On the Dirichlet Problem with L^1-Boundary Data

By

J. H. CHABROWSKI
(The University of Queensland, Australia)

Introduction

This paper deals with the Dirichlet problem for the elliptic equation

\begin{equation}
Lu + \lambda u = - \sum_{i,j=1}^{n} D_i(a_{ij}(x)D_ju) + \sum_{i=1}^{n} b_i(x)D_iu + (c(x) + \lambda)u = 0
\end{equation}

in Q,

\begin{equation}
u(x) = \phi(x) \quad \text{on} \quad \partial Q,
\end{equation}

where Q is a bounded domain in \mathbb{R}^n, ∂Q denotes its boundary and λ is a real parameter. In recent years the Dirichlet problem with the boundary data in $L^p(\partial Q)$, $p > 1$, has been investigated by several authors. In particular V. P. Mikhailov [6], Chabrowski and Thompson [2] established the existence of a solution of (1), (2) with $\phi \in L^4(\partial Q)$. This result has been recently extended to $\phi \in L^p(\partial Q)$, $p > 1$, by Yu. A. Mikhailov [8]. The main purpose of this article is to prove the existence of a solution of (1), (2) with $\phi \in L^1(\partial Q)$.

The paper is organized as follows. The first two sections contain preliminary work. The main results here are lemmas 1 and 3. In particular, the results of these sections suggest the formulation of the Dirichlet problem adopted in this work. Section 3 is devoted to the discussion of the existence of a solution of the Dirichlet problem with L^1-boundary data. In section 4 we extend the above results to the Dirichlet problem for a non-homogeneous equation.

§ 1. Preliminaries

Let Q be a bounded domain in \mathbb{R}^n with the boundary ∂Q of class C^2. Let $x \in Q$, and let $r(x)$ denote the distance from x to the boundary ∂Q.

Throughout this article we make the following assumptions

(A) There exists a positive constant γ such that

$$\gamma^{-1} |\xi|^p \leq \sum_{i,j=1}^{n} a_{ij}(x)\xi_i \xi_j \leq \gamma |\xi|^p$$
for all \(x \in Q \) and \(\zeta \in R_n \). Moreover the coefficients \(a_{ij} \) are of class \(C^1(Q) \), \(a_{ij} = a_{ji} \) \((i, j = 1, \ldots, n)\).

(B) \(c, b_i \) and \(D_ib_i \) belong to \(L^\infty(Q) \) \((i = 1, \ldots, n)\).

A function \(u(x) \) is said to be a weak (generalized) solution of \((1)\) if \(u \in W^{1,2}_{\text{loc}}(Q) \) and \(u \) satisfies

\[
(3) \quad \int_Q \left[\sum_{i,j=1}^n a_{ij}(x)D_iuD_jv + \sum_{i=1}^n b_i(x)D_iv + (c(x) + \lambda)uv \right] \, dx = 0
\]

for every \(v \in W^{1,2}(Q) \) with compact support in \(Q \). Here \(W^{1,2}_{\text{loc}}(Q) \) and \(W^{1,4}(Q) \) denote the Sobolev spaces of functions on \(Q \) (for definition of these spaces, see [3]).

It follows from the regularity of the boundary \(\partial Q \) that there is a number \(\delta_0 > 0 \) such that for \(\delta \in (0, \delta_0] \) the domain \(Q_\delta = Q \cap \{ \, x; \, \min_{y \in \partial Q} |x-y| > \delta \, \} \), with the boundary \(\partial Q_\delta \), possesses the following property: to each \(x_0 \in \partial Q \) there is a unique point \(x_\delta(x_0) \in \partial Q_\delta \) such that \(x_\delta(x_0) = x_0 - \delta \nu(x_0) \), where \(\nu(x_0) \) is the outward normal to \(\partial Q \) at \(x_0 \). The above relation gives a one-to-one mapping, of class \(C^1 \), of \(\partial Q \) onto \(\partial Q_\delta \). The inverse mapping of \(x_0 \rightarrow x_\delta(x_0) \) is given by the formula \(x_\delta(x_0) = x_0 - \delta \nu(x_\delta) \), where \(\nu(x_\delta) \) is the outward normal to \(\partial Q_\delta \) at \(x_\delta \).

