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1. Introduction

In this paper we are concerned with the oscillatory behavior of entire solutions
of the semilinear elliptic equation

(1) $¥Delta u+p(|x|)|u|¥gamma ¥mathrm{s}¥mathrm{g}¥mathrm{n}$ $u=0$, $x$ $¥in R^{n}$ , $n¥geqq 3$ ,

where $¥Delta$ is the $¥mathrm{w}$-dimensional Laplacian and $|x|$ denotes the Euclidean length of
$x$ $¥in R^{n}$ . We assume throughout that

(a) $¥gamma>1$ (namely, (1) is superlinear); and
(b) $p¥in C[0,$ $¥infty$ ) $¥cap C^{1}(0, ¥infty)$ and $p(t)>0$ for $t>0$ .

By an entire solution of (1) we mean a function $u¥in C^{2}(R^{n})$ which satisfies (1) at
every point of $R^{n}$ . Such a solution is called oscillatory if it has a zero in any
neighborhood of infinity, i.e., in any domain of the form $¥{x ¥in R^{n} : |x|>a¥}$ , $a>0$ .
Otherwise the solution is called nonoscillatory.

Basic to our consideration is the fact that, for every $¥alpha¥in R$ , equation (1) has
a unique radially symmetric entire solution $u_{a}(x)$ such that $u_{¥alpha}(0)=a$ (see Theorem 1
below). Here, the radial symmetry of a function means that it depends only on
$|¥mathrm{x}|$ . The objective of this paper is to develop oscillation and nonoscillation criteria
for these entire solutions $u_{a}(x)$ , $¥alpha¥in R$ . We present conditions which imply that
all the $¥mathrm{u}_{a}(x)$ are oscillatory as well as those which imply that all $u_{¥alpha}(x)$ with $a¥neq 0$

are nonoscillatory. Besides, we study the asymptotic behavior as $|x|¥rightarrow¥infty$ of
nonoscillatory entire solutions of (1).

Since our attention is focused on radially symmetric solutions, the problem
under study reduces to the one-dimensional (singular) initial value problem

(2) $(t^{n-1}y^{¥prime})^{¥prime}+t^{n-1}p(t)|y|¥gamma ¥mathrm{s}¥mathrm{g}¥mathrm{n}y=0$ , $t>0$,

(3) $y(0)=a$, $y^{¥prime}(0)=0$ ,

and the main results are obtained through the analysis of the problem $(2)-(3)$

which is based on the extensive use of a Liapunov-like function as introduced in
our previous paper [10]. All theorems are formulated in terms of the function
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(4) $P_{n,¥gamma}(t)=t^{[n+2-¥gamma(n-2)]/2}p(t)$ , $t>0$.

For example, it is shown that the condition $P_{n,¥gamma}^{¥prime}(t)¥geqq 0,$ $¥not¥equiv 0$ for $t>0$ guarantees
the oscillation of all radially symmetric entire solutions of (1), and that if $P_{n,¥gamma}^{¥prime}(t)$

$¥leqq 0,$ $¥not¥equiv 0$ for $t>0$ and $¥lim_{t¥rightarrow¥infty}P_{n,¥gamma}(t)>0$ , then every non-trivial radially symmetric
entire solution of (1) is nonoscillatory and behaves like a constant multiple of
$|x|^{(2-n)/2}$ as $|x|¥rightarrow¥infty$ .

Semilinear elliptic equations, including (1), in the entire space $R^{n}$ have
been the object of intensive studies in recent years; see e.g. the papers [1, 3?16,
19]. Most of the literature on this subject, however, has been concerned with the
existence and nonexistence of positive entire solutions, and very little is known
about the oscillation property of entire solutions even for simple equations of
the type (1). This work is an attempt at a systematic investigation of the oscil-
latory behavior of entire solutions of second order nonlinear elliptic equations in
$R^{n}$ .

2. Existence of Entire Solutions

We begin by proving a basic existence theorem for radially symmetric entire
solutions of (1).

Theorem 1. For every $a¥in R$ there exists a unique radially symmetric
entire solution $u_{a}(x)$ of equation (1) such that $u_{¥alpha}(0)=a$ .

Proof. It suffices to demonstrate the existence, for each $a$, of a unique
solution $y_{a}(t)$ of the problem $(2)-(3)$ . The desired entire solution of (1) is then
given by $u_{¥alpha}(x)=y_{¥alpha}(|x|)$ .

Let $a$ be any positive number. Choose $¥delta>0$ small enough so that

$¥int_{0}^{¥delta}tp(t)dt¥leqq¥frac{(n-2)a^{1-¥gamma}}{2}$ ,

and consider the set of functions

$¥mathrm{Y}=$ {$y¥in C[0,$ $¥delta]:¥frac{a}{2}¥leqq y(t)¥leqq a$ for $t¥in[0,$ $¥delta]$ }.

