is bounded (above). Combining (3.1)
and (3.2) we conclude that $(x(t_{n}))$ is bounded and thus $x$ is bounded.

Proposition 3.3. Let $g$ , $G$ satisfy (A1), (A2), (A3) and let $(x, y)$ be a solution
of $(2.1)-(2.2_{¥vee})$ on $t¥geqq t_{0}$ , with $(x_{t_{0}}, y_{t¥mathrm{o}})¥in C¥_(K)¥times C_{-}(K)$, for some $K>0$. If $x$ is
bounded on [ $t_{0}$ , $+¥infty)$ then there is a $B_{2}$ such that $0<y(t)¥leqq B_{2}$ for all $t¥geqq t_{0}$ .

Proof. This goes as the proof of Proposition 3.2 where now boundedness
of $G(t_{n}, 0,0, x_{t_{n}})$ is coming from boundedness of $x$ and (A2).

4. Preys without predators

We shall discuss what is the behavior of the prey species in the absence of
predators. First we will show the following:

Proposition 4.1. Assume that $g$ , $G$ satisfy (A1) and (A2). If $y$ $(¥geqq 0)$ solves
(2.2) on $t>t_{0}$ for a certain continuous function $x:R¥rightarrow R$ , where $y_{t¥mathrm{o}}¥in C_{-}(K)$

$(K>0)$ and if $y(t_{1})=0$ for a certain $t_{1}>t_{0}$ , then $y(t)=0$ for all $t¥geqq t_{1}$ .

Proof. Let $(t_{1}, t_{2})$ be a maximal interval (if such exists) such that $y(t_{1})=0$

and $y(t)>0$ for $t¥in(t_{1}, t_{2})$ . Fix a $¥tau¥in(t_{1}, t_{2})$ and let $¥delta_{1}$ , $¥delta_{2}$ be such that

$¥delta_{1}¥leqq G(t, y(t), y_{t}, ¥chi_{t})¥leqq¥delta_{2}$

for all $t¥in[t_{1}, ¥tau]$ . Then clearly $y$ satisfies

(4.1) $z_{1}(t)¥leqq y(t)¥leqq z_{2}(t)$ , $t¥in[t_{1}, ¥tau]$

where $z_{1}$ is a minimal solution of the problem $¥dot{z}=g(z)¥delta_{1}$ , $z(t_{1})=0$ and $z_{2}$ is a
maximal solution of $¥dot{z}=g(z)¥delta_{2}$ , $z(t_{1})=0$ . By (A1) we can easily see that $z_{1}(t)=$

$z_{2}(t)=0$, $t¥in[t_{1}, ¥tau]$ , which, by (4.1), implies $y(t)=0$, $t¥in[t_{1}, ¥tau]$ . This shows
that $y(t)=0$ for all $t¥geqq t_{1}$ and the proof is complete.

Remark 4.1. The result of the preceding paragraph biologically means
that if for a certain moment the species dies, then there does not exist any sourse
of reproduction and thus death will be for all future over that.

Here is the place to refer to [7], where the behavior of one-species populations
is discussed under the effect of seasonal variations. It is however expected that,
whenever predatory do not exist, the (deterministic) environment of preys follows
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its biological evolution without exterior effects. In this case the preys approach
the asymptotic carrying capacity of the environment. Under the assumption (A6)
the asymptotic carrying capacity of the environment (in the absence of predators)
is identified with the value $X_{0}$ . Indeed, we have the following result:

Proposition 4,2. Let assumptions (A1), (A2), (A3), (A6) be satisfied. If
$(x, y)$ is a solution of the system $(2.1)-(2.2)$ on $t¥geqq t_{0}$ such that $x_{t_{¥mathrm{O}}}$ , $y_{t_{0}}¥in C¥_(K)$ ,

for a certain $K>0$, and if $y(t_{1})=0$ for a certain $t_{1}>t_{0}$ , then, as $ t¥rightarrow+¥infty$ , the
solution $x$ of (2. 1) converges to $X_{0}$ .

Proof. By Proposition 4.1 we have $y(t)=0$, $t¥geqq t_{1}$ ; thus $y(t+s)¥rightarrow 0$ , as
$ t¥rightarrow+¥infty$ , uniformly for all $s$ in compact intervals. We shall show that

(4.2) $¥lim_{t¥rightarrow+¥infty}X(t, y_{t})=X_{0}$ .