Let \(x_\delta \) denote an arbitrary point of \(\partial Q_\delta \). For fixed \(\delta \in (0, \delta_0] \) let

\[
A_\delta = \partial Q_\delta \cap \{ \, x; \, |x-x_\delta| < \delta \, \}, \\
B_\delta = \{ x; \, x = x_\delta + \delta \nu(x_\delta), \, x_\delta \in A_\delta \},
\]

and

\[
\frac{dS_\delta}{dS_0} = \lim_{\varepsilon \to 0} \frac{|A_\delta|}{|B_\delta|},
\]

where \(|A| \) denote the \(n-1 \) dimensional Hausdorff measure of a set \(A \). V.P. Mikhailov [6] proved that there is a positive number \(\gamma_0 \) such that

\[
(4) \quad \gamma_0^{-2} \leq \frac{dS_\delta}{dS_0} \leq \gamma_0
\]

and

\[
(5) \quad \lim_{\varepsilon \to 0} \frac{dS_\delta}{dS_0} = 1
\]

uniformly with respect to \(x_\delta \in \partial Q_\delta \).

According to Lemma 1 in [3] p. 382, the distance \(r(x) \) belongs to \(C^2(\overline{Q} - Q_\delta) \) if \(\delta_0 \) is sufficiently small. Denote by \(\rho(x) \) the extension of the function \(r(x) \) in \(\overline{Q} \) satisfying the following properties:

\[
\rho(x) = r(x) \quad \text{for} \quad x \in \overline{Q} - Q_\delta, \quad \rho \in C^2(\overline{Q}), \quad \rho(x) \geq \frac{3\delta_0}{4} \quad \text{in} \quad Q_\delta,
\]
On the Dirichlet Problem with L^1-Boundary Data

$t_i r(x) \leq \rho(x) \leq t_j r(x)$ in Q for some positive constant t_i, $\partial Q_\delta = \{x; \rho(x) = \delta\}$ for $\delta \in (0, \delta_0]$ and finally $\partial Q = \{x; \rho(x) = 0\}$.

In view of Theorem 6 in [2] there exists a positive constant λ_0 such that for every $\phi \in L^2(\partial Q)$ and $\lambda \geq \lambda_0$ the Dirichlet problem (1), (2) has a unique solution $u \in W_{1,2}^1(Q)$ such that

$$\int_Q |Du(x)|^2 r(x)dx + \int_Q u(x)^2 dx + \sup_{0 < \delta < d} \int_{\partial Q_\delta} u(x)^2 dS_x$$

$$\leq C \int_{\partial Q} \phi(x)^2 dS_x,$$

where C and d are positive constants. Here the boundary condition is understood in the sense of L^2-convergence, i.e.,

$$\lim_{\delta \to 0} \int_{\partial Q} [u(x, \delta(x)) - \phi(x)]^2 dS_x = 0.$$

Fix $x \in Q$ and let $B(x, r)$ be a ball centered at x, with radius r, contained in Q. By Corollary 5.2 in [9] there is a positive constant K such that

$$|u(y)| \leq K \left\{ r^{-n} \int_{B(x, r)} u(z)^2 dz \right\}^{1/2},$$

for $y \in B(x, r/2)$. Consequently by the Riesz representation theorem of a linear continuous functional on $L^2(\partial Q)$ we have

$$u(x) = \int_{\partial Q} K_i(x, y) \phi(y) dS_y,$$

where $K_i(x, \cdot) \in L^2(\partial Q)$. Since we may assume that $c(x) + \lambda_0 \geq 0$ on Q, the maximum principle yields $K_i(x, y) \geq 0$ for a.e. $x \in Q$ and $y \in \partial Q$. It follows from Fubini’s theorem that

$$\int_Q K_i(x, y) \left[- \sum_{i,j=1}^n D_i(a_{ij}(x) D_j \psi) - \sum_{i=1}^n D_i(b_i(x) \psi) + (c(x) + \lambda) \psi \right] dx = 0,$$

for all $\psi \in C^2_\partial(Q)$. Consequently, by Theorem 9.2 in [9], for a.e. $y \in \partial Q$, $K_i(\cdot, y)$ is a weak solution of (1) belonging to $W_{1,2}^1(Q)$. Now, by Harnack’s inequality, (see [9]), for every compact subset $K \subset Q$ there exists a positive constant $M(K)$ such that

$$K_i(x, y) \leq M(K)$$

for a.e. $x \in K$ and $y \in \partial Q$.