Clearly, $¥mathrm{Y}$ is a bounded closed convex subset of the Banach space $C[0, ¥delta]$ of all
continuous functions in $[0, ¥delta]$ . Define

$Fy(t)=a-¥frac{1}{n-2}¥int_{0}^{t}[1-(¥frac{s}{t})^{n-2}]sp(s)[y(s)]^{¥gamma}ds$, $t¥geqq 0$ , $ y¥in$ Y.

It is verified without difficulty that $¥swarrow¥propto$ is a compact operator mapping Yinto itself,
and so there exists a $p$ $¥in ¥mathrm{Y}$ such that $j=Fj$ by the Schauder fixed point theorem.
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Differentiation of the integral equation $¥hat{y}(t)=F¥hat{y}(t)$ twice shows that $j(t)$ is a
(positive) solution of the equation

$(t^{n-1}y^{¥prime})^{¥prime}+t^{n-1}p(t)|y|¥gamma ¥mathrm{s}¥mathrm{g}¥mathrm{n}y=0$ , $ 0<t<¥delta$ ,

satisfying $y(0)=a$ and $y^{¥prime}(0)=0$ .
We claim that $¥hat{y}(t)$ can be continued to the entire interval $(0, ¥infty)$ . Put $¥hat{z}(t)=$

$t¥hat{y}(¥zeta(t))$ , where $¥zeta(t)=[t/(n-2)]^{1/(n-2)}$ . Then $¥hat{z}(t)$ is shown to be a solution of
the equation

(5) $z^{¥prime¥prime}+¥tilde{p}(t)|z|¥gamma ¥mathrm{s}¥mathrm{g}¥mathrm{n}$ $z=0$, $¥tilde{p}(t)=t^{-3-¥gamma}[¥zeta(t)]^{2n-2}p(¥zeta(t))$ ,

defined in the interval $(0, ¥zeta^{-1}(¥delta))$ , where $¥zeta^{-1}$ denotes the inverse function of $¥zeta$ .
We continue $¥hat{z}(t)$ to $(0, ¥infty)$ and denote the continuation by $z_{¥alpha}(t)$ . This is
accomplished with the aid of a theorem of Coffman and Ullrich [2, p. 390] which
asserts that if $¥tilde{p}(t)$ is positive, continuous and locally of bounded variation in
$(0, ¥infty)$ , then every solution of (5) exists in the whole interval $(0, ¥infty)$ . Now
define $y_{¥alpha}(t)=z_{¥alpha}(¥zeta^{-1}(t))/¥zeta^{-1}(t)$ for $t>0$ . Then $y_{a}(t)$ gives the desired continuation
of $¥hat{y}(t)$ to $(0, ¥infty)$ . If $a<0$ (or $a=0$), then ? $y¥_ a(t)$ (or $y_{0}(t)¥equiv 0$) solves the problem
$(2)-(3)$ . The uniqueness of $y_{¥alpha}(t)$ is a consequence of the superlinearity of (2).
This completes the proof.

We state below a lemma which will be extensively used in studying the
qualitative behavior of the entire solutions of (1) guaranteed by Theorem 1.
It concerns the Liapunov-like function $V_{¥alpha}(t)$

(6) $V_{¥alpha}(t)=t^{n-1}y_{¥acute{¥alpha}}(t)y_{¥alpha}(t)+¥frac{1}{n-2}t^{r_{¥vee}}[y_{a}^{¥prime}(t)]^{2}$

$+¥frac{2}{(n-2)(¥gamma+1)}t^{n}p(t)|y_{a}(t)|¥gamma+1$

associated with the solution $y_{a}(t)$ of the problem $(2)-(3)$ .

Lemma 1. If $y_{¥alpha}(t)$ is the solution of the problem $(2)-(3)$ , then the function
$V_{¥alpha}(t)$ defined by (6) satisfies the equations

(7) $V_{¥alpha}^{¥prime}(t)=¥frac{2}{(n-2)(¥gamma+1)}t^{(n-2)(¥gamma+1)/2}P_{n,¥gamma}^{¥prime}(t)|y_{a}(t)|^{¥gamma+1}$

and

(8) $V_{¥alpha}(t)=¥frac{2}{(n-2)(¥gamma+1)}¥int_{0}^{t}s^{(n-2)(¥gamma+1)}P_{n,¥gamma}^{l}(s)ds/2.|y_{¥alpha}(t)|^{¥gamma+1}$

$-¥frac{2}{n-2}¥int_{0}^{t}(¥int_{0}^{s}¥sigma^{(n-2)(¥gamma+1)/2}P_{n,¥gamma}^{¥prime}(¥sigma)d¥sigma)|y_{¥alpha}(s)|¥gamma y_{¥alpha}^{¥prime}(s)¥mathrm{s}¥mathrm{g}¥mathrm{n}y_{¥alpha}(s)ds$
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for $t>0$, where $P_{n,¥gamma}(t)$ denotes the function in (4).

