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Consider the Volterra equation

(1) $x^{¥prime}(t)=D(t)x(t)+¥int_{-¥infty}^{t}E(t, s)x(s)ds+f(t)$ ,

where $x$ is an $¥mathrm{n}$-vector, the function $f(t)$ is continuous on $(-¥infty, ¥infty)$ with the value
in $R^{n}$ , $D$ is an $n¥times n$ matrix of functions continuous on $(-¥infty, ¥infty)$ with $D(t+T)=$
$D(t)$ for a fixed positive number $T$, $E(t, s)$ is an $n¥times n$ matrix of functions continuous
for $-¥infty<s¥leq t<¥infty$ and $¥int_{-¥infty}^{t}||E(t, s)|ds$ is continuous and bounded on $(-¥infty, ¥infty)$ .

In [1], T. A. Burton has proved the following theorems (see [1], Theorems 1
and 6).

Theorem 1. Suppose that
(i) if $¥mathrm{x}(t)$ is a solution of (1) on [$a$ , $¥infty)$ , then $x(t+T)$ is also a solution

of (1) on $[a-T,$ $¥infty)$ ,
(ii) (1) has one and only one solution $x^{*}(t)$ which is bounded on $(-¥infty, ¥infty)$.
Then $x^{*}(t)$ is the one and only one $T$-periodic solution of (1).

Theorem 2. Suppose that for each $¥delta>0$ there is an $s>0$ such that $t-t_{1}¥geq S$

implies $¥int_{-¥infty}^{t_{1}}|E(t, s)|ds¥leq¥delta$ . Also, assume
(i) $i¥tilde{j}x(t)$ is a solution of (1) on [$a$ , $¥infty)$ , then $x(t+T)$ is also a solution of

(1) on $[a-T,$ $¥infty)$ ,

(ii) if (1) has a solution on $(-¥infty, ¥infty)$ which is bounded, it is U.A.S.,
(iii) the solution $x(t, 0,0)$ of (1) is bounded on [0, $¥infty$ ) and is equiasympto-

tically stable at $t_{0}=0$ .
Then (1) has a $T$-periodic solution.

In this paper we get

Theorem 3. Suppose that
(i) if $x(t)$ is a solution of (1) on [$a$ , $¥infty)$ , then $x(t+T)$ is also a solution of

(1) on $[a$ $-T$, $¥infty)$ ,

(ii) (1) has at most one bounded solution on $(-¥infty, ¥infty)$ , and
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(iii) there is a constant function $C$ and the solution $x(t, 0, C)$ of (1) is
bounded on [0, $¥infty$ ).

Then (1) has a $T$-periodic solution.

Remark 1. Theorem 3 can be considered as a generalization of Theorem 2.
Here we don’ $¥mathrm{t}$ suppose the asymptotic stability of bounded solution of (1).

Remark 2. Consider the homogeneous equation

(2) $x^{¥prime}(t)=D(t)x(t)+¥int_{-¥infty}^{t}E(t, s)x(s)ds$ .

Obviously, if (2) has at most one solution which is bounded on $(-¥infty, ¥infty)$, then so
does (1).

Proof of Theorem 3. By (i), (ii) and Theorem 1, to prove (1) has a $¥mathrm{T}$-periodic
solution, it is sufficient to prove that (1) has one bounded solution on $(-¥infty, ¥infty)$ .

Define a sequence of solutions of (1) on [? $nT$, $¥infty$ ) by

$x_{n}(t)=¥left¥{¥begin{array}{l}x(t+nT,0,C),t¥geq-nT,¥¥C,t<-nT,¥end{array}¥right.$

where $n$ is a positive integer.
Now, $x(t)=x(t, 0, C)$ is bounded on [0, $¥infty$ ), so there is a constant $M$ such

that $|x(t)|¥leq M$ for $t¥in[0,$ $¥infty$ ); thus, we also have

$|x_{n}(t)|¥leq M$, $t¥in(-¥infty, ¥infty)$ .