§ 2. Energy estimate and traces

We begin by establishing an estimate involving a norm of ϕ in $L^1(\partial Q)$ for a solution of (1), (2) with $\phi \in L^2(\partial Q)$.
Lemma 1. Let $\phi \in L^2(\partial Q)$. Then there exist positive constants λ_1 and d such that for $\lambda \geq \lambda_1$ the problem (1), (2) admits a unique solution $u \in W^{1,2}(Q)$ satisfying the estimate

\begin{equation}
\int_Q |Du|^2(u^2+1)^{-3/2}\rho dx + \lambda \int_Q |u|\rho dx + \sup_{0 < \delta < d} \int_{\partial Q_\delta} |u|dS_x \leq C \left[\int_{\partial Q} |\phi|dS_x + \lambda \int_Q (u^2+1)^{-1/2}dx + 1 \right],
\end{equation}

where C is a positive constant independent of u.

Proof. As we mentioned above there exists a unique solution u of (1), (2) in $W^{1,2}(Q)$ provided λ is sufficiently large, with the boundary condition understood in the sense of (7).

Let

$$v(x) = \begin{cases} u(x)(u^2+1)^{-1/2} \rho(x) & \text{for } x \in Q_\delta, \\ 0 & \text{for } x \in Q - Q_\delta, \end{cases}$$

where $0 < \delta < \delta_0$. It is clear that v is an admissible test function in (3) and consequently we obtain

\begin{equation}
\int_{Q_\delta} \sum_{i,j=1}^n a_{ij}D_iD_ju(u^2+1)^{-1/2}(\rho - \delta)dx + \int_{Q_\delta} \sum_{i,j=1}^n \sum_{i=1}^n b_{ij}D_iD_ju(u^2+1)^{-1/2}(\rho - \delta)dx = 0.
\end{equation}

Now observe that the sum of the first two integrals is equal to

$$\int_{Q_\delta} \sum_{i,j=1}^n a_{ij}D_iD_ju(u^2+1)^{-1/2}(\rho - \delta)dx.$$

Hence applying (A) and the Green formula we arrive at the inequality

\begin{equation}
\gamma^{-1} \int_{Q_\delta} |Du|^2(u^2+1)^{-3/2}(\rho - \delta)dx + \int_{Q_\delta} (c + \lambda)u^2(u^2+1)^{-1/2}(\rho - \delta)dx
\leq \int_{Q_\delta} \sum_{i,j=1}^n a_{ij}D_i\rho D_j\rho(u^2+1)^{1/2}dS_x + \int_{Q_\delta} \sum_{i,j=1}^n D_i(D_iD_j\rho)(u^2+1)^{1/2}dx
- \int_{Q_\delta} \sum_{i=1}^n D_i(b_i(\rho - \delta))(u^2+1)^{1/2} dx.
\end{equation}
On the Dirichlet Problem with L^1-Boundary Data

Since L^3-convergence yields L^1-convergence, letting $\delta \to 0$ in (11), we obtain

\begin{equation}
\int_Q |Du|^3(u^2+1)^{-3/2}\rho dx + \lambda \int_Q u^2(u^2+1)^{-1/2}\rho dx
\leq C_1 \left(\int_{\partial Q} |\phi| dS_x + \int_Q (u^2+1)^{1/2} dx + 1 \right),
\end{equation}

where C_1 is a positive constant independent of u. On the other hand again by the use of the Green formula we can deduce from (10) the following estimate

\begin{equation}
\int_{Q_\delta} (u^2+1)^{1/2} dS_x
\leq C_2 \left[\int_{Q_\delta} |Du|^3(u^2+1)^{-3/2}(\rho-\delta) dx + \lambda \int_{Q_\delta} u^2(u^2+1)^{-1/2}(\rho-\delta) dx + \int_{Q_\delta} (u^2+1)^{1/2} dx \right],
\end{equation}