The verification of (7) is straightforward, and integration by parts of (7)
leads immediately to (8).

Remark 1. The following indentity is useful:

(9) $¥int_{0}^{t}s^{(n-2)(¥gamma+1)/2}P_{n,¥gamma}^{¥prime}(s)ds=t^{n}p(t)-¥frac{(n-2)(¥gamma+1)}{2}¥int_{0}^{t}s^{n-1}p(s)ds$ , $t>0$.

3. Nonoscillation of Entire Solutions

In this section we first give a criterion for nonoscillation of all nontrivial
radially symmetric entire solutions of (1), and then investigate their asymptotic
behavior as $|x|¥rightarrow¥infty$ .

Theorem 2. Let $P_{n,¥gamma}(t)$ be as in (4) and suppose that

(10) $Q_{n,¥gamma}(t)¥equiv¥int_{0}^{t}s^{(n-2)(¥gamma+1)/2}P_{n,¥gamma}^{¥prime}(s)ds¥leqq 0$ for $t>0$ .

Then, no nontrivial radially symmetric entire solution of equation (1) has $a$

zero in $R^{n}$ .

Proof Suppose that there exists an $a>0$ for which the solution $y_{¥alpha}(t)$ of the
problem $(2)-(3)$ has a zero in $(0, ¥infty)$ . Let $t_{¥alpha}$ be the first zero of $y_{¥alpha}(t)$ ; then $y_{¥alpha}(t_{¥alpha})=0$

and $y_{a}(t)>0$ for $t¥in[0,$ $t_{¥alpha}$). Since $y_{¥alpha}^{¥prime}(t)¥leqq 0$ for $t¥in[0, t_{¥alpha}]$ , it follows from (8) and
(10) that $V_{a}(t)¥leqq 0$ for $t¥in[0, t_{¥alpha}]$ . On the other hand, we have $V_{¥alpha}(t_{a})=t_{¥alpha}^{n}[y_{a}^{¥prime}(t_{¥alpha})]^{2}/$

$(n-2)¥geqq 0$ by (6). Therefore, $V_{¥alpha}(t_{¥alpha})=0$, and hence $y_{a}^{¥prime}(t_{¥alpha})=0$ . The “initial con-
dition” $y_{¥alpha}(t_{¥alpha})=y_{¥alpha}^{¥prime}(t_{¥alpha})=0$ then implies that $y_{¥alpha}(t)¥equiv 0$ for $t¥geqq 0$ by uniqueness. This,
however, is a contradiction, and we conclude that if $a>0$, then $y_{¥alpha}(t)$ remains
positive in [0, $¥infty$ ). Similarly, it can be shown that $y_{¥alpha}(t)<0$ in [0, $¥infty$ ) provided
$a<0$ . This completes the proof.

Remark 2. Theorem 2 improves considerably the nonoscillation criteria

$¥gamma¥geqq¥frac{n+2}{n-2}$ , $P_{n,¥gamma}^{¥prime}(t)¥leqq 0$ for $t>0$

and

$¥gamma¥geqq¥frac{n+2}{n-2}$ , $¥int_{0}^{t}s^{n}p^{¥prime}(s)ds¥leqq 0$ for $t>0$

obtained in [10, Theorem 1] and [15, Theorem 4.5], respectively. A related
result can be found in [3, Theorem 5.4].
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Theorem 3. Suppose that condition (10) holds. Let $u_{¥alpha}(x)$ be the radially
symmetric entire solution of equation (1) such that $u_{a}(0)=a$ .

(i) For every $a¥neq 0$, $u_{¥alpha}(x)$ satisfies

(11) $|u_{¥alpha}(x)|¥leqq(|a|^{1-¥gamma}+¥frac{2(¥gamma-1)}{(n-2)(¥gamma+1)}¥int_{¥mathrm{o}}^{|x|}sp(s)ds)^{1/(1-¥gamma)}$ , $X¥in R^{n}$ .

(ii) If in addition

(12) $P_{n,¥gamma}^{¥prime}(t)¥not¥equiv 0$ for $t>0$,

then for every $a¥neq 0$, $u_{¥alpha}(x)$ satisfies

(13) $¥lim_{|x|¥rightarrow}¥inf_{¥infty}|x|^{(n-2)/2}|u_{¥alpha}(x)|>0$ .

Proof. (i) We need only to consider the case where $a>0$. Let $y_{¥alpha}(t)$ be
the solution of $(2)-(3)$ and define $V_{¥alpha}(t)$ by (6). Then, $y_{¥alpha}(t)>0$ and $y_{¥alpha}^{¥prime}(t)<0$ for
$t>0$, and (8) and (10) imply that $V_{a}(t)¥leqq 0$ for $t¥geqq 0$ . We then see from (6) that

$t^{n-1}y_{¥alpha}^{¥prime}(t)y_{a}(t)+¥frac{2}{(n-2)(¥gamma+1)}t^{n}p(t)[y_{¥alpha}’(t)]^{¥gamma+1}¥leqq 0$, $t¥geqq 0$,

or equivalently

$y_{¥alpha}^{¥prime}(t)+¥frac{2}{(n-2)(¥gamma+1)}tp(t)[y_{a}(t)]^{¥gamma}¥leqq 0$ , $t¥geqq 0$ .

