The Baire Category Method in Existence Problems for a Class of Multivalued Differential Equations with Nonconvex Right Hand Side

By

F. S. DE BLASI and G. PIANIGIANI (Università degli Studi, Italy)

§ 1. Introduction

In this paper we present some results on the existence of solutions to the Cauchy problem

(1.1)
$$\dot{x} \in F(t, x), \quad x(t_0) = x_0, \quad \left(\cdot = \frac{d}{dt} \right)$$

for multivalued differential equations in a Banach space X. When X is infinite dimensional, most existence theorems for (1.1) have been obtained under some compactness hypothesis on F ([2] [4] [5] [18] [22]). In this note the existence of solutions to the Cauchy problem (1.1) will be established (see Theorem 2.4) under a somehow opposite assumption on F. In fact we shall suppose (among other things) that F be such that the closed convex hull of F(t, x) have non empty interior.

Let us briefly describe the method of the proof. We associate with (1.1) the Cauchy problem

$$\dot{x} \in \overline{\operatorname{co}} F(t, x), \qquad x(t_0) = x_0$$

and consider a well defined nonempty set \mathcal{M} of solutions of (1.2), which is complete under the metric of the uniform convergence. Then we show that the set \mathcal{M}_F of all $x \in \mathcal{M}$ which are solutions of (1.1) is residual in \mathcal{M} , that is its complement $\mathcal{M} \setminus \mathcal{M}_F$ is of the Baire first category in \mathcal{M} . Since \mathcal{M} is complete, it follows that \mathcal{M}_F is dense in \mathcal{M} . Hence \mathcal{M}_F is nonempty and the Cauchy problem (1.1) has solutions.

The above approach has already been used in [3] [6] to study the structure of the solution set of (1.1). In [6] the existence follows as a corollary; incidentally we observe that in [6], because of the regularity of F, the existence could be proved directly, without appeal to the Baire category method.

Evidently, (1.1) has solution if F admits a continuous selection f, for which the Cauchy problem $\dot{x} = f(t, x)$, $x(t_0) = x_0$ have solutions. This is just what occurs in [6]. On the contrary, under the hypotheses of Theorem 2.4, F might have no con-

tinuous selection at all [14, Example 31] or, if F admits a continuous selection f, the Cauchy problem $\dot{x} = f(t, x)$, $x(t_0) = x_0$, might fail to have solutions. By Godunov's theorem [12] this is possible when X is infinite dimensional.

To focus this point, we construct (see Theorem 2.5) a singular multifunction F given by $F(t, x) = \bigcup_{i=1}^{\infty} f_i(t, x)$ (where the functions f_i are continuous and, at each point, assume mutually different values) satisfying the assumptions of our existence theorem; yet the set of all continuous selections of F is exactly $\{f_i | i=1, 2, \dots\}$ and, for each such f_i , the Cauchy problem $x = f_i(t, x), x(t_0) = x_0$ has no solution.

We wish to point out that, under the hypotheses of Theorem 2.4, the existence of solutions to the Cauchy problem (1.1) is a new result, only when X is infinite dimensional. If x is finite dimensional, the existence of solutions to (1.1) has been proved by Filippov [11] (see also [1] [10] [17] [19]) under more general hypotheses on F.

§ 2. Notations and main results

Throughout this paper X denotes a real (infinite dimensional) reflexive Banach space. Additional hypotheses on X will be stated where necessary. Denote by \mathscr{K} (resp. \mathscr{B}) the space of all nonempty subsets of X which are closed and bounded (resp. closed bounded and convex with nonempty interior). \mathscr{K} (in particular \mathscr{B}) is endowed with the Hausdorff distance

$$h(A, B) = \inf\{r > 0 \mid A \subset B + rS, B \subset A + rS\},\$$

where $A, B \in \mathcal{K}$ and $S = \{x \in X | |x| < 1\}$. Also, set $e(u, A) = \inf \{r > 0 | u \in A + rS\}$, where $u \in X$ and $A \subset X$ is nonempty.

Let us introduce some notations of frequent use. Let A be a subset of a normed space Y. We denote by \overline{A} , int A, ∂A , $\operatorname{co} A$, $\operatorname{co} A$, respectively, the closure, the interior, the boundary, the convex hull, the closed convex hull of A. If A is nonempty, diam A satisfies for the diameter of A. By $S(y_0, d)$ (resp. $\overline{S}(y_0, d)$), we mean the open (resp. closed) ball in Y with center y_0 and radius d > 0. For notational convenience we put S = S(0, 1), $\overline{S} = S(0, 1)$. For any (Lebesgue) measurable set $J \subset R$, we denote by χ_J the characteristic function of J. In $R \times X$ we introduce the norm $|(t, x)| = \max\{|t|, |x|\}$. With such norm $R \times X$ is a Banach space.

Let D be a nonempty open set contained in $\mathbb{R} \times X$. Let $F: D \rightarrow \mathcal{K}$ be a multifunction satisfying the hypotheses:

- (i) F is Hausdorff continuous and such that $\overline{\operatorname{co}} F(t, x) \in \mathcal{B}$, for each $(t, x) \in D$;
- (ii) there exists a Hausdorff continuous multifunction $U: D \rightarrow \mathcal{B}$ such that $\partial U(t, x) \cap \overline{\operatorname{co}} F(t, x) = F(t, x)$, for each $(t, x) \in D$.

Fix $(t_0, x_0) \in D$ and consider the Cauchy problem (1.1). Since we are interested in local solutions of (1.1), and F is Hausdorff continuous, we assume without loss of

generality that F satisfies also the following hypothesis:

(iii) there exist positive constants a, R, and M such that h(F(t, x), 0) < M for each $(t, x) \in D_2$ where $D_2 = \{t \in R | |t - t_0| < 2a\} \times \{x \in X | |x - x_0| < 2R\}$.

Since $U: D \to \mathcal{B}^2$ Hausdorff continuous implies that $\partial U: D \to \mathcal{K}$ is Hausdorff continuous (see [7]), the assumptions (i)-(iii) are certainly satisfied if we take $F(t, x) = \partial U(t, x)$, $(t, x) \in D$. This special case has been considered in [6].

By a solution of (1.1) (resp. (1.2)) we mean a function $x: I \to X$, where $I = [t_0 - T, t_0 + T]$, T > 0, which is Lipschitzean (hence x admits derivative a.e., since X is reflexive), and satisfies (1.1) (resp. (1.2)) a.e.. By a polygonal solution of (1.2) we mean a solution of (1.2) which has the following property: there exists a countable family $\{I_q\}$ of nonempty pairwise disjoint open intervals $I_q \subset I$ such that in $m(I \setminus \bigcup_q I_q) = 0$ (m denotes the Lebesgue measure in R) and, moreover, x is constant on each interval I_q and satisfies $x(t) \in \overline{\operatorname{co}} F(t, x(t))$ for every $t \in \bigcup_q I_q$.

Let F satisfies (i)-(iii). For notational convenience we introduce the multifunction $G: D \rightarrow \mathcal{B}$ defined by

$$G(t, x) = \overline{\operatorname{co}} F(t, x)$$
 for each $(t, x) \in D$.

Observe that from (ii) it follows $F(t, x) \subset \partial U(t, x)$ and so $G(t, x) \subset U(t, x)$, $(t, x) \in D$. Evidently G is Hausdorff continuous and satisfies h(G(t, x), 0) < M for each $(t, x) \in D_2$. Then, as in [6, proof of Proposition 2.1], it can be shown that (1.2) has polygonal solutions which are defined on $I = [t_0 - T, t_0 + T]$ where $0 < T < \min\{a, R/M\}$.

First of all we shall construct a nonempty set \mathcal{M} of solutions of (1.2) which is complete under the metric of the uniform convergence. Next we shall show that the set \mathcal{M}_F consisting of all $x \in \mathcal{M}$ which are solutions of (1.1) is residual in \mathcal{M} . Since \mathcal{M} is complete, it follows that \mathcal{M}_F is dense in \mathcal{M} , thus \mathcal{M}_F is nonempty and (1.1) has solutions.

Let $f: D \rightarrow X$ be a continuous function such that $f(t, x) \in \text{int } G(t, x)$, $(t, x) \in D$. The existence of such an f is ensured, for example, by [7, Remark 3.10].

For each $(t, x) \in D$ and $0 \le r \le 1$ we set

$$G_r(t, x) = f(t, x) + r[G(t, x) - f(t, x)].$$

If $0 \le r \le 1$ we have $G_r(t, x) \in \mathcal{B}$. Moreover, $(t, x) \mapsto G_r(t, x)$ is Hausdorff continuous from D to \mathcal{B} . Also observe that $0 \le r' < r'' \le 1$ implies $G_{r'}(t, x) \subset G_{r''}(t, x) \in G(t, x)$, $(t, x) \in D$.