Since

\begin{equation}
\int_Q u^2(u^2+1)^{-1/2}\rho dx = \int_Q (u^2+1)^{1/2}\rho dx - \int_Q (u^2+1)^{-1/2}\rho dx,
\end{equation}

combining (12) and (13) we obtain

\begin{equation}
\int_Q |Du|^3(u^2+1)^{-3/2}\rho dx + \lambda \int_Q (u^2+1)^{1/2}\rho dx + \int_{\partial Q_\delta} (u^2+1)^{1/2} dS_x
\leq C_3 \left[\int_{Q_\delta} |\phi| dS_x + \int_Q (u^2+1)^{1/2} dx + 1 \right] + \lambda \int_Q (u^2+1)^{-1/2}\rho dx,
\end{equation}

where C_3 is a positive constant. Now notice that for every $0<d \leq \delta_0$, we have

\begin{equation}
\int_Q (u^2+1)^{1/2} dx = \int_{Q_0+Q_\delta} (u^2+1)^{1/2} dx + \int_{Q_\delta} (u^2+1)^{1/2} dx
\leq d \sup_{0<\delta<d} \int_{Q_\delta} (u^2+1)^{1/2} dS_x + \frac{1}{d} \int_Q (u^2+1)^{1/2}\rho dx,
\end{equation}

consequently (9) follows from (14) provided λ_1 is sufficiently large and d sufficiently small.

To proceed further we need

Lemma 2. Suppose that $u \in W^{1,\infty}_{loc}(Q)$ and that $\int_Q |Du(x)|^3[u(x)^2+1]^{-3/2}r(x) dx < \infty$. Then we have for $\delta \in (0, \delta_0/2]$

\begin{equation}
\int_Q [u(x)^2+1]^{1/2} dx \leq K \left\{ \int_{Q_{\delta_0}} [u(x)^2+1]^{1/2} dx + \delta_0 \int_{\partial Q_{\delta_0}} [u(x)^2+1]^{1/2} dS_x
+ \delta_0 \int_{Q_{\delta_0}-Q_{\delta_0}} |Du(x)|^3[u(x)^2+1]^{-3/2}(\rho(x)-\delta) dx \right\},
\end{equation}
where K is a positive constant independent of δ.

Proof. Let $\delta \in (0, \frac{\delta_0}{2}]$ and put

$$
\int_{Q_2} (u^2 + 1)^{1/2} dx = \int_{Q_3 - Q_{\delta_0}} (u^2 + 1)^{1/2} dx + \int_{Q_{\delta_0}} (u^2 + 1)^{1/2} dx.
$$

We now note that

$$
\int_{Q_3 - Q_{\delta_0}} (u^2 + 1)^{1/2} dx = \int_0^{\delta_0} \int_{Q_\delta} (u(x_t(x_0))^2 + 1)^{1/2} dS_{\delta_t} dS_{\delta_0} dt
$$

$$
\leq \gamma_0^2 \int_0^{\delta_0} \Delta u(x_t(x_0))^2 + 1)^{1/2} dS_{\delta_0} dt.
$$

As $\int_{Q_\delta} (u(x_t(x)) + 1)^{1/2} dS_x$ is absolutely continuous on $[\delta, \delta_0]$ integrating by parts we get

$$
\int_{Q_3 - Q_{\delta_0}} (u^2 + 1)^{1/2} dx \leq \gamma_0^2 \int_{Q_\delta} (u(x_t(x_0))^2 + 1)^{1/2} dS_{\delta_0}
$$

$$
+ \gamma_0^2 \int_0^{\delta_0} \int_{Q_\delta} |Du(x_t(x_0))||u(x_t(x_0))|(u(x_t(x_0))^2 + 1)^{-1/2} \left| \frac{\partial}{\partial t} x_t(x_0) \right| dS_{\delta_0} dt
$$

$$
\leq \gamma_0^2 \int_0^{\delta_0} \int_{Q_\delta} (u^2 + 1)^{1/2} dS + \gamma_0^2 \int_{Q_3 - Q_{\delta_0}} (u^2 + 1)^{1/2} dx
$$

$$
+ \gamma_0^2 \int_0^{\delta_0} \int_{Q_\delta} |Du(x_t(x_0))|(u(x_t(x_0))^2 + 1)^{-1/2} (\rho(x) - \delta) dx
$$

$$
\leq \gamma_0^2 \int_0^{\delta_0} \int_{Q_\delta} (u^2 + 1)^{1/2} dS + \beta \gamma_0^2 \int_{Q_3 - Q_{\delta_0}} (u^2 + 1)^{1/2} dx
$$

$$
+ \gamma_0^2 \beta \int_0^{\delta_0} \int_{Q_\delta} |Du(x_t(x_0))|(u(x_t(x_0))^2 + 1)^{-3/2} (\rho - \delta) dx
$$

where we have used Young's inequality in the final step. Now choosing $\beta = \gamma_0^{-4}/2$ the result follows.