Dividing the above by $[y_{¥alpha}(t)]^{¥gamma}$ and integrating over $[0, t]$ , we find

$y_{¥alpha}(t)¥leqq(a^{1-¥gamma}+¥frac{2(¥gamma-1)}{(n-2)(¥gamma+1)}¥int_{0}^{t}sp(s)ds)^{1/(1-¥gamma)}$ $t¥geqq 0$ ,

which implies (11) for $a>0$ .

(ii) Let $a$ , $y_{¥alpha}(t)$ and $V_{¥alpha}(t)$ be as in (i). From (6) we have

(14) $V_{a}(t)¥geqq t^{n-1}y_{¥alpha}^{¥prime}(t)y_{¥alpha}(t)$, $t¥geqq 0$ .

On the other hand, in view of (8) and (10) we see that

(15) $V_{¥alpha}(t)¥leqq-¥frac{2}{n-2}¥int_{0}^{t}o_{n,¥gamma}¥sim(s)[y_{¥alpha}(s)]^{¥gamma}y_{¥alpha}^{¥prime}(s)ds$, $t>0$,

where $Q_{n,¥gamma}(t)$ is as in (10). Since by (12) there is $T>0$ such that

$¥int_{0}^{t}Q_{n,¥gamma}(s)[y_{¥alpha}(s)]^{¥gamma}y_{¥alpha}^{¥prime}(s)ds¥geqq¥int_{¥mathrm{o}}^{T}Q_{n,¥gamma}(s)[y_{¥alpha}(s)]^{¥gamma}y_{¥alpha}^{¥prime}(s)ds¥equiv¥delta>0$

for $t¥geqq T$, it follows from (15) that
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(16) $V_{¥alpha}(t)¥leqq-¥frac{2¥delta}{n-2}$ for $t¥geqq T$.

Combining (14) with (16), we obtain

$t^{n-1}y_{¥alpha}^{¥prime}(t)y_{¥alpha}(t)¥leqq-¥frac{2¥delta}{n-2}$ for $t¥geqq T$,

which, after integration over $[t, ¥tau]$ , yields

$-¥frac{1}{2}[y_{¥alpha}(t)]^{2}¥leqq¥frac{1}{2}[y_{¥alpha}(¥tau)]^{2}-¥frac{1}{2}[y_{¥alpha}(t)]^{2}¥leqq-¥frac{2¥delta}{n-2}(¥frac{t^{2-n}}{n-2}-¥frac{¥tau^{2-n}}{n-2})$

for $ T¥leqq t<¥tau$ . Letting $¥tau¥rightarrow¥infty$ in the above, we conclude that

$t^{(n-2)/2}y_{¥alpha}(t)¥geqq¥frac{2¥delta^{1/2}}{n-2}$ , $t¥geqq T$,

implying that (13) is true for $a>0$. The proof of Theorem 3 is thus complete.

The $¥mathrm{f}¥mathrm{o}11¥mathrm{o}¥mathrm{w}_{¥_}$
$¥mathrm{i}¥mathrm{n}¥mathrm{g}$ corollary, which is an immediate consequence of Theorem 3,

indicates a situation in which all nonoscillatory entire solutions of (1) behave
like constant multiples of $|¥mathrm{x}|^{(2-n)/2}$ as $|x|¥rightarrow¥infty$ .

Corollary 1. Suppose that

(17) $P_{n,¥dot{¥gamma}}^{¥prime}(t)¥leqq 0$, $¥not¥equiv 0$ for $t>0$, and $¥lim_{t¥rightarrow¥infty}P_{n,¥gamma}(t)>0$ .

Then, all nontrivial radially symmetric entire solutions $u(x)$ of (1) have the same
asymptotic behavior as $|x|¥rightarrow¥infty$ :

(18) $ 0<¥lim_{|¥mathrm{x}|¥rightarrow}¥inf_{¥infty}|¥mathrm{x}|^{(n-2)/2}|u(x)|¥leqq¥lim_{|x|¥rightarrow}¥sup_{¥infty}|¥mathrm{x}|^{(n-2)/2}|u(x)|<¥infty$ .

Remark 3. Theorem 3 and Corollary 1 have points in common with
[3, Theorem 5.26] and [15, Theorem 3.10]. Notice that Corollary 1 and [3,
Theorem 5.26] coincide when specialized to the case $¥gamma=(n+2),/(n-2)$ .