Indeed, letting $¥epsilon(t)=|F(t, X(t, 0), X(t, 0), y_{t})-F(t, X(t, 0), X(t, 0), 0)|$ , we
observe that $¥epsilon(t)¥rightarrow 0$, as $ t¥rightarrow+¥infty$ . On the other hand we get

$|F(t, X(t, v_{t}), X(t, y_{t}), y_{t})-F(t, X(t, 0), X(t, y_{t}), y_{t})|$

$¥leqq|F(t, X(t, 0), X(t, y_{t}), y_{t})-F(t,$ $X(t, 0)$ , $X(t, 0^{1},, y_{t})|+¥epsilon(t)$ .

By (A3) then we have

$|X(t, y_{t})-X(t, 0)|¥leqq¥frac{¥epsilon(t)}{L_{1}-M_{1}}$ ,

which in view of (A6) proves (4.2).
Define now a function $H$ by the type

$H(t, c, ¥varphi)=F(t, c, ¥varphi, y_{t})$

where $y$ is the solution above. Thus, $¥mathrm{x}$ satisfies

(4.3) $¥dot{x}=f(x)H(t, x, x_{t})$

and $¥sigma(t)^{¥mathrm{d}¥mathrm{e}¥mathrm{f}}=X(t, _{¥vee}v_{t})$ satisfies $H(t, ¥sigma(t), ¥sigma(t))=0$, where, by the previous arguments,
$¥sigma(t)¥rightarrow X_{0}>0$. Apply now the results of [7, Th. 3.2] and obtain that $x(t)¥rightarrow X_{0}$

as $ t¥rightarrow+¥infty$ .

5. Predators without preys

The situation of the model is such that whenever preys do not exist the
number of predators approaches zero as the time increases. Indeed, we have
the following result:
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Proposition 5.1. Let the assumptions (A1), (A2), (A3), (A6) be satisfied.
If $(x, y)$ is a solution of the system $(2.1)-(2.2)$ on $t¥geqq t_{0}$ such that $x_{t_{0}}$ , $-v_{t_{0}}¥in C_{-}(K)$

for a certain $K>0$ , and if $x(t_{1})=0$ for a certain $t_{1}>t_{0}$ , then $x(t)=0$, $t¥geqq t_{1}$ , and
the solution $y(t)$ of (2.2) approaches zero, as $ t¥rightarrow+¥infty$ .

Proof. The fact that $x(t)=0$ , $t¥geqq t_{1}$ , can be proved if we will follow the steps
of Proposition 4.1. Thus $x(t+s)¥rightarrow 0$ , as $ t¥rightarrow+¥infty$ , uniformly for all $s$ in compact
intervals of $R$ . In particular $x$ is bounded and so, by Proposition $3.3,$ $¥vee v$ is bounded
and positive.

Assume that $¥lim¥sup_{t¥rightarrow+¥infty}y(t)¥equiv r$ . We have to show that $r=0$, which will
imply that $¥lim_{t¥rightarrow¥infty}y(t)=0$ .

Indeed, let $r>0$ . By (2.2) $¥dot{y}$ is bounded and thus $y$ is uniformly continuous
and bounded on [ $t_{0}$ , $+¥infty)$ . By Arzela-Ascoli Theorem there exists a function
$¥overline{y}:R¥rightarrow R$ such that $¥overline{y}(0)=r$ , and for some sequence $ t_{n}¥rightarrow+¥infty$ , $y(t_{n}+s)¥rightarrow¥overline{y}(s)$ , uni-
formly for all $s$ in compact intervals of $R$ . By (A2), the sequence $(t_{n})$ produces
a limiting equation of (2.2), which is of the form

$¥dot{Z}=g(z)¥overline{G}(t, z, z_{t}, 0)$

and it is satisfied by $¥overline{y}(t)$ , for all $t¥in R$ . Since $r=¥overline{y}(0)$ is maximal we have $¥dot{¥overline}(0)=0$

and since $¥overline{y}(0)>0$ it follows that

(5. 1) $¥overline{G}(0,¥overline{y}(0), .¥overline{v}_{0}.0)=0$ .

Notice that $¥overline{G}$ is a function satisfying (A2) and (A3) with the same constant coeffi-
cients $L_{2}$ , $M_{2}$ , $N_{2}$ (More facts about the limiting equations theory for general
causal operator equations can be found e.g. in Karakostas $[¥mathfrak{Z}]$ , Markus and
Mizel [11] $)$ .