Lemma 3. Let u be a solution of (1) belonging to $W^{1,2}_{loc}(Q)$. Then the following conditions are equivalent

1. $\int_{Q_\delta} |u(x)| dS_x$ is bounded on $(0, \delta_0]$,
2. $\int_{Q} |Du(x)|^2 (u(x)^2 + 1)^{-3/2} r(x) dx < \infty$,
3. $\int_{Q} |u(x_t(x))| dS_x$ is continuous on $[0, \delta_0]$.

Proof. The proof is similar to that of Theorem 1 in [2] and therefore we only give an outline. It follows from (11) that

$$
\int_{\partial Q_\delta} |D_u|^3 (u^2 + 1)^{-3/2} (\rho - \delta) \, dx
\leq C \left[\int_{\partial Q_\delta} |u| \, dS_x + \int_{Q_\delta} |u| \, dx + \lambda \int_{Q_\delta} |u| (\rho - \delta) \, dx + 1 \right],
$$

where a positive constant C is independent of δ. On the other hand (I) yields $u \in L^1(Q)$ and "I⇒II" follows by the Monotone Convergence Theorem.

To prove "II⇒III" note that Lemma 2 implies

$$
\int_{\partial Q_\delta} \sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho (u^2 + 1)^{1/2} \, dS_x \leq C
$$

for $\delta \in (0, \delta_0/2]$, where a positive constant C is independent of δ. First we prove the continuity of

$$
\int_{\partial Q_\delta} \sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho (u^2 + 1)^{1/2} \, dS_x \quad \text{at } \delta = 0.
$$

It follows from the proof of Lemma 1 that

$$
\int_{\partial Q_\delta} \sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho (u^2 + 1)^{1/2} \, dS_x
= - \int_{\partial Q_\delta} \sum_{i,j=1}^n D_i(a_{ij} D_j \rho)(u^2 + 1)^{1/2} \, dx
- \int_{Q_\delta} \sum_{i=1}^n D_i(b_i (\rho - \delta))(u^2 + 1)^{1/2} \, dx + \int_{Q_\delta} (c + \lambda) u^2 (u^2 + 1)^{-1/2} \, dx
+ \int_{Q_\delta} \sum_{i,j=1}^n a_{ij} D_i u D_j u (u^2 + 1)^{-3/2} (\rho - \delta) \, dx.
$$

Thus

$$
\lim_{\delta \to 0} \int_{\partial Q_\delta} \sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho (u^2 + 1)^{1/2} \, dS_x
$$

exists by the Dominated Convergence Theorem. Since $\sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho$ is continuous on \bar{Q}, it follows that $\int_{\partial Q_\delta} |u| \, dS_x$ is continuous at $\delta = 0$.

It is clear that "II⇒III" follows from the relationship

$$
\int_{\partial Q_\delta} |u(x)| \, dS_x - \int_{\partial Q} |u(x_\delta(x))| \, dS_x = \int_{\partial Q} |u(x_\delta(x))| \left[\frac{dS_\delta}{dS_0} - 1 \right] \, dS,
$$

since $dS_\delta/dS_0 \to 1$ uniformly as $\delta \to 0$.
Lemma 4. Suppose that one of the conditions (I), (II) or (III) holds. Then there exists a Borel signed measure μ on ∂Q, with |μ| (∂Q) < ∞, such that

(15) \[\lim_{\delta \to 0} \int_{\partial Q} u(x_{\delta}(x))g(x)dS_{x} = \int_{\partial Q} g(x)\mu(dx) \quad \text{for every } g \in C(\partial Q). \]

It is clear that (15) holds for certain subsequence \(\delta_{n} \to 0 \). Now the proof of the existence of the limit (15) is identical to that of Theorem 3 in [2] and therefore is omitted.

§ 3. The Dirichlet problem

In view of Lemma 4 it is natural to formulate the Dirichlet problem in the following manner.

