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Existence and Uniqueness of Solutions of
Neutral Delay-Differential Equations
with State Dependent Delays*

By
Zdzislaw JACKIEWICZ

(University of Arkansas, U. S. A.)

1. Introduction

Let there be given real numbers y<a<b, a function f: [a, b]x R®*>R,
initial function g: [y, a]— R, and delay functions «, f: [a, b] x R— R such that
y<aft, y)<t, y<p(t, y)<t. Here, R denotes the set of real numbers. We
consider the initial-value problem for delay-differential equations of neutral type

y'()=F@,y,y), tela,b],
y(0) = g(1), tely, al,
where for any functions y, z: [y, b]—> R, F is defined by

F(t> ) Z) :=f(ta y(t)a y(O((t, y(t)))a Z(ﬁ(t’ y(t))))

Denote by Lip, [¢;, t,] the space of real-valued Lipschitz continuous functions
on [t,, t,] and by C%![¢,, t,] the space of functions whose first derivative belongs
to Lip, [#;, t,]. We impose the following conditions on the functions f, g, a,
and B which define problem (1):
(i) geCbly, al;
(ii) F(a, g, g9") = g_(a) (g_(a) denotes the left hand derivative of g at a);
(i) 1f(t1, yi> U1, 20)—f(t2s Y2» Uzs 22)| < Li(lty —to| + [y — yal +lug —us))

+ Lylzy—z,l, Ly Ly > 0, 14, t,€[a, bl, yy, ya, Uy, Uz, 2y, 2, € R

&)

(iv) laty, yi)—alty, y)l < Aglty—to) + Aplyy —yal, Ay, A, 20, 84, 1, € [a, D],
Y1, V2 €R.
(v) 1B(ty, y1)—B(t2, y2)I < Bilty—1t5] + Bylyy—yals By, B, >0, 14, t,€[a, b],
Vi V2€R.
Additional conditions on some Lipschitz constants appearing above will be given
in the formulation of our theorems.
Equations of type (1) arise as a model for a two-body problem of classical
electrodynamics and were studied extensively by Driver [2-4]. He proved the
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existence and uniqueness results for the case where y<f(t, y)<t (see [2, 3]).
The case where f is linear in the last argument was studied by Hale and Cruz [6].
Grimm [5] proved an existence result for (1) with y=a assuming that f is bounded
by M, L,<1, and B, + B,M <1 by use of the Schauder fixed point theorem. He
also proved a uniqueness result in case f is independent of y by the Banach
contraction principle. In this paper we relaxed this very restrictive condition.
We proved an existence and uniqueness result for (1) with g depending on both
arguments ¢ and y under the condition L,(1+ B, + B,G)<1, where G=G({, g).
It is also shown that the last inequality can be replaced by L,(B,+ B,G*)<1,
G*=G*(f, g), if y<p(t, y)<t—9 for some 6>0.

2. Properties of modified euler sequences
Let J={h: h=(b—a)/n, n>ny}, where n, is a positive integer, and for heJ
put t;=a+ih, i=0, 1,..., n. Define the modified Euler sequences for (1) by
yi(ti+rh) = v(t) + rhzy(t), re(0, 1],
2 zi{t;+rh) = (L —1)z, (1) + rz(t;1 ), re(0, 1],
Zltiv ) = F(tiv g, Yio 21),

i=0, 1,---, n—1, where y,(t)=g(t) and z,(t)=g'(t) for te[y, a]. Note that (2)
differs from the Euler method considered by Castleton and Grimm [1], where
the approximation to the derivative of the solution is a piecewise constant function
rather than piecewise linear. Let C[ty, t,] denote the space of continuous
functions from [t4, t,] into R. For any ¢ e C[y, b] and [c, d]<=[y, b] put
I Plle,ar:=sup {l@(D]: telc, d]}. Let L, and L, be constants such that
lg'()—g' (D)l < Lylt—1],

for t, t e[y, a]. The existence of such constants follows from (i). Define

M := sup {|F(z, 0, 0)|: e [a, b]},

Cy =gl +M/(1—-Ly),

Cy:=2L{[(1-L,),

Y:= (”g H[y,a]+ CI/CZ) eXp ((b - a)C2) s

Z = Cl + CZK

G:=max{L, Z}.