$|x^{¥prime}(t)|¥leq|D(t)|M+M¥int_{-¥infty}^{t}|E(t, s)|ds+|f(t)|$

$¥leq B=$ const, $t¥in[0,$ $¥infty)$ .

Moreover, for $t>-nT$, $|x_{n}^{¥prime}(t)|¥leq B$ .
For $n¥geq 2$ , $¥{x_{n}(t)¥}$ is an equicontinuous and uniformly bounded function

sequence on $[- T, T]$ . By the Ascoli theorem, there exists a subsequence $¥{x_{n_{k.1}}(t)¥}$

of $¥{x_{n}(t)¥}$ which tends to some continuous function $z_{1}(t)$ uniformly on $[- T, T]$ .
Choose a positive integer $K$ such that for $k¥geq K$ , $n_{k,1}¥geq 3$ . Then $¥{x_{n_{k.1}}(t)$ ,

$k¥geq K¥}$ is also an equicontinuous and uniformly bounded function sequence on
$[-2T, 2T]$ . So there is a subsequence $¥{x_{n_{k,2}}(t)¥}$ of $¥{x_{n_{k.1}}(t)¥}$ which converges to
some continuous function $z_{2}(t)$ uniformly on $[-2T, 2T]$ . Obviously, $z_{1}(t)=$

$z_{2}(t)$ on $[- T, T]$ .
Thus, by the same argument, we can choose a subsequence $¥{x_{n_{k,m}}(t)¥}$ which

converges to some continuous function $z_{m}(t)$ uniformly on $[- mT, mT]$ with
$¥{x_{n_{k.m-1}}(t)¥}¥supseteq¥{x_{n_{k,m}}(t)¥}$ and $z_{m1}¥_(t)=z_{m}(t)$ on $[-(m-1)T, (m-1)T]$ .

By a diagonal process, we can choose a subsequence $¥{x_{n_{k}}(t)¥}¥subseteq¥{x_{n}(t)¥}$ which
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converges uniformly on compact subsets of $(-¥infty, ¥infty)$ to some continuous function
$z(t)$ . Obviously, $|z(t)|¥leq M$ on $(-¥infty, ¥infty)$ .

For any $m>0$, find a positive integer $K$ such that for any $k¥geq K$ , $n_{k}>m$ . By
(i), we have

$x_{n_{k}}^{¥prime}(t)=D(t)x_{n_{k}}(t)+¥int_{-¥infty}^{t}E(t, s)x_{n_{k}}(s)ds+f(t)$ , $t>-n_{k}T$.

So, for $t¥in[-mT, mT]$ , $k¥geq K$ ,

$(*)$ $x_{n_{k}}(t)=x_{n_{k}}(0)+¥int_{¥mathrm{o}}^{t}D(v)x_{n_{k}}(v)dv+¥int_{0}^{t}f(v)dv$

$+¥int_{0}^{t}(¥int_{-¥infty}^{v}E(v, s)x_{n_{k}}(s)ds)dv$ ,

$|E(v, s)x_{n_{k}}(s)|¥leq M|E(v, s)|$ .

Since $¥int_{-¥infty}^{v}|E(v, s)|Mds$ is continuous on $(-¥infty, ¥infty)$ , by the Lebesgue-

dominated convergence theorem we may take the limit as $ k¥rightarrow¥infty$ in $(*)$ and obtain

$z(t)=z(0)+¥int_{0}^{t}D(v)z(v)dv+¥int_{0}^{t}f(v)dv$

$+¥int_{0}^{t}(¥int_{-¥infty}^{v}E(v, s)z(s)ds)dv$ ,

for $t¥in[-mT, mT]$ , and then

$¥mathrm{z}^{¥prime}(t)=D(t)z(t)+¥int_{-¥infty}^{t}E(t, s)z(s)ds+f(t)$ .