Let $\{r_k\}$ be a strictly increasing sequence of numbers $0 < r_k < 1$ $(k=0, 1, 2, \cdots)$ converging to 1. For each $k \in \mathbb{N}$, let \mathscr{V}_{r_k} be the set of all polygonal solutions to the Cauchy problem

(2.1)
$$\dot{x} \in \text{int } G_{r_k}(t, x), \qquad x(t_0) = x_0,$$

which are defined on $I = [t_0 - T, t_0 + T]$ (where $0 < T < \min \{a, R/M\}$). Clearly each $x \in \mathscr{V}_{r_k}$ is solution to (1.2) and we have $\mathscr{V}_{r_1} \subset \mathscr{V}_{r_2} \subset \cdots$. By [6, Proof of Proposition 2.1] for each $k \in N$ the Cauchy problem $\dot{x} \in G_{r_{k-1}}(t, x)$, $x(t_0) = x_0$ has a polygonal solution x defined on I. Since $G_{r_{k-1}}(t, x) \subset \inf G_{r_k}(t, x)$, $(t, x) \in D$, it follows that $x \in \mathscr{V}_{r_k}$, that is for each $k \in N$ the set \mathscr{V}_{r_k} is nonempty. Define

$$\mathcal{M} = \bigcup_{k=1}^{\infty} \mathscr{V}_{r_k},$$

where the closure of the set on the right is taken in C(I, X) (with the metric of the uniform convergence). As in [6, Proposition 2.1], under our assumptions (X reflexive and $G: D \to \mathcal{B}$ Hausdorff continuous), it follows that each $x \in \mathcal{M}$ is also a solution of (1.2). Hence \mathcal{M} is a (nonempty) closed subset of C(I, X) consisting of solutions of (1.2), thus \mathcal{M} is a complete metric space under the metric of the uniform convergence.

For each $u \in X$, (t, x) and $(t_1, x_1) \in D$ we set

$$(2.2) ||u-f(t_1,x_1)||_{H(t,x)} = \inf\{r > 0 \mid u-f(t_1,x_1) \in rH(t,x)\},$$

where

$$H(t, x) = U(t, x) - f(t, x)$$
.

This definition is meaningful for the origin is an interior point of H(t, x). Furthermore, for each $(t, x) \in D$ and $0 \le r \le 1$, we put

$$U_r(t, x) = f(t, x) + r[U(t, x) - f(t, x)].$$

Let $\rho(t, x) = \sup \{s > 0 \mid \overline{S}(f(t, x), s) \subset G(t, x)\}$, $(t, x) \in D$. Since $f(t, x) \in \inf G(t, x)$, $\rho(t, x)$ is well defined and positive. Observe that $\rho(t, x)$ (resp. $U_r(t, x)$, H(t, x)) is continuous (resp. Hausdorff continuous) as function of $(t, x) \in D$.

Proposition 2.1. Let $u, u_i, v \in X$ and $(t, x), (t_i, x_i) \in D$ $(i=1, 2, \dots, k)$. We have

- (a₁) $||u-f(t_1,x_1)||_{H(t_1,x)}=0$ if and only if $u=f(t_1,x_1)$.
- (a₂) $\|\mu[u-f(t_1,x_1)]\|_{H(t_1,x)} = \mu\|u-f(t_1,x_1)\|_{H(t_1,x)}$ $(\mu \ge 0)$.

(a₃)
$$\left\| \sum_{i=1}^k \mu_i [u_i - f(t_i, x_i)] \right\|_{H(t,x)} \le \sum_{i=1}^k \mu_i \|u_i - f(t_i, x_i)\|_{H(t,x)} \left(\sum_{i=1}^k \mu_i = 1, \mu_i \ge 0 \right).$$

(a₄) $||u-f(t,x)||_{H(t,x)}=1$ if and only if $u \in \partial U(t,x)$.

$$(a_5) \quad \|u - f(t_1, x_1)\|_{H(t, x)} - \frac{|v|}{\rho(t, x)} \le \|u + v - f(t_1, x_1)\|_{H(t, x)}$$

$$\le \|u - f(t_1, x_1)\|_{H(t, x)} + \frac{|v|}{\rho(t, x)}.$$

- (a₆) Let $H(t, x) \supset \theta \overline{S}$, $\theta > 0$. Then we have $\|u f(t_1, x_1)\|_{H(t_1, x_1)} [1 + \theta^{-1}h(H(t, x), H(t_1, x_1))].$
- (a₇) Let $H(t, x) \supset \theta \bar{S}$, $\theta > 0$. Then we have $||u f(t_1, x_1)||_{H(t_1, x)} \leq \theta^{-1} |u f(t_1, x_1)|$.

Proposition 2.2. If $x: I \rightarrow X$ is continuous and $z: I \rightarrow X$ (Bochner) measurable and bounded, then $||z(t) - f(t, x(t))||_{H(t, x(t))}$ is a measurable and bounded function of $t \in I$.

For each $0 < \sigma < 1$ define

$$\mathcal{M}_{\sigma} = \Big\{ x \in \mathcal{M} \, \Big| \frac{1}{|I|} \int_{I} \|\dot{x}(t) - f(t, \, x(t))\|_{H(t, \, x(t))} dt > \sigma \Big\},$$

where |I|=2T. Under our hypotheses the integral makes sense by virtue of Proposition 2.2.

Theorem 2.3. Let X be a real reflexive Banach space. Let D, \mathcal{K} be as above and suppose that $F: D \rightarrow \mathcal{K}$ satisfies (i)–(iii). Then, for every $0 < \sigma < 1$, the set \mathcal{M}_{σ} is open and desne in \mathcal{M} .

By means of Theorem 2.3 we can prove our main result, that is the Cauchy problem (1.1) has solutions if $F: D \to \mathcal{H}$ satisfies (i)-(iii). In fact, denote by \mathcal{M}_F the set of all $x \in \mathcal{M}$ which are solutions of (1.1). Let $\{\sigma_k\}$ ($0 < \sigma_k < 1$, $k \in \mathbb{N}$) be a strictly increasing sequence converging to 1. Since \mathcal{M}_{σ_k} is open and dense in the nonempty complete metric space \mathcal{M} , the set

$$\mathcal{M}^* = \bigcap_{k=1}^{\infty} \mathcal{M}_{\sigma_k}$$

is residual in \mathcal{M} . Hence \mathcal{M}^* is dense in \mathcal{M} and, in particular, \mathcal{M}^* is nonempty. We claim that $\mathcal{M}^* = \mathcal{M}_F$. Let $x \in \mathcal{M}^*$. Clearly, $\dot{x}(t) \in G(t, x(t))$ a.e. in I and so

$$\dot{x}(t) - f(t, x(t)) \in G(t, x(t)) - f(t, x(t)) \subset U(t, x(t)) - f(t, x(t)) = H(t, x(t)).$$

This implies that $b(t) \le 1$ a.e. in I, where $b(t) = ||\dot{x}(t) - f(t, x(t))||_{H(t, x(t))}$. On the other hand

$$\frac{1}{|I|}\int_{I}b(t)\ dt\geq 1,$$

since $x \in \mathcal{M}_{\sigma_k}$ for each $k \in N$. Consequently, b(t) = 1 a.e. in I, and so by Proposition 2.1 (a_4) , $\dot{x}(t) \in \partial U(t, x(t))$. By virtue of hypothesis (ii) we can conclude that x is a solution to (1.1), that is $x \in \mathcal{M}_F$. Conversely, in view of (ii), each $x \in \mathcal{M}_F$ satisfies $\dot{x}(t) \in \partial U(t, x(t))$ and hence, by Proposition 2.1 (a_4) b(t) = 1 a.e. in I. Thus $x \in \mathcal{M}_{\sigma_k}$, for each $k \in N$, that is $x \in \mathcal{M}^*$. Therefore $\mathcal{M}_F = \mathcal{M}^*$. We have proved the following

Theorem 2.4. Let X be a real reflexive Banach space. Let D, \mathcal{K} and \mathcal{M} be as above and suppose that $F: D \rightarrow \mathcal{K}$ satisfies (i)–(iii). Then the set of all $x \in \mathcal{M}$ which satisfy (1.1) is a residual subset of \mathcal{M} . In particular \mathcal{M}_F is nonempty and the Cauchy problem (1.1) has solutions.