We have the following:
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Lemma 1. Assume that (i)«(v) hold and that L,(1+ B+ B,G)<1. Then
the sequences {y,}ney and {z,},c; are relatively compact in C[y, b]. '

Proof. It is clear that y, and z, are continuous. We will show that {y,},.,
and {z,},.; are uniformly bounded and uniformly Lipschitz-continuous. From
(2) it follows that

(3) 1yl < Wnlleyen + Hlzally,n
i=0,1,---,n—1. We also have
lzu(t)| < [F(t5, yi z)— F(8:, 0, 0)] + |F(1;, 0, 0)]
(for i=0 this follows from (ii)). Hence, in view of (iii) we obtain
“Zh”[y,zi] < “Zh”[y,a] + M + 2L, Hyh”[y,ti] + LZHZh”[y,t,-]'
Noting that L, <1 we get
4) lzullyeq < C1 + Callallpy s

i=0, 1,---, n, where C, and C, are defined above. Substitution of (4) into (3)
yields

[Vlltyeee g < (L+HRC) yullpyeq + ACy,
and by induction it follows that

4l < (L+HCY 1l + ~EFECE=DEC

i=0, 1,---, n. Consequently, ||y,ll;,»;<Y and by (4) llz,ll,,<Z, which proves
that {y,}n; and {z,},; are bounded uniformly in h. It is easy to check that y,
are uniformly Lipschitz-continuous on [y, b] with a constant G. Denote by D
a constant such that D> L, and

%) L (1+G(1+A4,+A,G)) + L,D(B;+B,G) < D(1-L,).

Note that existence of this constant is guaranteed by the condition L,(1+ B, + B,G)
<1. We will prove that the z,, h € J, are uniformly Lipschitz-continuous on [y, b]
with the constant D, i.e.

(6) |zu(t) — z(D)| < Dft—1],

for t, Te[y, b]. By (i) this condition is satisfied for ¢, te[y, a]. Assume that
(6) holds for t, e[y, t;]. Then

1zt 1) =zt < Lilh+y(ti4 1) — yult)]
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1yt + 15 Yiltir 1)) = vy, yu(tiv 1))
+ [yt yulti+ 1)) — y 1oty yi(E))I]
+ Lollza(B(tis 15 Yultiv 1)) — z(B(tis y4(ti1 D))
+12,(B(ts yilti+ 1)) — zu(B(ti, yi(EI]
< L;(1+G(1+ A,+A,G)h + L,DB,Gh
+ Lol zy(B(ti+ 15 Vit 1)) — 2Bt yultis DD -

Two cases are possible: either f(t;.(, yi(t;+ 1)<t or B(t;4 1> Viltiv ) €y, tir 1]
In the first case

[zu(B(ti4 15 Yiltiv 1)) — 2Bt yi(tix 1))l < DBh

and

lzo(tie 1) —zu(t)] < Li(1+G(1+ A+ A,G)h + L,D(B; + B,G)h
< D(1—L,)h < Dh

in view of (5). In the second case
i (Bt 15 Yiltiv 1) = (L =7)z (1) + rz)(ti 1)
where r=(B(t;+ 1, yi(ti+1))—1)/h, and

[Zu(B(tiv 15 Yiltis D) — 2u(B(, yultis O
< [zt — zu(B( yiltin DD + 7lz3(8i4 1) — z4(1)]
< DIB(tiv 1, yiltiv 1)) — Bt yitiv D + 12384 ) — 24(1)]
< DB h + |z,(t; 1 1) — z4(t)] -

Hence,

(I =Ly z)(t;w 1) —zo(t)] < Li(1+ G+ A4, +A,G)h

The last inequality follows from (5). Because z, is piecewise continuous on
[a, b], this proves (6) for t, t€[y, t;+,]- Thus {y,},, and {z,},., are uniformly
bounded and uniformly Lipschitz-continuous. In view of the Ascoli-Arzela
theorem they are relatively compact in C[y, b], which completes the proof of
Lemma 1.

