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§1. Introduction

Let $R$ be the field of real numbers and $C$ be the field of complex numbers. For
a function $f:R¥times R¥rightarrow C$ we define the usual divided partial difference operators

$¥triangle x,t$
and

$y,¥triangle t$
by $(¥triangle x,tf)(x, y)=[f(x+t, y)-f(x, y)]/t$ and $(y,t¥triangle f)(x, y)=[f(x, y+t)-f(x, y)]/t$.

The difference functional equation

(1.1) $(¥triangle x,ty,tf)(x, y)=-i[(¥triangle f)(x, y)]$

may be considered as a discrete analogue of the Cauchy-Riemann partial differential
equation

$¥partial f/¥partial x=-i¥partial f/¥partial y$.

Equation (1.1) may be rewritten in the form

(1.2) $f(x+t, y)-f(x, y)=-i[f(x, t+y)-f(x, y)]$ ,

which has a simple geometric interpretation on the plane. Throughout this note we
denote by $M$ an arbitrary monoid (not necessarily commutative) with the unit
element 0. In a previous paper [1] we considered the above difference functional
equation (1.2) and proved the following theorem [1, Theorem 2, p. 99]:

Theorem 1.1. A function $f:M¥times M¥rightarrow C$ satisfies equation (1.2) for all $x$, $y$, $t¥in ¥mathrm{M}$

if and only if there exist an arbitrary homomorphism $¥phi$ from $M$ into the additive group
$C$ and an arbitrary complex constant $c$ such that $f(x, y)=¥phi(x)+i¥phi(y)+c$ for $alf$ $x$,
$y¥in M$.

In the above Theorem 1.1 we may impose the normarization $f(0,0)=0$ so that
the general solution of (1.2) is given by

(1.3) $f(x, y)=¥phi(x)+i¥phi(y)$
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for all $x$, $y¥in M$, since an arbitrary complex constant $c$ becomes 0. Here $t+y$ in
equation (1.2) instead of $y+t$ is awkward but saves the solution for noncommutative
monoids. If the monoid $M$ is commutative or at least $f(0, t+y)=f(0, y+t)$ , then
Theorem 1.1 remains valid with the equation

(1.4) $f(x+t, y)-f(x, y)=-i[f(x, y+t)-f(x, y)]$

instead of equation (1.2). In view of the natural form (1.4) and equation (1.2), J.
Aczel has raised the problem of determining the general solution of the difference
functional equation (1.4) instead of (1.2) when $M$ is an arbitrary monoid (not neces-
sarily commutative) with the unit element 0.

The aim of this note is to find the general solution of (1.4) for $f:M¥times M¥rightarrow C$.

In Section 2 we show that the general solution of (1.4) is also given by (1.3). Further,
it will be shown in Section 3 that an arbitrary homomorphism $¥phi$ of (1.3) is a unique
homomorphism from $M$ to $C$.

§2. The general solution of (1.4)

By splitting $f$ into real and imaginary parts $f(x, y)=u(x, y)+iu(x,y)$ equation
(1.4) implies the system

(2. 1) $u(x+t, y)-u(x, y)=v(x, y+t)-u(x, y)$

(2.2) $v(x+t, y)-v(x, y)=u(x, y)-u(x, y+t)$ .

Let $G$ be a commutative group where the equation $2a=b$ is solvable in $a$ .

Theorem 2.1. Two functions $u$ , $u;M¥times M¥rightarrow G$ satisfy the system (2.1) and (2.2)
with $u(0,0)=0$, $v(0,0)=0$ for $aff$ $x$, $y$, $t¥in M$ if and only if there exist two homo-
morphisms $¥alpha$ , $¥beta$ ; $M¥rightarrow G$ such that

(2.3) $u(x, y)=¥beta(x)-¥alpha(y)$

(2.4) $v(x, y)=¥alpha(x)+¥beta(y)$

for $aff$ $x$ , $y¥in M$.

Proof. Set $y=0$ in (2. 1) and (2.2) to obtain the equations

$u(x+t, ¥mathrm{O})-u(x, 0)=v(x, t)-v(x, 0)$, $v(x+t, ¥mathrm{O})-v(x, 0)=u(x, ¥mathrm{O})-u(x, t)$ .