Let $f: \mathbb{R} \times X \to X$ be continuous. By a solution of the Cauchy problem

(2.3)
$$\dot{x} = f(x, t), \quad x(t_0) = u$$

 $(u \in X)$ we mean a continuously differentiable function $x: I_c \to X$, $I_c = (t_0 - c, t_0 + c)$, c > 0, satisfying (2.3) for each $t \in I_c$.

We are going to show that there exist multifunctions $F: \mathbb{R} \times X \to \mathcal{K}$ satisfying the hypotheses of Theorem 2.4 (thus the Cauchy problem (1.1) has solutions) while, for each continuous selection f of F, the Cauchy problem (2.3) has no solution.

In the following theorem X stands for the real infinite dimensional Hilbert space 1_2 and, accordingly, the spaces \mathcal{K} and \mathcal{B} are supposed to consist of subsets of 1_2 .

Theorem 2.5. There exists a Hausdorff continuous multifunction $F: \mathbb{R} \times X \to \mathcal{K}$ $(X=1_2)$ satisfying the following properties: (j) $\overline{\operatorname{co}} F(t,x) \in \mathcal{B}$ for each $(t,x) \in \mathbb{R} \times X$; (jj) there exists a Hausdorff continuous multifunction $U: \mathbb{R} \times X \to \mathcal{B}$ such that $\partial U(t,x) \cap \overline{\operatorname{co}} F(t,x) = F(t,x)$ for each $(t,x) \in \mathbb{R} \times X$; (jy) the set $\{f_i\}$ of all continuous selections f_i of F is denumerable; (v) for each $i \in \mathbb{N}$ and u in a neighborhood of the origin (depending on i) the Cauchy problem

$$\dot{x} = f_i(t, x), \qquad x(0) = u,$$

has no solution; (vj) the Cauchy problem

$$\dot{x} \in F(t, x), \qquad x(0) = x_0,$$

has solutions for each $x_0 \in X$.

§ 3. Proof of Propositions 2.1 and 2.2

Proof of Proposition 2.1. The statements (a_1) and (a_2) follow easily from the definition (2.2).

(a₃) Let $\varepsilon > 0$. For each $i = 1, 2, \dots, k$, put $b_i = ||u_i - f(t_i, x_i)||_{H(t, x)}$ and let $b_i \le r_i < b_i + \varepsilon$ be such that $u_i - f(t_i, x_i) \in r_i H(t, x)$. Hence

$$\textstyle\sum_{i=1}^k \mu_i[u_i - f(t_i,\,x_i)] \in \left(\sum_{i=1}^k \mu_i r_i\right) H(t,\,x),$$

from which

$$\left\| \sum_{i=1}^{k} \mu_{i} [u_{i} - f(t_{i}, x_{i})] \right\|_{H(t,x)} \leq \sum_{i=1}^{k} \mu_{i} r_{i} < \sum_{i=1}^{k} \mu_{i} b_{i} + \varepsilon$$

follows. Since $\varepsilon > 0$ is arbitrary, (a_3) is true.

- (a₄) Suppose $u \in \partial U(t, x)$. We have $u-f(t, x) \in U(t, x)-f(t, x)=H(t, x)$, thus $b \le 1$ where $b = \|u-f(t, x)\|_{H(t, x)}$. Assume b < 1. Then, for some $b \le r < 1$, we have $u-f(t, x) \in rH(t, x)$ and hence, $u-f(t, x)+(1-r)H(t, x) \subset H(t, x)$. Since the origin is in the interior of H(t, x), there is a $\theta > 0$ such that $\theta S \subset (1-r)H(t, x)$ and so $u-f(t, x)+\theta S \subset H(t, x)$. Therefore $u+\theta S \subset H(t, x)+f(t, x)=U(t, x)$, a contradiction. Hence b=1. Conversely, let b=1. Suppose that $u \in \text{int } U(t, x)$, that is $u+\theta S \subset U(t, x)$ for some $\theta > 0$. Let 1 < r < 2 be such that $(r-1)H(t, x) \subset \theta S$. We have $u-f(t, x)+(r-1)H(t, x) \subset u+\theta S-f(t, x) \subset U(t, x)-f(t, x)=H(t, x)$, that is $u-f(t, x)+(r-1)H(t, x) \subset (2-r)H(t, x)+(r-1)H(t, x)$ and, by Rådström's cancellation rule [21], $u-f(t, x) \in (2-r)H(t, x)$. This implies $b \le 2-r$, that is $r \le 1$, a contradiction. Now suppose $u \in \text{int } (X \setminus U(t, x))$. Since b=1 there is a sequence $\{s_k\}$ $\{s_k > 1\}$ converging to 1, such that $u-f(t, x) \in s_kH(t, x)$, $k \in N$. It follows $u-f(t, x) \in H(t, x)+(s_k-1)H(t, x)$ and so $u \in U(t, x)+(s_k-1)H(t, x)$. Letting $k \to +\infty$, a contradiction follows. Therefore $u \in \partial U(t, x)$.
- (a₅) Let $\varepsilon > 0$. Let $b = ||u f(t_1, x_1)||_{H(t, x)}$. There is $b \le r < b + \varepsilon$ such that $u f(t_1, x_1) \in rH(t, x)$. Since $\rho(t, x) \overline{S} \subset H(t, x)$, we have $v \in (|v|/\rho(t, x))\rho(t, x) \overline{S} \subset (|v|/\rho(t, x))H(t, x)$, thus

$$u-f(t_1, x_1)+v \in rH(t, x)+\frac{|v|}{\rho(t, x)}H(t, x)=\left(r+\frac{|v|}{\rho(t, x)}\right)H(t, x).$$

From this, the second inequality in (a_5) follows at once. Let us prove the first inequality. Set $b_1 = ||u-v-f(t_1, x_1)||_{H(t, x)}$. Take $b_1 \le r_1 < b_1 + \varepsilon$ such that $u-v-f(t_1, x_1) \in r_1 H(t, x)$. Hence $u-f(t_1, x_1) \in v+r_1 H(t, x) \subset (|v|/\rho(t, x)+r_1) H(t, x)$, from which the first inequality in (a_5) follows at once.

(a₆) Let $\varepsilon > 0$. There is $b \le r < b + \varepsilon$, where $b = ||u - f(t_1, x_1)||_{H(t_1, x_1)}$, such that $u - f(t_1, x_1) \in rH(t_1, x_1)$. Clearly $H(t_1, x_1) \subset H(t, x) + (h_0 + \varepsilon)S$, $h_0 = h(H(t, x), H(t_1, x_1))$. Thus

$$u-f(t_1, x_1) \in r\left[H(t, x) + \left(\frac{h_0 + \varepsilon}{\theta}\right)\theta S\right] \subset r\left(1 + \frac{h_0 + \varepsilon}{\theta}\right)H(t, x),$$

because $\theta S \subset H(t, x)$. Hence

$$\|u-f(t_1,x_1)\|_{H(t,x)} \leq r\left(1+\frac{h_0+\varepsilon}{\theta}\right) < (b+\varepsilon)\left(1+\frac{h_0+\varepsilon}{\theta}\right)$$

and, since $\varepsilon > 0$ is arbitrary, (a_{ε}) is proved.

(a₇) Since $u-f(t_1, x_1) \in (\theta^{-1}|u-f(t_1, x_1)|)\theta \overline{S}$, and $\theta \overline{S} \subset H(t, x)$, also (a₇) is true. This completes the proof.

Observe that for each $u \in X$ and $A \in \mathcal{K}$, e(u, sA) is continuous as function of

 $s \ge 0$. To prove Proposition 2.2 we use the following lemma the proof of which is routine and is omitted.

Lemma 3.1. Let $\hat{u}(t) = \sum_i u_i \chi_{I_i}(t)$, $\hat{K}(t) = \sum_j K_j \chi_{I'_j}(t)$, where $u_i \in X$, $K_j \in \mathcal{B}$, and $t \in I$. Suppose that the sets I_i , with i in a countable set (resp. I'_j , with j in a countable set) are measurable, pairwise disjoint, and such that $\bigcup_i I_i = I$ (resp. $\bigcup_j I'_j = I$). Then $e(\hat{u}(t), \hat{K}(t))$ is a measurable function of $t \in I$.

Proof of Proposition 2.2. Set u(t) = z(t) - f(t, x(t)), K(t) = H(t, x(t)), $t \in I$. We have

$$b(t) = ||z(t) - f(t, x(t))||_{H(t, x(t))} = \inf\{s > 0 | u(t) \in sK(t)\}$$

= \inf\{s > 0 | e(u(t), sK(t)) = 0\}, \quad t \in I.