On the other hand we can see that

(5.2) $¥overline{G}(0, Y_{0}, Y_{0},0)=0$

where $Y_{0}$ is the constant appearing in assumption (A6). Recall that $Y_{0}<0$ and so

(5.3) $|Y_{0}-¥overline{y}(0)|=||Y_{0}-¥overline{y}_{0}||$ .

Now, from (5. 1) and (5.2) we observe that

$|¥overline{G}(0,¥overline{y}(0),¥overline{y}_{0}, ¥mathrm{O})-¥overline{G}(0, Y_{0},¥overline{y}_{0},0)|=|¥overline{G}(0, Y_{0}, Y_{0}, ¥mathrm{O})-¥overline{G}(0, Y_{0},¥overline{y}_{0},0)|$

which, by (A3), gives

(5.4) $L_{2}|Y_{0}-¥overline{y}(0)|¥leqq M_{2}||Y_{0}-¥overline{y}_{0}||$ .

Since $L_{2}>M_{2}$ , (5.4) leads to a contradiction because of (5.3). The proof is
finished.
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6. Boundedness away from zero

What is going on to be shown here is that the (positive) solutions for (2.1)?
(2.2) stay away from zero as the time increases. First we need the following
lemma:

Lemma 6.1. Assume that $F$ , $G$ are continuous and satisfy the conditions
(A3), (A4), (A6), (A8). Then there exists an $¥epsilon>0$ such that for all large $t$

$ F(t, 0, 0, 0)¥geqq¥epsilon$ and $ G(t, 0,0, X_{0})¥geqq¥epsilon$ .

Proof. For all large $t$ we have $X(t, 0)¥geqq(1/2)X_{0}¥equiv a_{1}$ and $ Y(t, X_{0})¥geqq$

$(1/2)¥lim¥inf_{t-’+¥infty}Y(t, X_{0})¥equiv a_{2}$ . Taking any $¥epsilon>0$ with $¥epsilon¥leqq¥min¥{(L_{i}-M_{i})a_{i}$ :
$i=1,2¥}$ , we get on one hand that

$F(t, 0, 0, 0)=F(t, 0,0,0)$ $-F(t, X(t, 0), 0,0)$

$+F(t, X(t, 0), 0,0)$ $-F(t, X(t, 0), X(t, 0), 0)$

$¥geqq L_{1}X(t, 0)$ $-M_{1}X(t, 0)¥geqq(L_{1}-M_{1})a_{1}¥geqq¥epsilon$

and on the other hand that

$G(t, 0,0, X_{0})=G(t, 0,0, X_{0})-G(t, Y(t, X_{0}), 0, X_{0})$

$+G(t, Y(t, X_{0}), 0, X_{0})-G(t, Y(t, X_{0}), Y(t, X_{0}), X_{0})$

$¥geqq L_{2}Y(t, X_{0})-M_{2}Y(t, X_{0})¥geqq(L_{2}-M_{2})a_{2}¥geqq¥epsilon$,

for all large $t$ .

Proposition 6.2. Assume the conditions $(¥mathrm{A}1)-(¥mathrm{A}6)$ and (A8) hold and let
$(x(t), y(t))$ , $t¥geqq t_{0}$ , be a solution of $(2.1)-(2.2)$ with $(x_{t_{¥mathrm{O}}}, y_{t_{0}})¥in C_{-}(K)¥times C_{-}(K)$ for
some $K>0$ . Then there is a real number $¥eta>0$ such that $ x(t)¥geqq¥eta$ and $ y(t)¥geqq¥eta$

for all $t¥geqq t_{0}$ .

Proof. We shall show first that $¥lim¥inf_{t¥rightarrow+¥infty}x(t)>0$ . Indeed, let us assume
that $¥lim¥inf_{t¥rightarrow+¥infty}x(t)=0$ . (Notice that $x(t)>0$ , $t¥geqq t_{0}$ , because of Proposition 3. 1.).
This means that $x(t_{k})¥rightarrow 0$, for some sequence $ t_{k}¥rightarrow+¥infty$ . We can assume that $¥dot{x}(t_{k})$

$¥leqq 0$ .