Since L,(1+B{+B,G)<1, L, is necessarily less than 1. This condition can
be relaxed if y<p(t, y)<t—9 for some §>0. Denote by K the smallest integer
such that K>2(b—a)/é and put S(u)=73%_, Li. Define
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1= 8&K) 9" lry,a + S(K—1)M,
C%:=2L,S(K-1),
Y* 1= (Iglly,a+ CT/CP) exp (b —a)C3),
Z* ;= Cf + C3Y*,
G* :=max {L,, Z*}.
We have the following:

Lemma 2. Assume that (i)~(v) hold, y<f(t, y)<t—96, te[a, b], for some
0>0 and that Ly(B;+B,G*)<1. Then the sequences {y,}p; and {z;},; are
relatively compact in C[y, b]. '

Proof. As in the proof of Lemma 1, we obtain
1Zalltye < lZulltyay + M+ 2L yullpy 0 + Lallzullgyi- 815

i=0, 1,---,n. To estimate ||z,ll;,.; bY IIVullry;y We use arguments similar to
those in [7, 8]. Put i(0)=i and denote by i(v+1) the smallest integer such
that t;,)—0<tjy+1) v=0,1,---. Note that if h<J then i(v+1)<i(v), i=0,
1,---, K;—1, and i(v)=0 for v>K;, where K; is the smallest integer such that
K;[6/h]>i. Here [6/h] denotes the integer part of 6/h. For h<J5 we have
K[6/h]=2(b—a)[6/h]/6 >(b—a)h>i. Since K; is the smallest integer with this
property it follows that K; <K, i.e. K; can be bounded by a constant independent
of h. Asin [7, 8], after v< K, iterations we obtain

1zl < SO=D UG Nty M) + 28S(v—=DL | yullpyin + L3I zullty 0001+
Putting v=K; in this inequality gives
”Zh”[y,ti] < S(K) ”g’”[y,a] + S(K;— DM + 2S(Ki_1)L1”yh“[y,ti]
S Cik + Cik”yh”[y,ti]a

which is the desired estimate for |z,|,,;. From this point, proceeding as in
the proof of Lemma 1 we get [[yullp,5<Y*, |zl <Z* and |y, (f)—y, (1) <
G*[t—x| for t, e[y, b]. Denote by D*>L, a constant such that

(7 L,(1+G*(1+ A, + A,G*)) + L,D*(B, + B,G*) < D*.

The existence of such a constant is guaranteed by the condition L,(B; + B,G*)<1.
Assume that

|zi() — zi(D)| < D¥|t—1]

for t, e[y, t;]. Then, if h<4, in view of (7) we have
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|zy(t;+ ) — z(t)] < Ly(1+G*(1 + A; + A,G*))h + L,D*(B; + B,G*) < D*.

This proves that z,, heJ, are uniformly Lipschitz-continuous, and the Lemma
follows.

3. Existence and uniqueness

For any ¢ € C[y, b] and he J define ¢" and ¢" by

¢, tely, a),
P 1=
o), telt, tiiy);
and
¢(t)’ te[')), a)a
Prty: =14 4 4
{ pﬁilh—i ¢(tl)+ ! htl ¢(Zi+1)’ te[tia tH—l),

i=0, 1,---, n. We will use this notation in the proof of the following theorem.

Theorem 1. Assume that ()~(v) hold and that L,(1+ B, + B,G)<1, where G
is defined as above. Then the initial-value problem (1) has a solution y e C'-![y,
b]. This solution is unique in the space of continuously differentiable functions

C'[y, b].