Since u is measurable and K is Hausdorff continuous, there exist sequences $\{\hat{u}_n\}$ and $\{\hat{K}_n\}$, with \hat{u}_n and \hat{K}_n satisfying the hypotheses of Lemma 3.1, such that $\hat{u}_n \rightarrow u$ a.e. in I, and $\hat{K}_n \rightarrow K$ uniformly on I. Set c(t,s) = e(u(t),sK(t)), $(t,s) \in I \times R^+$. For fixed $t \in I$, c(t,s) is continuous as function of $s \in R^+$. For fixed $s \in R^+$, $c(t,s) = \lim_{n \to +\infty} e(\hat{u}_n(t), s\hat{K}_n(t))$ for $t \in I$ a.e., thus using Lemma 3.1 it follows that c(t,s) is a measurable function of $t \in I$. By [16, Theorem 6.4], the multifunction $t \mapsto \{s>0 \mid c(t,s)=0\}$ is measurable. Hence by [16, Theorem 6.6], so is the multifunction $t \mapsto \inf\{s>0 \mid c(t,s)=0\}$, and the measurability of b is proved. Since, for each $t \in I$, we have $H(t,x(t)) \supset \rho_0 \overline{S}$, where $\rho_0 = \min\{\rho(t,x(t)) \mid t \in I\}$ is positive, by Proposition 2.1 (a_t) we have $b(t) \le \rho_0^{-1} |z(t) - f(t,x(t))|$ a.e. in I and so b is bounded. This completes the proof.

§ 4. Proof of Theorem 2.3 (\mathcal{M}_{σ} is open)

In this section we shall prove that for each $0 < \sigma < 1$ the set \mathcal{M}_{σ} is open in \mathcal{M} . It will suffice to show that $\widetilde{\mathcal{M}}_{\sigma} = \mathcal{M} \setminus \mathcal{M}_{\sigma}$ is closed in \mathcal{M} . To this end let us consider a sequence $\{x_n\} \subset \widetilde{\mathcal{M}}_{\sigma}$ which converges uniformly to $x \in \mathcal{M}$. We want to prove that $x \in \widetilde{\mathcal{M}}_{\sigma}$. Since $\{\dot{x}_n\}$ is a bounded sequence contained in the reflexive Banach space $L^2(I, X)$, there exists a subsequence, say $\{\dot{x}_n\}$, which converges weakly to some $\omega \in L^2(I, X)$. By a corollary to Mazur's theorem [15, p. 36], there exists a sequence $\{\sum_{i=0}^{k_n} \mu_i^n \dot{x}_{n+i}\}$ ($\mu_i^n \geq 0$, $\sum_{i=0}^{k_n} \mu_i^n = 1$) which converges strongly to ω in $L^2(I, X)$ and so also in $L^1(I, X)$. A simple computation gives $x(t) = x_0 + \int_{t_0}^t \omega(s) ds$, from which one obtains $\dot{x}(t) = \omega(t)$ a.e. in I. Let $0 < \varepsilon < \rho_0$, where $\rho_0 = \min\{\rho(t, x(t)) | t \in I\}$. Since the multifunction H is Hausdorff continuous and $\{x_n\}$ converges uniformly to x, by Lebesgue's covering lemma, one can find and integer $n_0 \in N$ such that

(4.1)
$$h(H(t, x_n(t)), H(t, x(t))) < \varepsilon \quad \text{for each } n \ge n_0, \ t \in I.$$

Now, set $b(t) = ||\dot{x}(t) - f(t, x(t))||_{H(t, x(t))}, t \in I \text{ a.e..}$ We have

$$b(t) = \left\| \sum_{i=0}^{k_n} \mu_i^n [\dot{x}_{n+i}(t) - f(t, x_{n+i}(t)) + p_n(t) + q_n(t)] \right\|_{H(t, x(t))}$$

where

$$p_n(t) = \dot{x}(t) - \sum_{i=0}^{k_n} \mu_i^n \dot{x}_{n+i}(t), \qquad q_n(t) = \sum_{i=0}^{k_n} \mu_i^n [f(t, x_{n+i}(t)) - f(t, x(t))].$$

Hence, by Proposition 2.1 (a_3) , (a_5) ,

(4.2)
$$b(t) \leq \sum_{i=0}^{k_n} \mu_i^n \|\dot{x}_{n+i}(t) - f(t, x_{n+i}(t)) + p_n(t) + q_n(t) \|_{H(t, x(t))}$$

$$\leq \sum_{i=0}^{k_n} \mu_i^n \|\dot{x}_{n+i}(t) - f(t, x_{n+i}(t)) \|_{H(t, x(t))} + \frac{|p_n(t)| + |q_n(t)|}{\rho(t, x(t))}, \quad t \in I \quad \text{a.e..}$$

Since $H(t, x(t)) \supset \rho_0 \overline{S}$, $t \in I$, by Proposition 2.1 (a₆), we have

$$\|\dot{x}_{n+i}(t) - f(t, x_{n+i}(t))\|_{H(t, x(t))} \le \|\dot{x}_{n+i}(t) - f(t, x_{n+i}(t))\|_{H(t, x_{n+i}(t))}$$

$$\times [1 + \rho_0^{-1}h(H(t, x(t)), H(t, x_{n+i}(t)))], \quad t \in I \quad \text{a.e.}.$$

Observe that by (4.1) the quantity in brackets is less than $1 + \rho_0^{-1}\varepsilon$ whenever $n \ge n_0$. Now, fix $n \ge n_0$. Then from (4.2) we obtain

$$b(t) \leq \left(1 + \frac{\varepsilon}{\rho_0}\right) \sum_{i=0}^{k_n} \mu_i^n \|\dot{x}_{n+i}(t) - f(t, x_{n+i}(t))\|_{H(t, x_{n+i}(t))} + \frac{|p_n(t)| + |q_n(t)|}{\rho_0},$$

$$t \in I \quad \text{a.e.}.$$

Therefore

$$\begin{split} \int_{I} b(t)dt \leq & \left(1 + \frac{\varepsilon}{\rho_{0}}\right) \sum_{i=0}^{k_{n}} \mu_{i}^{n} \int_{I} ||\dot{x}_{n+i}(t) - f(t, x_{n+i}(t))||_{H(t, x_{n+i}(t))} dt \\ & + \frac{1}{\rho_{0}} \int_{I} (|p_{n}(t)| + |q_{n}(t)|) dt. \end{split}$$

Hence, dividing by |I| and taking into account that $x_{n+i} \in \widetilde{\mathcal{M}}_{\sigma}$, it follows

$$\frac{1}{|I|}\int_{I}b(t)dt \leq \left(1+\frac{\varepsilon}{\rho_{0}}\right)\sigma + \frac{1}{|I|\rho_{0}}\int_{I}(|p_{n}(t)|+|q_{n}(t)|)dt.$$

Since the integral on the right hand side vanishes as $n \to +\infty$, and $\varepsilon > 0$ is arbitrary, we obtain

$$\frac{1}{|I|}\int_{I}b(t)dt\leq\sigma.$$

Thus $x \in \tilde{\mathcal{M}}_{\sigma}$ and the proof is complete.

§ 5. Proof of Theorem 2.3 (\mathcal{M}_{σ} is dense)

In this section we shall prove that for each $0 < \sigma < 1$ the set \mathcal{M}_{σ} is dense in \mathcal{M} . Indeed, fix $\bar{x} \in \mathcal{M}$ and let $\varepsilon > 0$. From the definition of \mathcal{M} , it follows that there exists an $\tilde{x} \in \mathscr{V}_{r_{k_0}}$ (for some $k_0 \in N$) such that $|\tilde{x}(t) - \bar{x}(t)| \le \varepsilon/2$, $t \in I$. Choose $k > k_0$ such that $\sigma < r_k < 1$ ($\{r_k\}$) has been defined in Section 2). The density of \mathcal{M}_{σ} in \mathcal{M} is certainly established if we find an $x \in \mathscr{V}_{r_{k+2}}$ satisfying both the inequalities:

$$(5.1) |x(t) - \tilde{x}(t)| \le \varepsilon/2 t \in I,$$

(5.2)
$$\frac{1}{|I|} \int_{I} ||\dot{x}(t) - f(t, x(t))||_{H(t, x(t))} dt > r_{k}.$$

Since \tilde{x} is a polygonal solution of (2.1) (with k_0 in the place of k), there exists a countable family $\{I_q\}$ of nonempty pairwise disjoint open intervals $I_q \subset I$, with $m(I \setminus \bigcup_q I_q) = 0$, such that \tilde{x} is constant in each interval I_q . Without loss of generality we can and do assume that no I_q contains t_0 . Consider an arbitrary I_q and let $\tau \in I_q$. On each (sufficiently small) closed interval $J_{\tau,\delta} = [\tau - \delta, \tau + \delta]$ ($\delta > 0$) we shall define a function $x_{\tau,\delta} \colon J_{\tau,\delta} \to X$ which enjoys the properties stated in the following Proposition 5.1. Our purpose is to construct the desired $x \in \mathscr{V}_{r_{k+2}}$, satisfying (5.1) and (5.2) by pasting conveniently a countable subfamily of the $x_{\tau,\delta}$'s.

