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§1. Introduction

Let R be the field of real numbers and C be the field of complex numbers. For
a function f: R X R— C we define the usual divided partial difference operators A and

A by (Af) ¢, M =Lf(x+1, y)—f(x, )/t and (Af) (x, M=, y+t)—f(x y)]/t
The dlﬁ"erence functional equation

(L.1) (A ), y)= -—i[(yl} I, y)]

may be considered as a discrete analogue of the Cauchy-Riemann partial differential
equation

of/ox= —iadfloy.
Equation (1.1) may be rewritten in the form

(1.2) fG+1, ) —f(x, y)=—ilf(x, t+3)—f(x, »)],

which has a simple geometric interpretation on the plane. Throughout this note we
denote by A an arbitrary monoid (not necessarily commutative) with the unit
element 0. In a previous paper [1] we considered the above difference functional
equation (1.2) and proved the following theorem [1, Theorem 2, p. 99]:

Theorem 1.1. A function f: M X M—C satisfies equation (1.2) for all x, y, t € M
if and only if there exist an arbitrary homomorphism ¢ from M into the additive group
C and an arbitrary complex constant ¢ such that f(x, y)=¢(x)+ig¢(y)+c for all x,
ye M.

In the above Theorem 1.1 we may impose the normarization f(0, 0)=0 so that
the general solution of (1.2) is given by

(1.3) S, y)=¢(x)+ig(»)
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for all x, y e M, since an arbitrary complex constant ¢ becomes 0. Here t4y in
equation (1.2) instead of y+¢ is awkward but saves the solution for noncommutative
monoids. If the monoid M is commutative or at least f(0, £+y)=f(0, y+1¢), then
Theorem 1.1 remains valid with the equation

1.4 J+4 =[x, )= —ilf(x, y+1)—f(x, y)]

instead of equation (1.2). In view of the natural form (1.4) and equation (1.2), J.
Acz€l has raised the problem of determining the general solution of the difference
functional equation (1.4) instead of (1.2) when M is an arbitrary monoid (not neces-
sarily commutative) with the unit element 0.

The aim of this note is to find the general solution of (1.4) for f: M X M—C.
In Section 2 we show that the general solution of (1.4) is also given by (1.3). Further,
it will be shown in Section 3 that an arbitrary homomorphism ¢ of (1.3) is a unique
homomorphism from A to C.

§2. The general solution of (1.4)

By splitting f into real and imaginary parts f(x, y) =u(x, y)+iv(x, y) equation
(1.4) implies the system

2.1) u(x+1, y)—u(x, y)=uv(x, y+1)—v(x, y)
(2‘2) v(x+ta y)—U(.X', y):u(x9 y)—u(x, y+t)
Let G be a commutative group where the equation 2a=5 is solvable in a.

Theorem 2.1. Two functions u, v; M X M—G satisfy the system (2.1) and (2.2)
with u(0, 0)=0, v(0,0)=0 for all x,y,t e M if and only if there exist two homo-
morphisms «, B; M—G such that

(2.3) u(x, y)=p(x)—a(y)
(24 v(x, y)=a(x)+ p(»)
for all x,y e M.
Proof. Set y=0in (2.1) and (2.2) to obtain the equations
u(x+1, 0)—u(x, 0)=uv(x, t)—v(x, 0), v(x+1t, 0)—v(x, 0)=u(x, 0)—u(x, t).

Define new functions «, 8: M—G by a(x)=uv(x, 0) and p(x)=u(x, 0) for all x e M.
Then the above two equations become

2.5) u(x, t)=p(x+1t)— p(x)+ a(x)
(2.6) u(x, t)=px)+a(x) —a(x+1).
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Next, substitute (2.5) and (2.6) back into (2.1) to obtain

BG4 1)+ a(x4-1) — (x4 14-3) — ) — () + a(x + ) = B+ y+ 1) — Bx +),
which, with x=0, implies
2.7 a(t+y)+ p(y+1)=a)+ p)+a(»)+ ().

Similarly, by substituting (2.5) and (2.6) into (2.2) and setting x=0 in the resulting
equation, we obtain

(2.8) —a(y+1)+p+y)= —a(t) —a(y)+ B(t)+ B( ).

Add (2.7) and (2.8) and subtract (2.8) from (2.7) to obtain two equations
2.9) a(t+y)—a(y+1)+pE+y)+ f(y+1)=2p01)+28(»)
(2.10) a(t+y)+a(y+1)—pE+3)+ B(y+1) =2c(t) 4 2a(y).

Further, if we interchange ¢ and y in (2.9), then

(2.11) a(y+t)—a(t+y)+p(y+1)+ B+ ) =28(»)+25(t).