Since $x$ and $y$ are uniformly continuous and bounded functions, there exist
$x^{*}$ , $y^{*}:$ $R¥rightarrow R$ and a subsequence $(t_{n(k)})$ of $(t_{k})$ such that $x(t_{n(k)}+t)¥rightarrow x^{*}(t)$ and
$y(t_{n(k)}+t)¥rightarrow y^{*}(t)$ uniformly for all $t$ in compact intervals of $R$ . The sequence $(t_{n(k)})$

produces limiting equations

(6.1) $¥dot{u}=f(u)F^{*}(t, u, u_{t}, v_{t})$, $¥dot{v}=g(v)G^{*}(t, v, v_{t}, u_{t})$$¥dot{v}=g(v)G^{*}(t, v, v_{t}, u_{t})$
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satisfied for $u=x^{*}$ and $v=y^{*}$ on all of $R$ . But $x^{*}(0)=0$, so that $x^{*}(t)=0$, $t¥in R$

because of (A1). Thus $y^{*}$ satisfies

$¥dot{y}^{*}=g(y^{*})G^{*}(t, y^{*}, y_{t}^{*}, 0)$ , $t¥in R$ .

Since $G^{*}$ satisfies (A2) and (A3) with the same constants $L_{2}$ , $M_{2}$ , $N_{2}$ , from
Proposition 5. 1 we get that $y^{*_{¥backslash }}(t)¥rightarrow 0$ , as $ t¥rightarrow+¥infty$ .

By Lemma 6.1 and the continuity condition on $F$ there exist $¥delta>0$ and $r¥geqq t_{0}$

such that if $z$ , $w$ satisfy $¥rho(z_{t}, 0)¥leqq¥delta$ and $¥rho(w_{t}, 0)¥leqq¥delta$ , $t¥geqq r$ , then $F(t, z, z_{t}, w_{t})¥geqq¥epsilon/2$,

where $¥epsilon>0$ is sufficiently small. By the definition of the $¥rho$ metric there exist $T>0$

and $¥eta_{1}>0$ such that $¥varphi¥in C¥_$ and $|¥varphi(s)|¥leqq¥eta_{1}$ , $s¥in[-T, 0]$ , implies $¥rho(¥varphi, 0)¥leqq¥delta$ .

Since $y^{*}(t)¥rightarrow 0$ , as $ t¥rightarrow+¥infty$ , there is a $t_{1}$ such that $0<y^{*}(t)¥leqq¥eta_{1}/2$, $t¥geqq t_{1}$ .

Thus there is an index $k_{1}$ such that $0<y(t_{n(k)}+t)¥leqq¥eta_{1}$ , $k¥geqq k_{1}$ , $t¥in[-T, 0]$ . For the
same reason we can assume that $0<x(t_{r_{l}(k)}+t)¥leqq¥eta_{1}$ , $k¥geqq k_{1}$ and $t¥in[-T, 0]$ . There-
fore we have $¥rho(x_{t_{n(k)}}, 0)¥leqq¥delta$ and $¥rho(y_{t_{n(k)}}, 0)¥leqq¥delta$ , $k¥geqq k_{1}$ . This implies that

$F(t_{n(k)}, x(t_{n(k)}), x_{t_{n(k)}}, y_{t_{n(k)}})¥geqq¥frac{¥epsilon}{2}$ , $k¥geqq k_{1}$

and so

$¥dot{x}(t_{n(k)})¥geqq¥frac{¥epsilon}{2}f(x(t_{n(k)}))>0$, $k¥geqq k_{1}$ .

This contradicts the fact that $¥dot{x}(t_{n(k)})¥leqq 0$ and so $¥lim¥inf_{t¥rightarrow+¥infty}x(t)>0$. By Propo-
sition 3. 1 we have $x(t)>0$, $t¥geqq t_{0}$ , so that an $¥eta>0$ exists with $ x(t)¥geqq¥eta$ , $t¥geqq t_{0}$ .