Proof. We will first show existence. It follows from Lemma 1 that {y,},.;
and {z,},.,; defined by (2) are relatively compact in C[y, b]. Denote by {z,}ss
J'cJ, infJ'=0, any convergent subsequence of {z,},., with limit z, i.e. ||z,—
Z)liy07—0 as h—0, heJ'. 1t is clear that zeLip, [y, b]. We will show that
{V1}nes converges to the function y defined by

g(0), tely, al,
y(t) = { ¢
g(a) +J z(s)ds, tela, b],

and that y is a solution of our problem (1). Note that for t € [a, b]
zy(t) = Zj(1) = z"(1) + o(1)
and
yiu(D) = g(a) +J‘t zh(s)ds = g(a) +jt zM(s)ds + o(1).

Define
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740 = 9(@) + [ zy(s)ds.
Clearly, y,—y as h—0, heJ’. We have also
2O=Fi01 < | 124~ 25)lds + oD).
Hence, |y,— ¥ull;,57—0 as h—0, heJ'. Consequently
[ve=Ylye1 < 1Va—Vaullgypr + 17s— gy
which proves that y,—»y as h—0, heJ'. Forte[a, b] we have
0= | FGs, v, p)ds = g(@)
®) < [ 1", yi 20— F(s, 3, y)lds
<7 B + 7200, b,
where
10 1 = [ 1P,y 2= PG, 3, 91,
7200, 0) 1= [ 1FHGs, 30 )= FGs, 3, y)lds.
To estimate y,(y, h) note that
W= 5 7 IR 3 2) = F 3, y)lds
+ [ 1@ v 20—ty v, p)lds,
for te(t;, t;1{]- As in the proof of Lemma 1 we obtain

|F(t, yas z0) — F(t;, ¥, Y < (Li(2+GA)+LyDB)) ||y, — yllpys
+ Lz]lzh—yln[y,b]-

From this inequality it follows that y,(y, h)—0 as h—0, heJ'. It is also clear
that y,(y, h)—0 as h—0, heJ’, because the function s—F(s, y, y’) is continuous
(in particular Riemann integrable). Thus, in view of (8), y is a solution of (1).

Now we will show uniqueness. Assume that there is another solution je
Cl[y, b] of (1) and put u:=y—3j. Then u=0 on [y, a] and
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[u' ()] < |F(, y, y)—F(t, 7, 7)) < Ly[u(?)]
+ [ y(at, y()))— y(alt, FODI+ | y(et, F(0)))— F(et, FONI]
+ L [1y'(B(t, y(0)—y' (B, FONI+ 1y (B, F(0)—§ (B, FONI]
< (Li(2+GAy)+ L,DB;) [ullpaq + Lollt [l -

Hence,
" llpap3 < Wllttllpapp 5
where
W= (L,(2+GA,)+L,DB,)[(1—L,).

We also have
t
lu()] < j \FGs, y, v)—F(s, §, 7)lds
t t
< (Li@+GA)+ LoDBy) | ulguads + Lo [l asyds.

Hence,

t
oy < E [ [lausds,

where
By induction it follows that

e < EEO i,

for any t € [a, b] and any integer k>0 (compare also Lemma 2 in [9]). Conse-
quently, u=0 and y = j which is our claim.

If y<PB(t, y)<t—06 for some 6>0 we can relax the condition that L,<1,
and we have the following:

Theorem 2. Assume that (1)—(v) hold, y<fp(t, y)<t—0,6>0, for te[a, b],
and that Ly(B;+B,G*)<1, where G* is defined as above. Then problem (1)
has a solution y e C1:'[y, b]. This solution is unique in C'[y, b].

Proof. It follows from Lemma 2 that the modified Euler sequences {y,},c;
and {z,},., are relatively compact in C[y, b]. From this point the proof is similar
to that of Theorem 1.
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