Let \(\phi \in L^{1}(\partial Q) \). A weak solution \(u \in W^{1,2}_{\text{loc}}(Q) \) of (1) is a solution of the Dirichlet problem with the boundary condition (2) if

(16) \[\lim_{\delta \to 0} \int_{\partial Q} u(x_{\delta}(x))g(x)dS_{x} = \int_{\partial Q} g(x)\phi(x)dS_{x} \]

for every \(g \in C(\partial Q) \).

Now we are in a position to prove the main result of this paper.

Theorem 1. Let \(\lambda \geq \lambda_{i} \). Then for every \(\phi \in L^{1}(\partial Q) \) there exists a unique solution \(u \in W^{1,2}_{\text{loc}}(Q) \) of the Dirichlet problem (1), (2).

Proof. Let \(\{\phi_{m}\} \) be a sequence of functions in \(L^{2}(\partial Q) \) converging in \(L^{2}(\partial Q) \) to the function \(\phi \). Let \(u_{m} \) be a solution of the Dirichlet problem

\[Lu - \lambda u = 0 \quad \text{in } Q, \]
\[u = \phi_{m} \quad \text{on } \partial Q, \]

in \(W^{1,2}_{\text{loc}}(Q) \) with the boundary condition understood in the sense of (7). Here we may assume that \(\lambda_{i} \) is sufficiently large that Theorem 6 in [2] on the existence of solution in \(W^{1,2}_{\text{loc}}(Q) \) is applicable. On the other hand

(17) \[u_{m}(x) = \int_{\partial Q} K_{i}(x, y)\phi_{m}(y)dS_{y} \quad \text{in } Q, \]

for \(m = 1, 2, \ldots \). By (8) for every compact subset \(K \) of \(Q \) there is a positive constant \(M(K) \) such that

(18) \[|u_{m}(x)| \leq M(K) \int_{\partial Q} |\phi_{m}(y)|dS_{y} \]

for all \(x \in K, m = 1, 2, \ldots \). Le:
On the Dirichlet Problem with L^1-Boundary Data

\[M_i = \sup_{m > 1} M(K) \int_{\partial Q} |\phi_m(y)| dS_y, \]
then it follows from (9) that there exists a positive constant C such that

\[(M_i^2 + 1)^{-\alpha} \int_{\partial Q} |Du_m|^\alpha \mu(dx) + \int_{\partial Q} |u_m| \mu(dx) \leq C \]

for all m. Consequently in view of (18) and (19) we may assume that there exists a function $u \in L^1(Q)$ with $D_i u \in L^1(Q)$ $(i = 1, \ldots, n)$ such that

\[\lim_{m \to \infty} u_m = u \quad \text{weak in} \]

and

\[\lim_{m \to \infty} D_i u_m = D_i u \quad (i = 1, \ldots, n) \text{ weakly} \]
in $L^1(K)$ for every compact subset K of Q. It is obvious that u is a weak solution of (1). By (20) u_m converges uniformly to u on every compact subset of Q. Hence

\[\int_{\partial Q} |Du|^\alpha (u^2 + 1)^{-\alpha/2} \mu(dx) < \infty. \]

It remains to prove that u satisfies the boundary condition (2) in the sense of (16). It follows from Lemma 4 that there exists a Borel signed measure μ on ∂Q, with $|\mu(\partial Q)| < \infty$, such that

\[\lim_{\varepsilon \to 0} \int_{\partial Q} u(x_\varepsilon(x)) g(x) dS_x = \int_{\partial Q} g(x) \mu(dx) \]

for every $g \in C(\partial Q)$. Note that integrating by parts we obtain a

\[\int_{\partial Q} \sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho \phi_m dS_x = - \int_{Q} u_m \sum_{i,j=1}^n D_i(a_{ij} D_j \rho \phi) dx \]

\[- \int_{Q} u_m \sum_{i,j=1}^n D_i(a_{ij} D_j \rho \phi) dx - \int_{Q} u_m \sum_{i=1}^n D_i(b_i \rho \phi) dx + \int_{Q} (c + \lambda)u_m \rho \phi dx \]