We shall show that $¥lim¥inf_{t¥rightarrow+¥infty}y(t)>0$. Indeed, assume that $¥lim¥inf_{t¥rightarrow¥dagger¥infty}y(t)$

$=0$ . Thus again as in the case above we have $¥vee v(t_{k})¥rightarrow 0$, for some sequence
$ t_{k}¥rightarrow+¥infty$ , for which we can assume that $¥dot{y}(t_{k})¥leqq 0$ . Again, as above, there are
functions $x^{*}$ , $y^{*}:$ $R¥rightarrow R$ and a subsequence $(t_{n(k)})$ of $(t_{k})$ such that $ x(t_{n(¥lambda)}+t)¥rightarrow$

$x^{*}(t)$ and $y(t_{n(k)}+t)¥rightarrow y^{*}(t)$ , uniformly for all $t$ in compact intervals of $R$ . The
sequence $(t_{n(k)})$ produces limiting equations (6.1) satisfied for $u=x^{*}$ and $v=y^{*}$

on all of $R$ . But $y^{*}(0)=0$. so that $y^{*}(t)=0$ , $t¥in R$ , because of (A1). Thus
$x^{*}$ satisfies

$¥dot{x}^{*}=f(x^{*})F^{*}(t, x^{*}, x_{t}^{*}, 0)$ .

Since $F^{*}$ satisfies (A2) and (A3) with the same constants $L_{1}$ , $M_{1}$ , $N_{1}$ , from
Proposition 4.2 and the fact that $¥lim X(t_{n(k)}+t, 0)=X_{0}$ , we conclude that $x^{*}(t)-*$

$X_{0}$ as $ t¥rightarrow+¥infty$ .
By Lemma 6.1 and the continuity condition on $G$ we get a $¥delta>0$ and $r¥geqq t_{0}$

such that if $z$ , $w$ satisfy $¥rho(z_{t}, 0)<¥delta$ and $¥rho(w_{t}, X_{0})<¥delta$ , $t¥geqq r$ , then $ G(t, z, z_{t}, w_{t})¥geqq$

$¥epsilon/2$ . Now, the proof goes as above in the case of $x$ . Finally we obtain

$¥dot{y}(t_{n(k)})¥geqq¥frac{¥epsilon}{2}g(y(t_{n(k)}))>0$ ,
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for all large $k$ , which contradicts the hypothesis that $¥dot{y}(t_{n(k)})¥leqq 0$ . This completes
the proof of the proposition.

7. Global convergence

We shall provide in this section the main result of this work, given in the
following theorem.

7.1. Theorem. Let the conditions $(¥mathrm{A}1)-(¥mathrm{A}8)$ hold. If $(¥xi_{0}, ¥eta_{0})$ is the pair

of real numbers appearing in (A7), then any solution $(x(t), y(l))$ , $t¥geqq t_{0}$ , of $(2.1)-$
$(2.2)$ , with $(x_{t_{0}}, v_{t_{0}})¥in C_{-}(K)¥times C_{-}(K)$ for some $K>0$, has the property that

$¥lim_{t¥rightarrow+¥infty}(x(t), y(t))=(¥xi_{0}, ¥eta_{0})$ .

Proof. Let $(x, y)$ be a solution of $(2.1)-(2.2)$ on $(t_{0}, +¥infty)$ , with $(x_{t_{0}}, y_{t¥mathrm{o}})¥in$

$C¥_(K)¥times C¥_(K)$ , for some $K>0$ . Then by Propositions 3.1 and 6.2 the functions
$x_{¥vee},v$ are both positive bounded and stay away from zero.

Let $¥overline{¥xi}=¥lim¥sup_{t¥rightarrow+¥alpha¥supset}x(t)$ . Then there are functions $¥overline{x}:R¥rightarrow R$ , $y^{¥prime}$ : $R¥rightarrow R$ and
a sequence $(t_{k})$ with $ t_{k}¥rightarrow+¥infty$ such that $¥overline{x}(0)=¥overline{¥xi}$ and $x(t_{k}+t)¥rightarrow¥overline{x}(t)$ , $y(t_{k}+t)¥rightarrow y^{¥prime}(t)$ ,

uniformly for all $t$ in compact intervals. The sequence $(t_{k})$ produces a limiting
equation

$¥dot{u}=f(u)F^{*}(t, u, u_{t}, y_{t}^{¥prime})$

satisfied by $¥overline{x}$ . But $¥dot{¥overline}(0)$ must be zero because of maximality of $¥overline{x}(0)$ , so that

(7. 1) $F^{*}(0,¥overline{x},¥overline{x}_{0}, y_{¥acute{0}})=0$.

On the other hand we see that

$F^{*}(0,$ $¥xi_{0}$ , $¥xi_{0}$ , $¥eta_{0}¥backslash ,$ $=0$ .