Example 1. Consider the equation

(19) $¥Delta u+(1+|x|)^{¥beta}|u|^{¥gamma}¥mathrm{s}¥mathrm{g}¥mathrm{n}u=0$ , $x¥in R^{n}$ , $n¥geqq 3$ ,

where $¥beta$ and $¥gamma>1$ are constants. As before, we denote by $u_{¥alpha}(x)$ the radially
symmetric entire solution of (19) such that $u_{¥alpha}(0)=a$ . If

(20) $¥gamma¥geqq¥max¥{¥frac{n+2}{n-2}$ , $¥frac{n+2+2¥beta}{n-2}¥}$ ,

then the function $P_{n,¥gamma}(t)=t^{[n+2-¥gamma(n-2)]/2}(1+t)^{¥beta}$ satisfies $P_{¥acute{n},¥gamma}(t)¥leqq 0$ for $t>0$,
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and so Theorem 2 implies that none of the $u_{¥alpha}(x)$ , $a¥neq 0$, has a zero in $R^{n}$ . We
take up the three special cases of (20):

(21) $¥gamma>¥frac{n+2}{n-2}$ and $¥beta=¥frac{¥gamma(n-2)-(n+2)}{2}$ ;

(22) $¥gamma¥geqq¥frac{n+2}{n-2}$ and $¥beta<¥frac{¥gamma(n-2)-(n+2)}{2}$ ;

(23) $¥gamma=¥frac{n+2}{n-2}$ and $¥beta=0$.

If (21) holds, then $P_{n,¥gamma}^{¥prime}(t)¥leqq 0$ , $¥not¥equiv 0$ for $t>0$ and $¥lim_{t¥rightarrow¥infty}P_{n,¥dot{¥gamma}}(t)=1$ , so that by
Corollary 1 all the entire solutions $u_{¥alpha}(x)$ , $a¥neq 0$ , tend uniformly to zero as $|x|¥rightarrow¥infty$

exactly like constant multiples of $|x|^{(2-n)/2}$ . If (22) holds, then $P_{n,¥gamma}^{¥prime}(t)¥leqq 0,$ $¥not¥equiv 0$

for $t>0$ but $¥lim_{t¥rightarrow¥infty}P_{n,¥gamma}(t)=0$. In this case, Theorem 3 shows that each $u_{¥alpha}(x)$ ,
$a¥neq 0$, satisfies

$¥lim_{|¥mathrm{x}|¥rightarrow}¥inf_{¥infty}|x|^{(n-2)/2}|u_{¥alpha}(x)|>0$ and
$¥lim_{|x|}¥sup_{¥rightarrow¥infty}$

$|x|^{(¥beta+2)/(¥gamma-1)}|u_{¥alpha}(x)|<¥infty$ ,

which is not as accurate as (18) since $(¥beta+2)/(¥gamma-1)<(n-2)/2$ by (22). We con-
jecture that some of $u_{¥alpha}(x)$ exhibit a different asymptotic behavior from (18) (see
Example 2). Finally, if (23) holds, then equation (19) reduces to

(24) $¥Delta u+|u|^{(n+2)/(n-2)}¥mathrm{s}¥mathrm{g}¥mathrm{n}u=0$ , $X¥in R^{n}$ , $n¥geqq 3$ ,

for which $P_{n,¥gamma}(t)¥equiv 1$ , $t¥geqq 0$ . It is well known (see e.g. [7, p. 591]) that the radially
symmetric entire solutions $u_{¥alpha}(x)$ are given explicitly $¥mathrm{t}$

} $¥mathrm{y}$

(25) $u_{¥alpha}(x)=[n(n-2)]^{(n-2)/4}(¥frac{¥lambda_{¥alpha}}{¥lambda_{¥alpha}^{2}+|x|^{2}})^{(n-2)/2}¥mathrm{s}¥mathrm{g}¥mathrm{n}a$ ,

where $¥lambda_{a}=[n(n-2)]^{1/2}|a|^{-2/(n-2)}$ . The asymptotic behavior of (25) is clearly
different from (18).

Example 2. The equation

$¥Delta u+¥frac{3(n-2)^{2}|x|^{2}+4n(n-2)}{16(1+|x|^{2})^{3/2}}|u|^{(n+2)/(n-2)}¥mathrm{s}¥mathrm{g}¥mathrm{n}u=0$, $x$ $¥in R^{n}$ , $n¥geqq 3$ ,

has a positive entire solution $u(x)=(1+|x|^{2})^{(2-n)/8}$ , $X¥in R^{n}$ . This example
shows that, in case $P_{n,¥gamma}^{¥prime}(t)¥leqq 0$ , $¥not¥equiv 0$ for $t>0$ and $¥lim_{t¥rightarrow¥infty}P_{n,¥gamma}(t)=0$ , equation
(1) may have a nonoscillatory entire solution whose order of decay as $|x|¥rightarrow¥infty$

is less than that of $|x|^{(2-n)/2}$ .
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4. Oscillation of Entire Solutions

The purpose of this section is to prove the following oscillation theorem
for equation (1).