Set $D_1 = \{t \in \mathbb{R} | |t - t_0| < a\} \times \{x \in X | |x - x_0| < R\}$. Clearly $D_1 \subset D_2 \subset D$. We recall that a, R, D_2, D are defined in Section 2.

Proposition 5.1. Let $\tilde{x} \in \mathscr{V}_{r_{k_0}}$ and let $\varepsilon > 0$. Let τ be in an open interval I_q from the countable family $\{I_q\}$ (where no I_q contains t_0). Let $k \in N$ $(k > k_0)$ be such that $\sigma < r_k < 1$. Then there is a $\delta_0 = \delta_0(\tau, \varepsilon) > 0$ such that for each $0 < \delta < \delta_0$ the multivalued differential equation

$$\dot{x} \in \text{int } G_{r_{k+2}}(t, x)$$

admits a polygonal solution $x_{\tau,\delta}: J_{\tau,\delta} \to X(J_{\tau,\delta} = [\tau - \delta, \tau + \delta] \subset I_{\sigma}, \delta > 0)$ satisfying

(5.4)
$$x_{\tau,\delta}(\tau \pm \delta) = \tilde{x}(\tau \pm \delta)$$

$$\dot{x}_{z,\delta}(t) - f(t, x_{z,\delta}(t)) \notin r_k H(t, x_{z,\delta}(t)) \qquad t \in J_{z,\delta} \quad \text{a.e.}$$

$$(5.6) |x_{\tau,\delta}(t) - \tilde{x}(t)| \le \varepsilon/2 t \in J_{\tau,\delta}.$$

We postpone the lengthy proof of Proposition 5.1. Using this proposition we are ready to complete the proof of the density of \mathcal{M}_{σ} in \mathcal{M} . To this end observe that the family $\{J_{\tau,\delta} | \tau \in I_q, 0 < \delta < \delta_0(\tau, \varepsilon)\}$ of nondegenerate closed intervals $J_{\tau,\delta} \subset I_q$ is a Vitali's covering of I_q . Evidently no $J_{\tau,\delta}$ contains t_0 . By Vitali's theorem there exists a countable subfamily of pairwise disjoint closed intervals $J_i^q = J_{\tau_i,\delta_i} \subset I_q$ such that $m(I_q \setminus \bigcup_i J_i^q) = 0$. Repeating this procedure for any other interval of the coun-

table family $\{I_q\}$ and relabelling the family of all J_i^q , we obtain a countable family, $\mathfrak{F}=\{J_i\}$, of pairwise disjoint nondegenerate closed intervals $J_i \subset I$ such that $t_0 \notin J_i$ and $m(I) \bigcup_i J_i = 0$.

Let x_{τ_i,δ_i} correspond to $J_i \in \mathfrak{J}$. Set

$$\omega(t) = \sum_{i} \dot{x}_{\tau_{i},\delta_{i}}(t) \chi_{J_{i}}(t) \qquad t \in I \quad \text{a.e.}$$

$$x(t) = x_{0} + \int_{t_{0}}^{t} \omega(s) ds \qquad t \in I.$$

It is easy to see that $x(t) = x_{\tau_i, \delta_i}(t)$ on each interval $J_i \in \mathfrak{J}$. To this end, consider an arbitrary $J_i \in \mathfrak{J}$ and set $J_i = [a_i, b_i]$. We have $t_0 \notin J_i$. Now, suppose $a_i > t_0$ (whenever $a_i < t_0$ the proof is similar). Denote by $\{J'_j\}$ the subfamily of \mathfrak{J} consisting of those intervals belonging to the family \mathfrak{J} which are contained in $[t_0, a_i]$. Notice that $[t_0, a_i] \setminus \bigcup_j J'_j$ has measure zero, and at the end points of each J'_j we have $x_{\tau_j, \delta_j}(\tau_j \pm \delta_j) = \tilde{x}(\tau_j \pm \delta_j)$. Therefore we can write

$$x(a_i) = x_0 + \sum_j \int_{J'_j} \dot{x}_{\tau_j,\delta_j}(s) ds = x_0 + \sum_j \int_{J'_j} \dot{\tilde{x}}(s) ds = \tilde{x}(a).$$

It follows $x(a_i) = x_{\tau_i, \delta_i}(a_i)$, since $x_{\tau_i, \delta_i}(a_i) = \tilde{x}(a_i)$, thus

$$x(t) = x(a_i) + \int_{a_i}^t \dot{x}_{\tau_i, \delta_i}(s) ds = x_{\tau_i, \delta_i}(a_i) + \int_{a_i}^t \dot{x}_{\tau_i, \delta_i}(s) ds = x_{\tau_i, \delta_i}(t), \quad t \in J_i.$$

Taking into consideration the definition of x and the fact that $x(t) = x_{\tau_i, \delta_i}(t)$, on each closed interval J_i of the countable family \Im , one has that x is a polygonal solution of (2.1) (with r_{k+2} in the place of r_k), that is $x \in \mathscr{V}_{r_{k+2}}$; furthermore x satisfies (5.1), and $\dot{x}(t) - f(t, x(t)) \notin r_k H(t, x(t))$, $t \in I$ a.e.. This implies that $\|\dot{x}(t) - f(t, x(t))\|_{H(t, x(t))} > r_k$ a.e. in I and thus, integrating on I, (5.2) follows. This completes the proof.

§ 6. Proof of Proposition 5.1

Let A, B be nonempty subsets of X. We set $w(A, B) = \inf\{|a-b| | a \in A, b \in B\}$.

Proof of Proposition 5.1. Let $\tilde{x} \in \mathscr{V}_{r_{k_0}}$ and let $\varepsilon > 0$. Let t be in an interval $I_q = (b_1, b_2)$ from the countable family $\{I_q\}$ defined in Section 4. Take $k \in N$ $(k > k_0)$ so that $\sigma < r_k < 1$, where $\{r_k\}$ is the sequence introduced in Section 2. Let θ satisfy

$$0 < \theta < \rho_0 \min \{r_{k+1} - r_k, r_{k+2} - r_{k+1}\},$$

where $\rho_0 = \min \{ \rho(t, \tilde{x}(t)) | t \in I \}$. Evidently $\rho_0 > 0$. Since U_{r_k} , $G_{r_{k+2}}$, and G_{r_k} are Hausdorff continuous at $(\tau, \tilde{x}(\tau)) \in D_1$, there exists a d, $0 < d < \min \{a, R\}$, such that

$$(6.1) h(U_{r_k}(t, u), U_{r_k}(\tau, \tilde{x}(\tau))) < \theta/4$$

(6.2)_s
$$h(G_s(t, u), G_s(\tau, \tilde{x}(\tau))) < \theta/4 \quad (s = r_{k+1}, r_{k+2}),$$

for all $(t, u) \in S((\tau, \tilde{x}(\tau)), d) \subset D_2$. We have $U_{r_{k+1}}(t, u) = U_{r_k}(t, u) + (r_{k+1} - r_k)H(t, u)$, $(t, u) \in D$. From this (for $(t, u) = (\tau, \tilde{x}(\tau))$), observing that $H(\tau, \tilde{x}(\tau)) \supset \rho(\tau, \tilde{x}(\tau))S \supset \rho_0 S$ and $\rho_0(r_{k+1} - r_k) > \theta$, we obtain

(6.3)
$$U_{\tau_{k+1}}(\tau, \tilde{x}(\tau)) \supset U_{\tau_k}(\tau, \tilde{x}(\tau)) + \theta S.$$

Similarly

(6.4)
$$G_{\tau_{k+2}}(\tau, \tilde{x}(\tau)) \supset G_{\tau_{k+1}}(\tau, \tilde{x}(\tau)) + \theta S.$$

From $(6.2)_{r_{k+2}}$, (6.4) and $(6.2)_{r_{k+1}}$ it follows

$$G_{r_{k+2}}(t, u) + \frac{\theta}{4} S \supset G_{r_{k+2}}(\tau, \tilde{x}(\tau)) \supset G_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4} S + \frac{3}{4} \theta S$$
$$\supset G_{r_{k+1}}(t, u) + \frac{3}{4} \theta S = G_{r_{k+1}}(t, u) + \frac{\theta}{2} S + \frac{\theta}{4} S$$

and, by Rådström cancellation rule [21],

(6.5)
$$G_{r_{k+2}}(t, u) \supset G_{r_{k+1}}(t, u) + \frac{\theta}{2} S$$
 for each $(t, u) \in S((\tau, \tilde{x}(\tau)), d)$.