$m = 1, 2, \ldots$ and

\[\int_{\partial Q} \sum_{i,j=1}^n a_{ij} D_i \rho D_j \rho \phi \mu(dx) = - \int_{Q} u \sum_{i,j=1}^n D_i(a_{ij} D_j \phi \rho) dx \]

\[- \int_{Q} u \sum_{i,j=1}^n D_i(a_{ij} D_j \phi \rho) dx - \int_{Q} u \sum_{i=1}^n D_i(b_i \phi \rho) dx + \int_{Q} (c + \lambda)u \phi \rho dx \]

for all $\phi \in C^2(\overline{Q})$. Since $\lim_{m \to \infty} \phi_m = \phi$ in $L^1(\partial Q)$, (20) implies that $\int_{\partial Q} \phi \mu(dx) = \int_{\partial Q} \phi \phi dS_x$ for all $\phi \in C^2(\overline{Q})$ and by the Weierstrass theorem this identity holds for all
\(\Phi \in C(\partial Q) \). This identity together with (24) shows that \(u \) satisfies the boundary condition (16).

Under the assumptions of Lemma 1 we have the following estimate for a solution \(u \) of the problem (1), (2)

\[
\int_\Omega |u(x)| \, dx \leq \text{Const} \left[\int_{\partial \Omega} |\phi(x)| \, dS_x + 1 \right].
\]

This estimate can be slightly improved as follows

Theorem 2. Let \(\phi \in L^1(\partial Q) \). Then there exists a positive constant \(\lambda_0 \) such that for every \(\lambda \geq \lambda_0 \) there exists a unique solution \(u \in W^{1,2}_0(\Omega) \) to the problem (1), (2) satisfying the estimate

\[
\int_\Omega |u(x)| \, dx \leq C \int_{\partial \Omega} |\phi(x)| \, dS_x + 1,
\]

where \(C \) is a positive constant independent of \(u \).

Proof. First we assume that \(\phi \in L^2(\partial Q) \) and put

\[
v(x) = \begin{cases} u(x)(u(x) + \epsilon)^{-1/2}(\rho(x) - \delta) & \text{in } Q, \\ 0 & \text{in } Q - Q, \end{cases}
\]

where \(\epsilon > 0 \) and \(0 < \delta < \delta_0 \), then

\[
\int_{Q} \left[\sum_{i,j=1}^{n} a_{ij} D_i D_j u (u^2 + \epsilon)^{-1/2}(\rho - \delta) - \sum_{i,j=1}^{n} a_{ij} D_i D_j u \cdot u (u^2 + \epsilon)^{-3/2}(\rho - \delta) \\
+ \sum_{i=1}^{n} b_i D_i u \cdot u (u^2 + \epsilon)^{-1/2} \rho + \sum_{i=1}^{n} b_i D_i u \cdot u (u^2 + \epsilon)^{-1/2}(\rho - \delta) \\
+ \int_{Q} (c + \delta) u^2 (u^2 + \epsilon)^{-1/2}(\rho - \delta) \right] dx = 0.
\]

By Green's formula we deduce

\[
R^{-1} \epsilon \int_{Q_\delta} |Du|^2(u^2 + \epsilon)^{-3/2}(\rho - \delta) \, dx + \int_{Q_\delta} (c + \delta) u^2 (u^2 + \epsilon)^{-1/2}(\rho - \delta) \, dx \\ \leq C_1 \left[\int_{\partial Q_\delta} (u^2 + \epsilon)^{1/2} dS_x + \int_{Q_\delta} (u^2 + \epsilon)^{1/2} \, dx \right],
\]

where \(C_1 \) is a positive constant independent of \(\epsilon \) and \(\delta \). Letting \(\epsilon \to 0 \) and \(\delta \to 0 \) we obtain

\[
\int_\Omega \lambda |u| \, dx \leq C_2 \left[\int_{\partial \Omega} |\phi| \, dS_x + \int_\Omega |u| \, dx \right],
\]

where \(C_2 \) is a positive constant. Similarly there exists a positive constant \(C_3 \) such that
On the Dirichlet Problem with L^1-Boundary Data