Theorem 4. Let $P_{n,¥gamma}(t)$ be as in (4) and suppose that

(26) $P_{n,¥gamma}^{¥prime}(t)¥geqq 0$ , $¥not¥equiv 0$ for $t>0$.

Then, all radially symmetric entire solutions of equation (1) are oscillatory.

The proof of Theorem 4 rests on the fact that under (26) every radial entire
solution of (1) has at least one zero. As a matter of fact, the existence of zeros
for all entire solutions of (1) is guaranteed by a much weaker condition than (26),
and so we formulate this result as a theorem and prove it before Theorem 4.

Theorem 5. Suppose that $P_{n,¥gamma}^{¥prime}(t)¥not¥equiv 0$ and

(27) $Q_{n,¥gamma}(t)¥equiv¥int_{0}^{t}s^{(n-2)(¥gamma+1)/2}P_{n,¥gamma}^{¥prime}(s)ds¥geqq 0$ for $t>0$ .

Then, every nontrivial radially symmetric entire solution of (1) has a zero
in $R^{n}$ .

Lemma 2. Suppose that

(28) $¥lim_{t}¥inf_{¥rightarrow¥infty}t^{(n-2)(¥gamma-1)/2}¥int_{t}^{¥infty}s^{n-3}(¥int_{s}^{¥infty}¥sigma^{1-¥gamma(n-2)}p(¥sigma)d¥sigma)ds>0$ .

If the solution $y_{¥alpha}(t)$ of $(2)-(3)$ is eventually of constant sign, then the Liapunov-likc
function $V_{¥alpha}(t)$ associated with $y_{¥alpha}(t)$ satisfies

(29) $¥lim_{t¥rightarrow}¥inf_{¥infty}V_{¥alpha}(t)¥leqq 0$ .

Proof of Lemma 2. Assume that there exists a solution $y_{¥alpha}(t)$ of $(2)-(3)$

which is positive for $t¥geqq t_{0}>0$ but does not satisfy (29). Integrating equation (2)
rewritten as

$(t^{3-n}(t^{n-2}y_{¥alpha}(t))^{¥prime})^{¥prime}+tp(t)[y_{¥alpha}(t)]^{¥gamma}=0$ , $t¥geqq t_{0}$ ,

and noting that $(t^{n-2}y_{¥alpha}(t))^{¥prime}¥geqq 0$ , $t¥geqq t_{0}$ (see e.g. [19]), we obtain

$(t^{n-2}y_{¥alpha}(t))^{¥prime}¥geqq t^{n-3}¥int_{t}^{¥infty}sp(s)[y_{¥alpha}(s)]^{¥gamma}ds$

$¥geqq[t^{n-2}y_{¥alpha}(t)]^{¥gamma}t^{n-3}¥int_{t}^{¥infty}s^{1-¥gamma(n-2)}p(s)ds$ , $t¥geqq t_{0}$ .
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We divide the above inequality by $[t^{n-2}y_{¥alpha}(t)]^{¥gamma}$ , integrate it over $[¥mathrm{f}, ¥tau]$ and le]
$¥tau¥rightarrow¥infty$ . Then we have

$¥frac{1}{¥gamma-1}[t^{n-2}y_{¥alpha}(t)]^{1-¥gamma}¥geqq¥int_{t}^{¥infty}s^{n-3}(¥int_{s}^{¥infty}¥sigma^{1-¥gamma(n-2)}p(¥sigma)d¥sigma)ds$ , $t¥geqq t_{0}$ ,

which implies

$t^{(n-2)/2}y_{¥alpha}(t)¥leqq((¥gamma-1)t^{(n-2)(¥gamma-1)/2}¥int_{t}^{¥infty}s^{n-3}(¥int_{s}^{¥infty}¥sigma^{1-¥gamma(n-2)}p(¥sigma)d¥sigma)ds)^{1/(1-¥gamma)}$

for $t¥geqq t_{0}$ . This, combined with (28), shows that

(30) $t^{(n-2)/2}y_{¥alpha}(t)¥leqq C$ , $t¥geqq t_{0}$ ,

for some positive constant $C$ .

Now put $w_{¥alpha}(t)=t^{(n-2)/2}y_{¥alpha}(t)$ . Then, $w_{¥alpha}(t)$ is bounded above and satisfies
the equation

(31) $t^{2}w_{¥acute{¥acute{¥alpha}}}(t)+tw_{¥alpha}^{¥prime}(t)-¥frac{(n-2)^{2}}{4}w_{¥alpha}(t)+P_{n,¥gamma}(t)[w_{¥alpha}(t)]^{¥gamma}=0$ , $t¥geqq t_{0}$ .