Now, set

(6.6)
$$C(\tau, \tilde{x}(\tau)) = F_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4} S,$$

where $F_r(t, u) = f(t, u) + r[F(t, u) - f(t, u)], (t, u) \in D, 0 \le r \le 1$. Observe that for each $\alpha > 0$ we have

$$G_r(t, u) = \overline{\operatorname{co}} F_r(t, u) \subset \operatorname{co} F_r(t, u) + \alpha S.$$

From (6.6), by virtue of (6.2) $_{r_{k+1}}$ and (5.5), we obtain

$$C(\tau, \tilde{x}(\tau)) \subset \operatorname{co} F_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4} S \subset G_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4} S$$
$$\subset G_{r_{k+1}}(t, u) + \frac{\theta}{4} S + \frac{\theta}{4} S \subset G_{r_{k+2}}(t, u)$$

and hence

(6.7)
$$C(\tau, \tilde{x}(\tau)) \subset \operatorname{int} G_{r_{k+2}}(t, u)$$
 for each $(t, u) \in S((\tau, \tilde{x}(\tau)), d)$.

On the other hand (6.3) implies

$$w\left(U_{r_k}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4}S, \, \partial U_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4}S\right) > \frac{\theta}{4}.$$

From (6.1) one has $U_{r_k}(t, u) \subset U_{r_k}(\tau, \tilde{x}(\tau)) + (\theta/4)S$, $(t, u) \in S((\tau, \tilde{x}(\tau)), d)$, while from (6.6)

$$\begin{split} C(\tau, \tilde{x}(\tau)) &\subset f(\tau, \tilde{x}(\tau)) + r_{k+1}[F(\tau, \tilde{x}(\tau)) - f(\tau, \tilde{x}(\tau))] + \frac{\theta}{4} S \\ &\subset f(\tau, \tilde{x}(\tau)) + r_{k+1}[\partial U(\tau, \tilde{x}(\tau)) - f(\tau, \tilde{x}(\tau))] + \frac{\theta}{4} S \\ &= \partial U_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4} S, \end{split}$$

thus

Now we are ready to construct the functions $x_{\tau,\delta}$ enjoying the properties stated in Proposition 5.1. Let \tilde{x} , τ , I_q , r_k , θ be as at the beginning of the proof. Recall that on the interval $I_q = (b_1, b_2)$ the function $\tilde{x} \in \mathscr{V}_{r_{k_0}}$ has constant derivative, say ξ ; in particular at the point $\tau \in I_q$ we have $\dot{\tilde{x}}(\tau) = \zeta$. Evidently $\mathscr{V}_{r_{k_0}} \subset \mathscr{V}_{r_k}$, being $k > k_0$,

thus $\tilde{x} \in \mathscr{V}_{r_k}$. Therefore $\xi \in \text{int } G_{r_k}(\tau, \tilde{x}(\tau))$. Since

$$G_{r_k}(\tau, \tilde{x}(\tau)) \subset G_{r_{k+1}}(\tau, \tilde{x}(\tau)) \subset \operatorname{co} F_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4} S$$

$$= \operatorname{co} \left[F_{r_{k+1}}(\tau, \tilde{x}(\tau)) + \frac{\theta}{4} S \right] = \operatorname{co} C(\tau, \tilde{x}(\tau)),$$

it follows that ξ can be expressed as a convex combination of points

$$(6.9) z_i \in C(\tau, \tilde{x}(\tau)) i=1, 2, \dots, n,$$

that is, $\xi = \sum_{i=1}^{n} \mu_i z_i$, $\mu_i \ge 0$, $\sum_{i=1}^{n} \mu_i = 1$. Let

$$0<\delta_0<\min\left\{\frac{d}{4(M+1)},\,\frac{\varepsilon}{6M},\,\tau-b_1,\,b_2-\tau\right\}$$

where M is defined in Section 2 (hypothesis iii). For each $0 < \delta < \delta_0$, consider the closed interval $J_{\tau,\delta} = [\tau - \delta, \tau + \delta]$, which is contained in I_q . Devide $J_{\tau,\delta}$ into n nonempty pairwise disjoint intervals $J_i^* \subset J_{\tau,\delta}$ such that $m(J_i^*) = \mu_i m(J_{\tau,\delta})$ ($i = 1, 2, \ldots, n$), and $J_1^* \cup J_2^* \cup \cdots \cup J_n^* = J_{\tau,\delta}$. Define

(6.10)
$$x_{\tau,\delta}(t) = \tilde{x}(\tau - \delta) + \int_{\tau - \delta}^{t} \omega_{\tau,\delta}(s) ds, \quad \omega_{\tau,\delta}(t) = \sum_{i=1}^{n} z_{i} \chi_{J_{i}^{*}}(t) \quad t \in J_{\tau,\delta}.$$

To complete the proof it remains to be shown that $x_{\tau,\delta}$ satisfies (5.3)–(5.6). Let us prove (5.4). We have

$$\begin{aligned} x_{\tau,\delta}(\tau+\delta) &= \tilde{x}(\tau-\delta) + \int_{\tau-\delta}^{\tau+\delta} \omega_{\tau,\delta}(s) ds = \tilde{x}(\tau-\delta) + \sum_{i=1}^{n} z_{i} m(J_{i}^{*}) \\ &= \tilde{x}(\tau-\delta) + \left(\sum_{i=1}^{n} \mu_{i} z_{i}\right) m(J_{\tau,\delta}) = \tilde{x}(\tau-\delta) + \xi m(J_{\tau,\delta}) \\ &= \tilde{x}(\tau-\delta) + \int_{\tau-\delta}^{\tau+\delta} \dot{\tilde{x}}(s) ds = \tilde{x}(\tau+\delta). \end{aligned}$$

Evidently $x_{\tau,\delta}(\tau-\delta) = \tilde{x}(\tau-\delta)$, thus (5.4) is true.

Let us prove that $x_{\tau,\delta}$ satisfies (5.3) a.e.. Observe that for each $t \in J_{\tau,\delta}$ we have $|t-\tau| \leq \delta$, and

$$(6.11) |x_{\tau,\delta}(t) - \tilde{x}(t)| \leq |x_{\tau,\delta}(t) - \tilde{x}(\tau - \delta)| + |\tilde{x}(\tau - \delta) - \tilde{x}(t)| \leq 4\delta M.$$

Since $\delta < \delta_0 < d$ and $4\delta M < d$, it follows

(6.12)
$$(t, x_{\tau,\delta}(t)) \in S((\tau, \tilde{x}(\tau)), d)$$
 for each $t \in J_{\tau,\delta}$.

Taking into consideration (6.10), (6.9), (6.12), and (6.7) we obtain

$$\dot{x}_{\tau,\delta}(t) \in C(\tau, \tilde{x}(\tau)) \subset \text{int } G_{r_{k+2}}(t, x_{\tau,\delta}(t))$$

for $t \in J_{\tau,\delta}$ a.e., thus also (5.3) is satisfied.

The inequality (5.6) follows from (6.11), because $\delta < \varepsilon/(6M)$.

Finally let us consider (5.5). Observe that (6.12) and (6.8) imply that, for each $t \in J_{\tau,\delta}$, the sets $U_{r_k}(t, x_{\tau,\delta}(t))$ and $C(\tau, \tilde{x}(\tau))$ have empty intersection. Thus, by virtue of (6.10) and (6.9) we obtain $\dot{x}_{\tau,\delta}(t) \notin U_{r_k}(t, x_{\tau,\delta}(t))$, that is

$$\dot{x}_{z,\delta}(t) - f(t, x_{z,\delta}(t)) \notin r_k[U(t, x_{z,\delta}(t)) - f(t, x_{z,\delta}(t))] = r_k H(t, x_{z,\delta}(t)),$$

for $t \in J_{\tau,\delta}$ a.e.. Hence also (5.5) is satisfied. This completes the proof of Proposition 5.1.

§ 7. A singular example of a multivalued differential equation

This section is devoted to the proof of Theorem 2.5. From now on, X will denote the real (infinite dimensional) Hilbert space l_2 . S, \overline{S} stand respectively for the unit balls S(0, 1), $\overline{S}(0, 1)$ in X. The space $R \times X$ is supposed to be endowed with norm $|(t, x)| = \max\{|t|, |x|\}, (t, x) \in R \times X$.