(25) \[\sup_{\theta<\delta<d} \int_{\partial Q_\delta} |u| dS_x \leq C_3 \left[\lambda \int_Q |u| \rho dx + \int_Q |u| dx \right], \]

where $0 < d \leq \delta_0$. Combining (26) and (27) we get

\[\sup_{\theta<\delta<d} \int_{\partial Q_\delta} |u| dS_x + \lambda \int_Q |u| \rho dx \leq C_4 \left[\int_{\hat{a}Q} |\phi| dS_x + \int_Q |u| dx \right], \]

where C_4 is a positive constant. Applying the argument of the final step of the proof of Lemma 1 the result easily follows provided λ is sufficiently large and d sufficiently small and $\phi \in L^2(\partial Q)$. To complete the proof we take a sequence $\{\phi_m\}$ in $L^2(\partial Q)$ converging in $L^1(\partial Q)$ to ϕ. By what we have already proved the corresponding sequence of solutions $\{u_m\}$ to the problem (1), (2) (with $\phi = \phi_m$) satisfies the estimate (23) and moreover

\[\int_Q |u_p - u_q| dx \leq C \int_{\partial Q} |\phi_p - \phi_q| dS_x \]

for $p, q = 1, 2, \ldots$. Applying Theorem 1 the result easily follows.

§ 4. Non-homogeneous equation

In this section we assume that $c \geq 0$ on Q. In view of Theorem 9.1 in [9] for any signed Borel measure μ with bounded variation on Q there exists a unique solution u of the equation

(1') \[Lu = \mu \]

in $\tilde{W}^{1,p}(Q)$ for every $p < n/(n-1)$.

Theorem 3. Let $\phi \in L^1(\partial Q)$ and let μ be a Borel signed measure of bounded variation on Q. Then there exists a unique solution u of (1') (2) in $W^{1,2}_{0}(Q) + \tilde{W}^{1,p}(Q)$ for any $p < n/(n-1)$.

Proof. It follows from Theorem 1 that if λ_0 is sufficiently large then the Dirichlet problem

\[Lu_0 + \lambda_0 u_0 = 0 \quad \text{in} \ Q, \]

\[u_0 = \phi \quad \text{on} \ \partial Q, \]

has a unique solution $u_0 \in W^{1,2}_{0}(Q)$ satisfying the estimates (9) and (23). On the other hand the Dirichlet problem

(26) \[Lw = \lambda_0 u_0 + \mu \quad \text{in} \ Q, \]

(27) \[w = 0 \quad \text{on} \ \partial Q, \]
has a unique solution in \(\dot{W}^{1,p}(Q) \), \(p < n/(n-1) \) (see [9], Theorem 9.1). The function \(w + u_0 \) is a unique solution of (1), (2) in \(W^{1,\infty}_{\text{loc}}(Q) + \dot{W}^{1,p}(Q) \) for any \(p < n/(n-1) \).

Remark. Given a signed Borel measure \(\nu \) of bounded variation on \(\partial Q \), one can construct a sequence \(\{\phi_m\} \) in \(L^1(\partial Q) \) such that \(\lim_{m \to \infty} \int_{\partial Q} \phi_m(x) g(x) d\nu = \int_{\partial Q} g(x) \nu(dx) \) for every \(g \in C(\partial Q) \) and \(\sup_{m \geq 1} \int_{\partial Q} |\phi_m(x)| dS_x < \infty \) (see [4], p. 296–297).

Therefore we can solve the Dirichlet problem for (1') with the boundary condition

\[
(28) \quad u = \nu \quad \text{on} \quad \partial Q
\]

where \(\mu \) and \(\nu \) are signed Borel measures of bounded variation on \(Q \) and \(\partial Q \) respectively. Indeed, we first solve the Dirichlet problem

\[
Lu_0 + \lambda_0 u_0 = 0 \quad \text{in} \quad Q, \quad u_0 = \nu \quad \text{on} \quad \partial Q,
\]

provided \(\lambda_0 \) is sufficiently large. A solution \(u_0 \) is obtained as a limit of solutions \(u_m \) of the Dirichlet problem

\[
Lu_m + \lambda_0 u_m = 0 \quad \text{in} \quad Q, \quad u_m = \phi_m \quad \text{on} \quad \partial Q,
\]

(see the proof of Theorem 1). The function \(u_0 + w \), where \(w \) is a solution of (26), (27), is a solution in \(W^{1,\infty}_{\text{loc}}(Q) + \dot{W}^{1,p}(Q) \), \(p < n/(n-1) \), of (1'), (28). Here the boundary condition is understood in the sense of a weak convergence (see (16)).

References

nunaadero:
The University of Queensland,
Department of Mathematics,
St. Lucia. 4067. Queensland.
Australia.

(Ricevita la 8-an de majo, 1984)
(Reviziita la 16-an de januaro, 1985)