This and (7.1) give

$F^{*}(0,¥overline{¥xi},¥overline{x}_{0}, y_{¥acute{0}})-F^{*}(0, ¥xi_{0},¥overline{x}_{0}, y_{¥acute{0}})$

$=F^{*}(0, ¥xi_{0}, ¥xi_{0}, ¥eta_{0})-F^{*}(0, ¥xi_{0},¥overline{x}_{0¥prime},v_{¥acute{0}})$

which, in view of (A3), implies that

(7.2) $L_{1}|¥overline{¥xi}-¥xi_{0}|¥leqq M_{1}||¥xi_{0}-¥overline{x}_{0}||+N_{1}||¥eta_{0}-y_{¥acute{0}}||$ .

Similarly we obtain that

(7.3) $L_{1}|¥underline{¥xi}-¥xi_{0}|¥leqq M_{1}||¥xi_{0}-¥underline{x}_{0}||+N_{1}||¥eta_{0}-y_{¥acute{¥acute{0}}}||$

where $¥underline{x}:R¥rightarrow R,¥underline{x}(0)=¥underline{¥xi}=¥lim¥inf_{t¥rightarrow+¥infty}x(t)$ and $x(t_{¥mathrm{A}}+t)¥rightarrow¥underline{x.}(t)$ , $y(t_{¥mathrm{A}}+t)¥rightarrow y_{¥acute{¥acute{0}}}(t)$ ,
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uniformly for $t$ in compact intervals, for some sequence $ t_{A}¥rightarrow+¥infty$ .
For $y$ we obtain similar relations, i.e.

(7.4) $L_{2}|¥overline{¥eta}-¥eta_{0}|¥leqq M_{2}||¥eta_{0}-¥overline{y}_{0}||+N_{2}||¥xi_{0}-¥chi_{¥acute{0}}||$

and

(7.5) $L_{2}|¥underline{¥eta}-¥eta_{0}|¥leqq M_{2}||¥eta_{0}-¥underline{v}_{0}||+N_{2}||¥xi_{0}-¥chi_{¥acute{¥acute{0}}}||$ ,

where $¥underline{y},¥overline{y}:R¥rightarrow R,¥underline{y}(0)=¥underline{¥eta}=¥lim¥inf_{t¥rightarrow¥dagger¥infty}¥mathrm{j}’(t),¥overline{y}(0)=¥overline{¥eta}=¥lim¥sup_{t¥rightarrow+¥infty}y(t)$ , $y(t_{m}+t)$

$¥rightarrow¥underline{y}(t)$ , $¥underline{y}(t_{n}+t)¥rightarrow¥overline{y}(t)$ , $x(t_{m}+t)¥rightarrow x^{¥prime}(t)$ , $x(t_{n}+t)¥rightarrow ¥mathrm{x}^{¥prime¥prime}(t)$ , uniformly in compact
intervals of the real line, for some sequences $ t_{m}¥rightarrow+¥infty$ and $ t_{n}¥rightarrow+¥infty$ .

Now we distinguish the following four cases:

Case 1. $¥xi_{0}¥geqq¥frac{1}{2}$ $(¥overline{¥xi}+¥xi)$ , $¥eta_{0}¥geqq¥frac{1}{2}$ $(¥overline{¥eta}+¥eta)$ :

Then we have $|¥underline{¥xi}-¥xi_{0}|=||¥underline{¥chi}_{0}-¥xi_{0}||¥geqq||x_{¥acute{¥acute{0}}}-¥xi_{0}||$ and $|¥underline{¥eta}-¥eta_{0}|=||¥underline{y}_{0}-¥eta_{0}||¥geqq$

$||y_{¥acute{¥acute{0}}}-¥eta_{0}||$ and so by (7.3), (7.5) obtain

$(L_{1}-M_{1})|¥underline{¥xi}-¥xi_{0}|¥leqq N_{1}|¥underline{¥eta}-¥eta_{0}|$, $(L_{2}-M_{2})|¥underline{¥eta}-¥eta_{0}|¥leqq N_{2}|¥underline{¥xi}-¥xi_{0}|$ ,

which give $¥xi=¥xi_{0}$ and $¥underline{¥eta}=¥eta_{0}$ because of (A4). Thus lini $¥inf_{t¥rightarrow+¥infty}x(t)=¥xi_{0}=$

$¥lim¥sup_{t¥rightarrow+¥infty}x(t)$ and $¥lim¥inf_{t¥rightarrow¥dagger¥infty}y(t)=¥eta_{0}=¥lim¥sup_{t¥rightarrow+¥infty}y(t)$, that is $x(t)¥rightarrow¥xi_{0}$ and
$y(t)¥rightarrow¥eta_{0}$ , as $ t¥rightarrow+¥infty$ .