Define new functions $¥alpha$ , $¥beta:M¥rightarrow G$ by $¥alpha(x)=u(x, 0)$ and $¥beta(x)=u(x, 0)$ for all $x¥in M$.

Then the above two equations become

(2.5) $v(x, t)=¥beta(x+t)-¥beta(x)+¥alpha(x)$

(2.6) $ u(x, t)=¥beta(x)+¥alpha(x)-¥alpha(x+t¥grave{)}¥cdot$
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Next, substitute (2.5) and (2.6) back into (2. 1) to obtain

$¥beta(x+t)+¥alpha(x+t)-¥alpha(x+t+y)-¥beta(x)-¥alpha(x)+¥alpha(x+y)=¥beta(x+y+t)-¥beta(x+y)$ ,

which, with $x=0$, implies

(2.7) $¥alpha(t+y)+¥beta(y+t)=¥alpha(t)+¥beta(t)+¥alpha(y)+¥beta(y)$.

Similarly, by substituting (2.5) and (2.6) into (2.2) and setting $x=0$ in the resulting
equation, we obtain

(2.8) $-¥alpha(y+t)+¥beta(t+y)=-¥alpha(t)-¥alpha(y)+¥beta(t)+¥beta(y)$.

Add (2.7) and (2.8) and subtract (2.8) from (2.7) to obtain two equations

(2.9) $¥alpha(t+y)-¥alpha(y+t)+¥beta(t+y)+¥beta(y+t)=2¥beta(t)+2¥beta(y)$

(2. 10) $¥alpha(t+y)+¥alpha(y+t)-¥beta(t+y)+¥beta(y+t)=2¥alpha(t)+2¥alpha(y)$.

Further, if we interchange $t$ and $y$ in (2.9), then

(2. 11) $¥alpha(y+t)-a(t+y)+¥beta(y+t)+¥beta(t+y)=2¥beta(y)+2¥beta(t)$ .

Moreover, by subtracting (2. 11) from (2.9) we have 2$¥alpha(t+y)=2¥alpha(y+t)$ and $¥alpha(t+y)$

$=¥alpha(y+t)$ for all $y$, $t¥in M$. By a similar way we also obtain $¥beta(t+y)=¥beta(y+t)$ for
all $y$, $t¥in M$. Therefore, (2.9) and (2.10) imply $¥alpha(y+t)=¥alpha(y)+¥alpha(t)$ and $¥beta(y+t)=$

$¥beta(y)+¥beta(t)$ for all $y$, $t¥in M$. Hence, (2.3) and (2.4) follows from (2.5) and (2.6), since
$¥alpha$ , $¥beta:M¥rightarrow C$ are homomorphisms.

Conversely, it is clear that functions defined by (2.3) and (2.4) satisfy both equa-
tions (2. 1) and (2.2). This completes the proof of Theorem 2. 1.

We now obtain the general solution of difference functional equation (1.4) as
follows.

Theorem 2.2. A function $f:M¥times M¥rightarrow C$ satisfies the equation

(1.4) $f(x+t, y)-f(x, y)=-i[f(x, y+t)-f(x, y)]$

for $aff$ $x$, $y$, $t¥in M$ with the normalization $f(0,0)=0$ if and only if there exists a homo-
morphism $¥phi:M¥rightarrow C$ such that

(1.3) $f(x, y)=¥phi(x)+i¥phi(y)$

for $aff$ $x$, $y¥in M$.

Proof. Let $G=C$. Then it follows from Theorem 2.1 that $f(x, y)=u(x, y)+$

$iu(x, y)=¥beta(x)+i¥alpha(x)+i(¥beta(y)+i¥alpha(y))=¥phi(x)+i¥phi(y)$ for all $x$, $y¥in M$, where a new
function $¥phi:M¥rightarrow C$ is defined by $¥phi(x)=¥beta(x)+i¥alpha(x)$ for all $x¥in M$. Thus (1.3) is
obtained from (2.3) and (2.4). The converse is clear.
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§3. Uniqueness of $¥phi$

Theorem 3.1. A function $f:M¥times M¥rightarrow C$ satisfies equation (1.4) for all $¥mathrm{x},¥mathrm{y}$, $t¥in M$

with $f(0,0)=0$ if and only if there exists a unique homomorphism $¥phi:M¥rightarrow C$ such that
the representation (1.3) holds for $aff$ $x$, $y¥in M$.