The relation above holds on every $[- mT, mT]$ and hence on $(-¥infty, ¥infty)$ .
Thus, $z(t)$ is a bounded solution of (1) on $(-¥infty, ¥infty)$ . This completes the proof.

Example 1. Consider the scalar equations

(3) $Z^{¥prime}(t)=-Z(t)+4¥int_{0}^{t}e^{-(t-s)}Z(s)ds$, $Z(0)=1$ ,

(4) $x^{¥prime}(t)=-x(t)+4¥int_{-¥infty}^{t}e^{-(t-s)}x(s)ds+10¥cos t$.

It is easy to see that the unique solution $Z(t)$ of (3) is

$Z(t)=(e^{t}+e^{-3t})/2$ .

By the variation of parameters formula, for any constant $k$ the solution $x(t, 0, k)$

of (4) is given by
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$x(t, 0, k)=Z(t)k+¥int_{0}^{t}Z(t-s)f(s)ds$ ,

where

$f(t)=10¥cos t+4k¥int_{-¥infty}^{0}e^{-(t-s)}ds=10¥cos t+4ke^{-t}$ .

Thus

$x(t, 0, k)=k(e^{t}+e^{-3t})/2$

$+¥int_{¥mathrm{o}}^{t}((e^{(t-s)}+e^{-3(t-s)})(10¥cos s+4ke^{-s})/2)ds$

$=3¥sin t-¥cos t+(3k+5)e^{t}/2-(3+k)e^{-3t}/2$ .

We have that $x(t, 0, -5/3)$ is bounded on [0, $¥infty$ ) and that for any $k¥neq-5/3$

$ x(t, 0, k)¥rightarrow¥infty$ as $ t¥rightarrow¥infty$ . Obviously, $x(t, 0, -5/3)$ is not equiasymptotically stable
at $t_{0}=0$ .

Now we want to show that (4) has at most one bounded solution on $(-¥infty, ¥infty)$ .
Suppose that there are two bounded solutions $¥mathrm{x}_{1}(t)$ and $x_{2}(t)$ of (4) on $(-¥infty, ¥infty)$

with $¥mathrm{x}_{1}(t_{0})¥neq x_{2}(t_{0})$ for some $ t_{0}¥in$ $(-¥infty, ¥infty)$ . Let $y(t)=¥mathrm{x}_{1}(t)-x_{2}(t)¥not¥equiv 0$ . Then
$y(t)$ is bounded on $(-¥infty, ¥infty)$ and satisfies the homogeneous equation

$y^{¥prime}(t)=-y(t)+4¥int_{-¥infty}^{t}e^{-(t-s)}y(s)ds$ ,

and then differentiation yields a second-order linear ordinary differential equation

$y^{¥prime¥prime}(t)+2y^{¥prime}(t)-3y(t)=0$.

Thus, we have

$y(t)=ae^{t}+be^{-3t}$

with $a¥neq 0$ or $b¥neq 0$ . This implies $ y(t)¥rightarrow¥infty$ as $ t¥rightarrow¥infty$ or $ t¥rightarrow-¥infty$ , a contradiction.
Now, all the conditions of Theorem 3 hold and (4) has one and only one

periodic solution

$x^{*}(t)=3¥sin t-¥cos t$ .

Finally, we want to point out that $¥int_{-¥infty}^{t}|E(t, s)|ds$ bounded and continuous
on $(-¥infty, ¥infty)$ implies that there is an $M>0$ such that

$¥int_{-¥infty}^{t}|E(t, s)|ds$ $=¥int_{0}^{¥infty}|E(t, t-u)|du$ $¥leq M$.

Then for each $¥delta>0$, there exists an $S>0$ such that $t-t_{1}¥geq S$ implies
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$¥int_{-¥infty}^{t_{1}}|E(t, s)|ds$ $=¥int_{t-t_{1}}^{¥infty}|E(t, t-u)|du$ $<¥delta$ .
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