Case 2. $¥xi_{0}¥geqq¥frac{1}{2}$ $(¥overline{¥xi}+¥xi)$ , $¥eta_{0}<¥frac{1}{2}$ $(¥overline{¥eta}+¥eta)$ :

Then $|¥underline{¥xi}-¥xi_{0}|=||¥underline{¥chi}_{0}-¥xi_{0}||¥geqq||x_{¥acute{0}}-¥xi_{0}||$ and $|¥overline{¥eta}-¥eta_{0}|=||¥overline{y}_{0}-¥eta_{0}||¥geqq||y_{¥acute{¥acute{0}}}-¥eta_{0}||$ . So,
by (7.3), (7.4) obtain

$(L_{1}-M_{1})|¥underline{¥mathcal{E}}-¥xi_{0}|¥leqq N_{1}|¥overline{¥eta}-¥eta_{0}|$ , $(L_{2}-M_{2})|¥overline{¥eta}-¥eta_{0}|¥leqq N_{2}|¥underline{¥xi}-¥xi_{0}|$ ,

which, in view of (A4), imply $¥lim_{t¥rightarrow+¥infty}x(t)=¥xi_{0}$ and $¥lim_{t¥rightarrow+¥infty ¥mathrm{J}^{f}}(t)=¥eta_{0}$.

Case 3. $¥xi_{0}<¥frac{1}{2}$ $(¥overline{¥xi}+¥underline{¥xi})$ and $¥eta_{0}<¥frac{1}{2}$ $(¥overline{¥eta}+¥underline{¥eta})$ :

Then $|¥overline{¥xi}-¥xi_{0}|=||¥overline{x}_{0}-¥xi_{0}||¥geqq||x_{¥acute{0}}-¥xi_{0}||$ and $|¥overline{¥eta}-¥eta_{0}|=||¥overline{y}-¥eta_{0}||¥geqq||y_{¥acute{0}}-¥eta_{0}||$ . We
use (7.2), (7.4) as above to get $¥lim_{t¥rightarrow+¥propto¥backslash }(x(t), y(t))=(¥xi_{0}, ¥eta_{0})$.

Case 4. $¥xi_{0}<¥frac{1}{2}$ $(¥overline{¥xi}+¥underline{¥xi})$ and $¥eta_{0}¥geqq¥frac{1}{2}$ $(¥overline{¥eta}+¥underline{¥eta})$ :

Similarly, by (7.2), (7.5) we conclude that $¥lim_{¥mathrm{r}¥rightarrow 4}¥infty$ $(x(t), y’(t))=(¥xi_{0}, ¥eta_{0})$ and
the proof is complete.

Example $A$ . Consider tlie system
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$¥dot{x}=¥chi^{a}(3-x(t)-y(t-1))$

$¥dot{y}=y^{b}(-2+¥frac{4}{5}x(t)-y(t)-¥int_{t-1}^{t}e^{-(t-s)}y(s)ds)$

where $a¥geqq 1$ , $b¥geqq 1$ . Applying the results of our theorem above we conclude that
the point $((35e-15)/(14e-5), 2e/(14e-5))$ is the carrying capacity of the system,

i.e., this is the point to which all positive paths converge.

Example $B$ . Consider the nonlinear nonautonomous system

$¥dot{X}=x^{a}(3-x(t)-¥frac{y(t-1)}{1+y^{2}(t-1)})$

$¥dot{y}=y^{b}(-1+¥frac{3+e^{-t}}{5}x(t)-y(t)-¥int_{-¥infty}^{t}e^{-(t-s)}y(s)ds)$

where $a¥geqq 1$ , $b¥geqq 1$ . If $p$ is the unique real root of the cubic equation $r^{3}+$ (1663/
1225)r?(l5584/42875)=0, then we can easily see that, the point $(19/9+35p/18$,
$8/35+p)$ is the limit as $ t¥rightarrow+¥infty$ of any positive solution $(x(t), y(t))$ .
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