Proof. The existence of the form (1.3) immediately follows from the proof of
Theorem 2.2. So it only remains to show that $¥phi:M¥rightarrow C$ of (1.3) is unique. In order
to prove the uniqueness, it suffices to show that $¥phi(x)+i¥phi(y)=¥psi(x)+i¥psi(y)$ implies
$¥phi(x)=¥psi(x)$ for any homomorphism $¥psi:M¥rightarrow C$ and for all $x¥in M$. Now let $¥phi(x)=¥phi_{1}(x)$

$+i¥phi_{2}(x)$ and $¥psi(y)=¥psi_{1}(y)+i¥psi_{2}(y)$ where $¥phi_{1}$ , $¥phi_{2}$ , $¥psi_{1}$ and $¥psi_{2}$ are real-valued functions
for all $x$ , $y¥in M$. Then we have $¥phi_{1}(x)-¥phi_{2}(y)+i[¥phi_{1}(y)+¥phi_{2}(x)]=¥psi_{1}(x)-¥psi_{2}(y)¥dashv-$

$i[¥psi_{1}(y)+¥psi_{2}(x)]$ , which implies

(3.1) $¥phi_{1}(x)-¥phi_{2}(y)=¥psi_{1}(x)-¥psi_{2}(y)$

and $¥phi_{1}(y)+¥phi_{2}(x)=¥psi_{1}(y)+¥psi_{2}(x)$ for all $x$ , $y¥in M$. If $y$ and $x$ are interchanged in the
second equation, then we have

(3.2) $¥phi_{1}(x)+¥phi_{2}(y)=¥psi_{1}(x)+¥psi_{2}(y)$.

By adding (3.1) and (3.2) we obtain $¥phi_{1}(x)=¥psi_{1}(x)$ for all $x¥in M$, while by subtracting
(3.2) from (3.1) $¥phi_{2}(y)=¥psi_{2}(y)$ for all $y¥in M$. Hence, we have $¥phi(x)=¥psi(x)$ for all $x¥in M$.
Conversely, (1.3) always satisfies equation (1.4).

§4. Consequences

A consequence of equation (1.4), if $M$ is a group, is that $¥phi(x)=[f(x, y)+$

$f(x, -y)]/2$, so that (most) regularity conditions imposed upon $x¥rightarrow f(x, y_{0})(y_{0}¥in M$

fixed) inherit to $¥phi$ . If, for instance, $M=T$ is a topological group, then the homo-
morphism $¥phi:T¥rightarrow C$ will be continuous.

Corollary 4.1. A continuous function $f:T¥times T¥rightarrow C$ satisfies equation (1.4) for all
$x$, $y$ , $t¥in T$ will $f(0,0)=0$ ifand only if there exists a unique continuous homomorphism
$d)$ : $T¥rightarrow C$ such that (1.3) holds for $aff$ $x$, $y¥in T$.

Equation (1.4) can also be rewritten in the complex form

(4. 1) $f(z+t)-f(z)=-i[f(z+it)-f(z)]$

for all $z¥in C$ and $t¥in R$ , where $f(z):=f(x, y)$ and $f:C¥rightarrow C$ . In this case the general
solution of equation (4. 1) is represented in the complex form $f(z)=¥phi(¥mathrm{R}¥mathrm{e}z)+i¥phi(¥mathrm{I}¥mathrm{m}z)$

for all $z¥in C$.

Corollary 4.2. $7f$ a continuous function $f:C¥rightarrow C$ satisfies equation (4. 1) if $f(0)$

$=0$ for $aff$ $z¥in C$ and $t¥in R$ , then $f$ can be extended as an entire function.
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Proof, By Theorem 2.1 two functions $¥alpha$ , $¥beta:R¥rightarrow R$ are continuous homomor-
phisms, since $f=u+iu$ is continuous. By well-known theorems continuous homo-
morphisms $¥alpha$ and $¥beta$ are $C^{1}$ on $R$ . Hence, $u$ and $v$ are also $C^{1}$ on $R¥times R$ . If we
differentiate (2.1) and (2.2) with respect to $t$ for $t=0$, then we obtain the Cauchy-
Riemann equations. Hence, by $f¥in C^{1}$ in $C$, $f$ is an entire function.
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