The function $V_{¥alpha}(t)$ is expressed in terms of $w_{¥alpha}(t)$ as follows:

(32) $V_{¥alpha}(t)=-¥frac{n-2}{4}[w_{¥alpha}(t)]^{2}+¥frac{1}{n-2}t^{2}[w_{¥alpha}^{¥prime}(t)]^{2}$

$+¥frac{2}{(n-2)(¥gamma+1)}P_{n,¥gamma}(t)[w_{¥alpha}(t)]^{¥gamma+1}$ .

There are three possibilities for $w_{¥alpha}^{¥prime}(t)$ :
(i) $w_{a}^{¥prime}(t)¥geqq 0$ for all sufficiently large $t$ ;
(ii) $w_{¥alpha}^{¥prime}(t)¥leqq 0$ for all sufficiently large $t$ ;
(iii) $w_{¥alpha}^{¥prime}(t)$ ultimately takes both positive and negative values.

However, case (iii) is precluded. In fact, if this case occurs, then there is a $T>t_{0}$

sufficiently large such that

(33) $w_{¥alpha}^{¥prime}(T)=0$ and $w_{¥alpha}^{¥prime¥prime}(T)¥geqq 0$.

Since $V_{¥alpha}(t)>0$ for all large $t$ , from (32) we have

(34) $P_{n,¥gamma}(T)[w_{¥alpha}(T)]^{¥gamma}¥geqq¥frac{(n-2)^{2}(¥gamma+1)}{8}w_{a}(T)$ ,

and using (33) and (34) we see from (31) that



Superlinear Elliptic Equations 279

where $q(t)=¥int_{0}^{t}s^{n-1}p(s)ds$ . Integration of (38) shows that, for each fixed $T>0$,

$q(t)¥geqq q(T)(t/T)^{(n-2)(¥gamma+1)/2}$ for $t¥geqq T$,

which, combined with (37), yields

(39) $p(t)¥geqq Ct^{-[n+2-¥gamma(n-2)]/2}$ , $t¥geqq T$,

where $C=(n-2)(¥gamma+1)q(T)T^{-(n-2)(¥gamma+1)/2}/2>0$ . We observe that (39) implies
(28) in Lemma 2.

Assume that, for some $a>0$, the solution $y_{¥alpha}(t)$ of $(2)-(3)$ is positive in [0, $¥infty$ ),
and consider the function $V_{¥alpha}(t)$ associated with $y_{¥alpha}(t)$ . From Lemma 2 it follows
that $¥lim¥inf_{t¥rightarrow¥infty}V_{¥alpha}(t)¥leqq 0$. On the other hand, from (8) and (27) we get

(40) $V_{¥alpha}(t)¥geqq-¥frac{2}{n-2}¥int_{0}^{t}Q_{n,¥gamma}(s)[y_{¥alpha}(s)]^{¥gamma}y_{¥alpha}^{¥prime}(s)ds$ , $t>0$.

The condition $P_{n,¥gamma}^{¥prime}(t)¥not¥equiv 0$ implies the existence of a $T>0$ such that

$¥int_{0}^{t}Q_{n,¥gamma}(s)[y_{¥alpha}(s)]^{¥gamma}y_{¥alpha}^{¥prime}(s)ds¥leqq¥int_{0}^{T}Q_{n,¥gamma}(s)[y_{¥alpha}(s)]^{¥gamma}y_{¥alpha}^{¥prime}(s)ds¥equiv-¥delta<0$

for $t¥geqq T$. Using this inequality in (40), we conclude that

$V_{¥alpha}(t)¥geqq¥frac{2¥delta}{n-2}>0$ for $t¥geqq T$,

contradicting the conclusion of Lemma 2. Similar arguments hold for the
case of negative $a$ . It follows that condition (27) forces every entire solution $u_{¥alpha}(x)$

$=y_{¥alpha}(|x|)$ of (1) to have at least one zero in $R^{n}$ . This completes the proof of
Theorem 5.

Proof of Theorem 4. Let $a¥neq 0$ be any number and let $y_{¥alpha}(t)$ be the solution
of the problem $(2)-(3)$ . By Theorem 5 $y_{¥alpha}(t)$ has a zero in $(0, ¥infty)$ . It remains
to show that $y_{¥alpha}(t)$ has infinitely many zeros tending to $¥infty$ . Suppose to the contrary
that there is an $a¥neq 0$ for which $¥vee v_{¥alpha}(t)$ is eventually of constant sign. Without loss
of generality we may suppose that there exists $t_{¥alpha}>0$ such that $y_{¥alpha}(t_{¥alpha})=0$ and
$y_{¥alpha}(t)>0$ for $t>t_{¥alpha}$ . The uniqueness of the solution implies that $y_{¥alpha}^{¥prime}(t_{a})>0$ , and since
$V_{¥alpha}(t)$ is nondecreasing by (7) and (26), it follows that

(41) $V_{¥alpha}(t)¥geqq V_{¥alpha}(t_{¥alpha})=t_{¥alpha}^{n}[y_{¥alpha}^{¥prime}(t_{¥alpha})]^{2}/(n-2)>0$ for $t¥geqq t_{a}$ .