To prove Theorem 2.5, we establish some lemmas.

Lemma 7.1. Let $0 < d_0 < 1$. Then there is a denumerable set $E = \{e_i\} \subset \partial S$ satisfying the properties: (a₁) $|e_i - e_j| > d_0$, if $i \neq j$; (a₂) $\partial S \subset E + dS$ for each $d > d_0$;

(a₃) for each d such that $d_0 < d < 1$, one has $(1-d)S \subset \overline{co} E$, that is $\overline{co} E \in \mathcal{B}$.

Proof. Let $0 < d_0 < 1$. Let $\widetilde{E} = \{\widetilde{e}_1, \widetilde{e}_2, \cdots\}$ be a denumerable dense subset of ∂S . We associate to \widetilde{E} the family $\{\overline{S}(\widetilde{e}_i, d_0)\}$, which is a denumerable closed covering of ∂S . Set $e_1 = \widetilde{e}_1$. Hence define $e_2 = \widetilde{e}_{i_2}$, where i_2 is the smallest integer i > 1 such that $\widetilde{e}_i \notin \overline{S}(e_1, d_0)$. Similarly $e_3 = \widetilde{e}_{i_3}$, where i_3 is the smallest integer $i > i_2$ such that $\widetilde{e}_i \notin \overline{S}(e_1, d_0) \cup \overline{S}(e_2, d_0)$. Continuing in this manner one obtains a countable set $E = \{e_1, e_2, \cdots\} \subset \partial S$. (The proof that E is actually denumerable is postponed). It is evident that E satisfies (a_1) . To prove (a_2) , let $d > d_0$ and consider any $x \in \partial S$. Choose $\widetilde{e}_k \in \widetilde{E}$ such that $|x - \widetilde{e}_k| < d - d_0$. From the construction of E, there exists on $e_i \in E$ such that $|\widetilde{e}_k - e_i| < d_0$. Then $|x - e_i| \le |x - \widetilde{e}_k| + |\widetilde{e}_k - e_i| < (d - d_0) + d_0 = d$, and so $x \in S(e_i, d)$. Since $x \in \partial S$ is arbitrary, one has $\partial S \subset E + dS$, and (a_2) is proved. Consider (a_3) . From $\partial S \subset E + dS$ $(d_0 < d < 1)$, it follows $S \subset \overline{co} E + dS$, thus $(1 - d)S + dS \subset \overline{co} E + dS$. Hence, by Rådström cancellation rule [21], $\overline{co} E \supset (1 - d)S$, thus $\overline{co} E \in \mathcal{B}$. Since $\overline{co} E$ has nonempty interior and X is infinite dimensional, it follows that X is denumerable. This completes the proofs.

Lemma 7.2. Let $g: \mathbb{R} \times X \to X$ be continuous. Let $\varepsilon > 0$. Then there is a $\delta_0 > 0$ such that, for each $0 < \delta \le \delta_0$, there exists a function $f_{\delta}: \mathbb{R} \times X \to X$ satisfying the following properties:

- (b₁) $f_{\delta}(0, 0) = g(0, 0)$, and $f_{\delta}(t, x) = g(t, x)$ when $(t, x) \notin S((0, 0), \delta)$;
- (b₂) $|f_{\delta}(t, x) g(t, x)| < \varepsilon$ for each $(t, x) \in \mathbb{R} \times X$;
- (b₃) for each $u \in (\delta/3)S$, the Cauchy problem $\dot{x} = f_{\delta}(t, x)$, x(0) = u has no solution.

Proof. By Godunov's theorem [13] there exists a continuous function $g_0: \mathbb{R} \times X \to X$, with $g_0(0,0)=0$ $(x \in X)$, such that the Cauchy problem $\dot{x}=g_0(t,x)$, x(0)=u has no solution whatever may be $u \in X$. As in [20], define $g_b: \mathbb{R} \times X \to X$ by $g_b(t,x) = g_0(t,x-bt)+b$ (b=g(0,0)) for each $(t,x) \in \mathbb{R} \times X$, and observe that the Cauchy problem $\dot{x}=g_b(t,x)$, x(0)=u has no solution whatever may be $u \in X$. In fact, if there were a solution $x: I_c \to X$, $I_c = (-c,c)$, c>0, then x would satisfy $\dot{x}(t)=g_0(t,x(t)-bt)+b$ for every $t \in I_c$, and x(0)=u. Thus the function $z: I_c \to X$ given by z(t)=x(t)-bt, $t \in I_c$, would be a solution of the Cauchy problem $\dot{x}=g_0(t,x)$, x(0)=u, a contradiction. Now, take $\varepsilon>0$. Since g and g_b are continuous and assume at (0,0) the same value b, there exists a $\delta_0>0$ such that

$$|g(t,x)-b| < \varepsilon/2$$
, $|g_b(t,x)-b| < \varepsilon/2$ for each $(t,x) \in \overline{S}((0,0),\delta_0)$.

For each fixed $0 < \delta \le \delta_0$, consider the function φ_{δ} defined by

$$\varphi_{\delta}(t, x) = \begin{cases} g_{b}(t, x) & \text{if } (t, x) \in \overline{S}((0, 0), \delta/3) \\ g(t, x) & \text{if } (t, x) \in \overline{S}((0, 0), \delta) \setminus S((0, 0), (2/3)\delta). \end{cases}$$

Clearly φ_{δ} is defined on a closed set $\Delta \subset \overline{S}((0,0),\delta)$, is continuous, and satisfies $|\varphi_{\delta}(t,x)-b| < \varepsilon/2$ for each $(t,x) \in \Delta$. By Dugundji's theorem [9, p. 188], φ_{δ} admits a continuous extension f_{δ} defined on $\overline{S}((0,0),\delta)$, and satisfying $|f_{\delta}(t,x)-b| < \varepsilon/2$, for each $(t,x) \in \overline{S}((0,0),\delta)$. Putting $f_{\delta}(t,x)=g(t,x)$ outside $\overline{S}((0,0),\delta)$, one has that f_{δ} is continuous all over $\mathbb{R} \times X$. It is straightforward to verify that f_{δ} satisfies $(b_1)-(b_3)$.

Lemma 7.3. Let $E = \{e_i\} \subset \partial S$ be a denumerable set satisfying the properties (a_1) and (a_2) of Lemma 7.1 (with $0 < d_0 < 1$). Let $\{\varepsilon_i\}$ be a strictly decreasing sequence of positive numbers ε_i converging to zero, such that $0 < \varepsilon_1 < \min\{(1-d_0)/2, d_0/4\}$. Then there exists a strictly decreasing sequence $\{\delta_i\}$ of positive numbers δ_i , converging to zero, and there is a sequence $\{f_i\}$ $\{f_i = f_{\delta_i}\}$ of functions $f_i: \mathbf{R} \times X \to X$ such that:

- (c_1) $|f_i(t, x) e_i| < \varepsilon_i$ for each $(t, x) \in \mathbb{R} \times X$, $f_i(0, 0) = e_i$;
- (c₂) for every $i, j \in N \ (i \neq j)$, we have $|f_i(t, x) f_j(t, x)| > d_0/2$ for all $(t, x) \in \mathbb{R} \times X$;
 - (c₃) the family $\{f_i\}$ is equicontinuous at each point $(t, x) \in \mathbb{R} \times X$;
 - (c_4) for each $u \in (\delta_i/3)S$, the Cauchy problem

(7,1)
$$\dot{x} = f_i(t, x), \quad x(0) = u$$

has no solution.

Proof. Let $\{g_i\}$ be a sequence of functions g_i : $\mathbb{R} \times X \to X$ which are equicontinuous at each point $(t, x) \in \mathbb{R} \times X$ and satisfy $|g_i(t, x) - e_i| < \varepsilon_i/2$, $(t, x) \in \mathbb{R} \times X$, $g_i(0, 0) = e_i$. Evidently there do exist such sequences. By Lemma 7.2 (taking $g = g_i$ and $\varepsilon = \varepsilon_i/2$) one can find a strictly decreasing sequence $\{\delta_i\}$ of positive numbers δ_i converging to zero, and a sequence $\{f_i\}$ of continuous functions f_i : $\mathbb{R} \times X \to X$ such that:

- (1) $f_i(0, 0) = e_i$, and $f_i(t, x) = g_i(t, x)$ when $(t, x) \notin S((0, 0), \delta_i)$;
- (2) $|f_i(t, x) g_i(t, x)| < \varepsilon_i/2$ for each $(t, x) \in \mathbb{R} \times X$;
- (3) for each $u \in (\delta_i/3)S$, the Cauchy problem (7.1) has no solution.