Moreover, by subtracting (2.11) from (2.9) we have 2a(¢-+y)=2a(y+41t) and a(t+y)
=a(y+1) forall y, te M. By asimilar way we also obtain p(z+y)=p(y+1) for
all y, e M. Therefore, (2.9) and (2.10) imply a(y+1)=a(y)+a(t) and B(y+1t)=
B(»)+ B(z) for all y, t e M. Hence, (2.3) and (2.4) follows from (2.5) and (2.6), since
«, B: M—C are homomorphisms.

Conversely, it is clear that functions defined by (2.3) and (2.4) satisfy both equa-
tions (2.1) and (2.2). This completes the proof of Theorem 2.1.

We now obtain the general solution of difference functional equation (1.4) as
follows.

Theorem 2.2. A function f: M X M— C satisfies the equation
1.4 S48, »)—f(x, »)=—ilf(x, y+1)—f(x, p)]

Jor all x, y, t € M with the normalization f(0, 0)=0 if and only if there exists a homo-
morphism ¢: M— C such that

(1.3) S, y)=¢(x)+ig(»)
forall x,ye M.

Proof. Let G=C. Then it follows from Theorem 2.1 that f(x, y)=u(x, y)+

iv(x, y)=px)+ia(x)+i(B(y)+ia(y)) = ¢(x)+ig(p) for all x, y e M, where a new
function ¢: M—C is defined by ¢(x)=p(x)+ia(x) for all xe M. Thus (1.3) is
obtained from (2.3) and (2.4). The converse is clear.
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§3. Uniqueness of ¢

Theorem 3.1. A function f: M X M—C satisfies equation (1.4) for all x,y,te M
with £(0, 0)=0 if and only if there exists a unique homomorphism ¢: M—C such that
the representation (1.3) holds for all x, y € M.

Proof. The existence of the form (1.3) immediately follows from the proof of
Theorem 2.2. So it only remains to show that ¢: M—C of (1.3) is unique. In order
to prove the uniqueness, it suffices to show that ¢(x)+i@(y) =(x)+iy(y) implies
#(x) =+-(x) for any homomorphism +: M—C and for all x € M. Now let ¢(x) =¢,(x)
+igy(x) and Y (¥)=(y)+iy,(y) where &, &, , and +r, are real-valued functions
for all x, ye M. Then we have $,(x)—@(»)+il$:()+ (0] = (%) — V() +
i[yr(»)+r(x)], which implies

(3.1 ¢1(x)_¢2(y):‘!’1(x) —ro(¥)

and ¢,(»)+ ¢.(x) =(»)+yu(x) for all x, ye M. If y and x are interchanged in the
second equation, then we have

(3.2) ¢1(x) +¢2(y):w1(x)+‘.b2(y)-

By adding (3.1) and (3.2) we obtain ¢,(x)=1,(x) for all x e M, while by subtracting
(3.2) from (3.1) ¢,(y)=+r(y) for all y e M. Hence, we have @(x)=+-(x) for all x e M.
Conversely, (1.3) always satisfies equation (1.4).

§4. Consequences

A consequence of equation (1.4), if M is a group, is that ¢(x)=[f(x, y)+
f(x, —»)]1/2, so that (most) regularity conditions imposed upon x —f(x, ¥,) (yoe M
fixed) inherit to ¢. If, for instance, M =T is a topological group, then the homo-
morphism ¢: T— C will be continuous.

Corollary 4.1. A continuous function f: T X T—C satisfies equation (1.4) for all
x, ¥, t € T with £(0, 0)=0 if and only if there exists a unique continuous homomorphism
¢: T—C such that (1.3) holds for all x, y e T.

Equation (1.4) can also be rewritten in the complex form

“4.D Je+1)—f@)=—ilflz+it)—f(2)]

for all ze C and t e R, where f(z):=f(x, y) and f: C—C. In this case the general
solution of equation (4.1) is represented in the complex form f(z) =¢(Re z)+ig(Im z)
for all ze C.

Corollary 4.2. If a continuous function f: C—C satisfies equation (4.1) with f(0)
=0 for all ze C and t € R, then f can be extended as an entire function.
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Proof. By Theorem 2.1 two functions &, 8: R—R are continuous homomor-
phisms, since f=u-iv is continuous. By well-known theorems continuous homo-
morphisms « and 8 are C' on R. Hence, u and v are also C' on RXR. If we
differentiate (2.1) and (2.2) with respect to ¢ for r=0, then we obtain the Cauchy-
Riemann equations. Hence, by fe C'in C, fis an entire function.
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