On the other hand, condition (26) implies the existence of $T>0$ such that $p(t)$

satisfies (39) with $C=P_{n,¥gamma}(T)>0$, so that by applying Lemma 2, we see that
$¥lim¥inf_{t¥rightarrow¥infty}V_{¥alpha}(t)¥leqq 0$ , which contradicts (41). Therefoie, every $y_{¥alpha}(t)$ must have
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a zero in any neighborhood of infinity, and hence every radially symmetric entire
solution $u_{¥alpha}(x)=y_{¥alpha}(|x|)$ of (1) must be oscillatory. This concludes the proof
of Theorem 4.

Remark 4. An oscillation theorem for equations of the form $¥Delta u+f(u)=$

$0$ , $X¥in R^{n}$ , has been given by [16, Corollary 6.7]. In the case $f(u)=|u|¥gamma ¥mathrm{s}¥mathrm{g}¥mathrm{n}$ $u$ ,
it coincides with a $¥mathrm{s}¥mathrm{p}¥mathrm{e}¥mathrm{c}¥mathrm{i}¥mathrm{a}¥mathrm{l}¥mathrm{i}¥mathrm{z}¥mathrm{a}¥mathrm{t}¥dot{¥infty}¥mathrm{n}$ of our Theorem 4 to the case $p(t)¥equiv 1$ .

Remark 5. Theorem 5 extends Theorem 2 of [10] as well as Theorem 5.13
of [3] and Theorem 4.23 of [15] for the case $¥gamma=(n+2)/(n-2)$ . Our Theorem 5
covers the case $¥gamma¥neq(n+2)/(n-2)$ also.

Example 3. Consider the equation (19) again. If

(42) $1<¥gamma<¥min¥{¥frac{n+2}{n-2}$ , $¥frac{n+2+2¥beta}{n-2}¥}$ ,

then Theorem 4 is applicable, and all radially symmetric entire solutions of (19)
are oscillatory.

Example 4. Consider the equation

(43) $¥Delta u+|x|^{g}|u|¥gamma ¥mathrm{s}¥mathrm{g}¥mathrm{n}u=0$ , $x$ $¥in R^{n}$ , $n¥geqq 3$ ,

where $¥beta¥geqq 0$ and $¥gamma>1$ are constants. As is easily seen, if $1<¥gamma<(n+2+2¥beta)/(n-2)$,

then Theorem 4 is applicable and all radially symmetric entire solutions of (43)
are oscillatory. Notice that if $¥gamma¥geqq(n+2+2¥beta)/(n-2)$, then it follows from Theorem
2 that every nontrivial radial entire solution of (43) is nonoscillatory and has
no zero in $R^{n}$ .

Remark 6. Theorem 4 cannot be applied to the equation

(44) $¥Delta u+(2+¥sin|x|)|u|¥gamma ¥mathrm{s}¥mathrm{g}¥mathrm{n}$ $u=0$, $x$ $¥in R^{n}$ , $n¥geqq 3$ , $¥gamma>1$ ;

for the function $P_{n,¥gamma}(t)=t^{[n+2-¥gamma(n-2)]/2}(2+¥sin t)$ does not satisfy (26). However,
one finds that if $1<¥gamma¥leqq n/(n-2)$ , all (not necessarily radially symmetric) entire
solutions of (44) are oscillatory, by applying to (44) a theorem of Noussair and
Swanson [17, 18] which asserts that the condition

(45) $¥int_{1}^{¥infty}t^{n-1-¥gamma(n-2)}p(t)dt=¥infty$

ensures the oscillation of all solutions of (1) defined in an exterior domain in
$R^{n}$ . On the other hand, noting that $p(t)=2+¥sin t$ satisfies

$¥int_{¥mathrm{o}}^{t}s^{(n-2)(¥gamma+1)/2}P_{n,¥gamma}^{¥prime}(s)ds=t^{n}p(t)-¥frac{(n-2)(¥gamma+1)}{2}¥int_{0}^{t}s^{n-1}p(s)ds$
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$¥leqq 3t^{n}-¥frac{(n-2)(¥gamma+1)}{2}¥int_{0}^{t}s^{n-1}ds$

$=[3-¥frac{(n-2)(¥gamma+1)}{2n}]t^{n}$ ,

one concludes from Theorem 2 that if $¥gamma¥geqq(5n+2)/(n-2)$, then every nontrivial
radially symmetric entire solution of (44) is nonoscillatory in $R^{n}$ . No conclusion
can be drawn for equation (44) with $¥gamma$ in $(n/(n-2), (5n+2)/(n-2))$.
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