We shall verify that the sequence $\{f_i\}$ satisfies $(c_1)-(c_4)$. In fact, by construction $f_i(0,0)=g_i(0,0)=e_i$; moreover for each $(t,x) \in \mathbb{R} \times X$ we have

$$|f_i(t,x)-e_i| \le |f_i(t,x)-g_i(t,x)| + |g_i(t,x)-e_i| < \varepsilon_i/2 + \varepsilon_i/2 = \varepsilon_i,$$

and so (c_1) is true. Also (c_2) is satisfied because, for any $i \neq j$ $(i, j \in N)$ and $(t, x) \in R \times X$, we have

$$|f_i(t,x)-f_i(t,x)| \ge |e_i-e_i| - \varepsilon_i - \varepsilon_i \ge d_0 - 2(d_0/4) = d_0/2.$$

To prove (c_3) , fix a point $(\tilde{t}, \tilde{x}) \neq (0, 0)$. Take $i_0 \in N$ such that $(\tilde{t}, \tilde{x}) \notin \delta_i \overline{S}$ for each $i > i_0$. This is possible for $\delta_i \to 0$ as $i \to +\infty$. Hence there is a $\theta_0 > 0$ such that for all $(t, x) \in S((\tilde{t}, \tilde{x}), \theta_0)$ we have $f_i(t, x) = g_i(t, x)$ $(i > i_0)$ and thus, since $\{g_i\}$ is equicontinuous at (\tilde{t}, \tilde{x}) also $\{f_i\}$ is so. Now, suppose $(\tilde{t}, \tilde{x}) = (0, 0)$. Let $\varepsilon > 0$. Since $\varepsilon_i \to 0$ as $i \to +\infty$, by virtue of (c_1) there an $i_0 \in N$ such that, whenever $i > i_0$, we have

 $|f_i(t, x) - e_i| < \varepsilon$ for every $(t, x) \in \mathbb{R} \times X$. From this and the continuity of the functions f_i $(1 \le i \le i_0)$, it follows that $\{f_i\}$ is equicontinuous also at (0, 0). Hence (c_3) is true. Since (c_4) is trivially fulfilled, the proof is complete.

Remark 7.1. Let the hypotheses of Lemma 7.3 be satisfied. Let $\{f_i\}$ be a sequence of functions $f_i: \mathbb{R} \times X \to X$ satisfying properties (c_1) – (c_4) , whose existence has been established in Lemma 7.3. Define $F: \mathbb{R} \times X \to \mathcal{K}$ by

(7.2)
$$F(t,x) = \bigcup_{i=1}^{\infty} f_i(t,x), \qquad (t,x) \in \mathbb{R} \times X.$$

Observe that from (c_2) and (c_3) it follows that F is a Hausdorff continuous multifunction with values $F(t, x) \in \mathcal{K}$. In addition, as consequence of (c_1) , one has that h(F(t, x), 0) < 2 for each $(t, x) \in R \times X$.

The following lemma has been proved in [8].

Lemma 7.4. In addition to the hypotheses of Lemma 7.3, suppose that ε_1 is such that $0 < \varepsilon_1 < d_0^2/384$. Then there is a Hausdorff continuous multifunction $U: \mathbb{R} \times X \to \mathcal{B}$ satisfying $\partial U(t, x) \cap \overline{\operatorname{co}} F(t, x) = F(t, x)$, for each $(t, x) \in \mathbb{R} \times X$.

Now we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Let $E = \{e_i\} \subset \partial S$ and $\{\varepsilon_i\}$ be as in Lemma 7.3. In addition, suppose that ε_1 is such that $0 < \varepsilon_1 < d_0^2/384$. Consider the multifunction $F: \mathbb{R} \times X \to \mathcal{K}$ defined by (7.2). Clearly F is Hausdorff continuous and satisfies (jjj). Properties (jv) and (v) follow from Lemma 7.3 (ε_2) (ε_4), while (jj) follows from Lemma 7.4. Now, let us prove (j). Let $(t, x) \in \mathbb{R} \times X$. By Lemma 7.3 (ε_1), we obtain $h(F(t, x), F(0, 0)) < \varepsilon_1$ and so $E = F(0, 0) \subset F(t, x) + \varepsilon_1 S$. Set $\tilde{d} = (1 + d_0)/2$. Since $\tilde{d} > d_0$, by Lemma 7.1 (ε_1), we have $\partial S \subset E + \tilde{d}S \subset F(t, x) + (\varepsilon_1 + \tilde{d})S$, which implies

$$\overline{S} \subset \overline{\operatorname{co}} F(t, x) + (\varepsilon_1 + \tilde{d}) \overline{S}$$
.

Note that $\varepsilon_1 + \tilde{d} < (1 - d_0)/2 + (1 + d_0)/2 = 1$. Replacing \bar{S} by $(\varepsilon_1 + \tilde{d})\bar{S} + (1 - \varepsilon_1 - \tilde{d})\bar{S}$ on the left hand side of the above inclusion, and using the Rådström's cancellation rule [21], we obtain $\bar{co} F(t, x) \supset (1 - \varepsilon_1 - \tilde{d})\bar{S}$. Hence $\bar{co} F(t, x) \in \mathcal{B}$ and, since $(t, x) \in R \times X$ is arbitrary, also (j) is satisfied. Finally (vj) follows by Theorem 2.4, since F satisfies (j)-(jjj). This completes the proof.

References

- [1] Antosiewicz, A. and Cellina, A., Continuous selections and differential relations, J. Differential Equations, 19 (1975), 386-398.
- [2] Castaing, C. and Valadier, M., Équations différentielles multivoques dans les espaces vectoriels localement convexes, Rev. Française Informat. Recherche Opérationnelle, 3 (1969), 3-16.

- [3] Cellina, A., On the differential inclusion $\dot{x} \in [-1, 1]$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Serie VIII, 69 (1980), 1-6.
- [4] Daures, J. P., Contributions à l'étude des équations différentielles multivoques dans les espaces de Banach, C.R. Acad. Sci. Paris Sér. A-B, 270 (1970), 769-772.
- [5] De Blasi, F. S., Existence and stability of solutions for autonomous multivalued differential equations in Banach spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Serie VIII, 60 (1976), 767-774.
- [6] De Blasi, F. S. and Pianigiani, G., A Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces, Funkcial. Ekvac., (2) 25 (1982), 153-162.
- [7] —, Remarks on Hausdorff continuous multifunctions and selections, Comment. Math. Univ. Carolinae., 24 (1983), 553-561.
- [8] —, The Baire category method in existence problems for multivalued differential equations, Rapporto interno (1982/83), Istituto di matematica, Università di Udine.
- [9] Dugundji, J., Topology, Allyn and Bacon, Boston, 1966.
- [10] Filippov, A. F., Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control, 5 (1967), 609–621.
- [11] —, The existence of solutions of generalized differential equations, Math. Notes, 10 (1971), 608-611.
- [12] Godunov, A. N., The Peano's theorem in Banach spaces (Russian), Funkcional. Anal. i Priložen 9 (1971), 59-60.
- [13] —, Peano's theorem in an infinite dimensional Hilbert space is false even in a weakened formulation, Math. Notes, 15 (1974), 273-279.
- [14] Hermes, H., The generalized differential equation $\dot{x} \in R(t, x)$, Advances in Math., 4 (1970), 149–169.
- [15] Hille, E. and Phillips, R. S., Functional analysis and semigroups, American Mathematical Society, Colloquium Publications, Vol. XXXI, Providence, 1957.
- [16] Himmelberg, C. J., Measurable relations, Fund. Math., 87 (1975), 53-72.
- [17] Kaczyński H. and Olech, C., Existence of solutions of orientor fields with non-convex right-hand side, Ann. Polon. Math., 29 (1974), 61-66.
- [18] Muhsinov, A. M., On differential inclusions in Banach spaces, Soviet Math. Dokl., 15 (1974), 1122–1125.
- [19] Olech, O., Existence of solutions of non-convex orientor fields, Boll. Un. Mat. Ital., (4) 11 (1975), 189–197.
- [20] Pianigiani, G., A density result for differential equations in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26 (1978), 791–793.
- [21] Rådström, H. An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3 (1952), 165–169.
- [22] Tolstogonov, A. A., On differential inclusions in Banach spaces and continuous selections, Soviet Math. Dokl., 20 (1979), 186-190.

nuna adreso: Istituto Matematico "U. Dini" Università degli Studi Viale Morgagni, 67/A I-50134 Firenze Italy

(Ricevita la 11-an de oktobro, 1983) (Reviziita la 28-an de januaro, 1985)