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§1. Introduction

In this paper we present some results on the existence of solutions to the Cauchy
problem

(L.1) X e F(t, ), X(t)=x, ( :,d_)
dt

for multivalued differential equations in a Banach space X. When X is infinite
dimensional, most existence theorems for (1.1) have been obtained under some com-
pactness hypothesis on F ([2] [4] [5] [18] [22]). In this note the existence of solutions
to the Cauchy problem (1.1) will be established (see Theorem 2.4) under a somehow
opposite assumption on F. In fact we shall suppose (among other things) that F be
such that the closed convex hull of F(z, x) have non empty interior.

Let us briefly describe the method of the proof. We associate with (1.1) the
Cauchy problem

(1.2) X e co F(t, x), x(t,) = x,

and consider a well defined nonempty set .# of solutions of (1.2), which is complete
under the metric of the uniform convergence. Then we show that the set .#, of all
x € A which are solutions of (1.1) is residual in ., that is its complement .#\.#
is of the Baire first category in .#. Since .# is complete, it follows that .# is dense
in 4. Hence A is nonempty and the Cauchy problem (1.1) has solutions.

The above approach has already been used in [3] [6] to study the structure of
the solution set of (1.1). In [6] the existence follows as a corollary; incidentally we
observe that in [6], because of the regularity of F, the existence could be proved
directly, without appeal to the Baire category method.

Evidently, (1.1) has solution if F admits a continuous selection f, for which the
Cauchy problem x=f{(t, x), x(¢,)=x, have solutions. This is just what occurs in
[6]. On the contrary, under the hypotheses of Theorem 2.4, F might have no con-
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tinuous selection at all [14, Example 31] or, if F admits a continuous selection f, the
Cauchy problem x=f{(t, x), x(t,)=x,, might fail to have solutions. By Godunov’s
theorem [12] this is possible when X is infinite dimensional.

To focus this point, we construct (see Theorem 2.5) a singular multifunction F
given by F(¢, x)=\;., fi(t, x) (where the functions f; are continuous and, at each
point, assume mutually different values) satisfying the assumptions of our existence
theorem; yet the set of all continuous selections of F is exactly {f;|i=]1, 2, -}
and, for each such f;, the Cauchy problem x = fy(¢, x), x(z,) =x, has no solution.

We wish to point out that, under the hypotheses of Theorem 2.4, the existence
of solutions to the Cauchy problem (1.1) is a new result, only when X is infinite-
dimensional. If x is finite dimensional, the existence of solutions to (1.1) has been

proved by Filippov [11] (see also [1] [10] [17] [19]) under more general hypotheses on
F.

§ 2. Notations and main results

Throughout this paper X denotes a real (infinite dimensional) reflexive Banach
space. Additional hypotheses on X will be stated where necessary. Denote by ¢
(resp. #) the space of all nonempty subsets of X which are closed and bounded
(resp. closed bounded and convex with nonempty interior). ¢ (in particular %) is
endowed with the Hausdorff distance

h(A, B)=inf {r >0| AC B+rS, BC A+rS},

where 4, Be 2" and S={x e X||x|<1}. Also, set e(u, A)=inf {r >0|u e A+rS},
where # € X and 4 C X is nonempty.

Let us introduce some notations of frequent use. Let 4 be a subset of a
normed space Y. We denote by A4, int 4, 34, coA, co A, respectively, the closure,
the interior, the boundary, the convex hull, the closed convex hull of 4. If A4 is
nonempty, diam A satnds for the diameter of 4. By S(y,, d) (resp. S(y,, d)), we mean
the open (resp. closed) ball in Y with center y, and radius d>0. For notational
convenience we put S=S(0,1), S=S(0,1). For any (Lebesgue) measurable set
JC R, we denote by X, the characteristic function of J. In RX X we introduce the
norm |(z, x)|=max {|¢], |x|}. With such norm R X X is a Banach space.

Let D be a nonempty open set contained in RXX. Let F: D—»X% be a
multifunction satisfying the hypotheses:

(i) Fis Hausdorff continuous and such that co F(¢, x) € 4, for each (t, x) € D;

(i1) there exists a Hausdorff continuous multifunction U: D—% such that
aU(t, x) N co F(t, x)=F(t, x), for each (¢, x) e D.

Fix (t,, x,) € D and consider the Cauchy problem (1.1). Since we are interested
in local solutions of (1.1), and F is Hausdorff continuous, we assume without loss of
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generality that F satisfies also the following hypothesis:

(iii) there exist positive-constants @, R, and M such that A(F(z, x), 0)<<M for
each (¢, x) e D, where D,={t e R||t—1,|<2a} X {x e X ||x—x,|]<<2R}.

Since U: D—2%* Hausdorff continuous implies that aU: D—>¢" is Hausdorff
continuous (see [7]), the assumptions (i)-(iii) are certainly satisfied if we take F(¢, x)
=0oU(t, x), (¢, x) e D. This special case has been considered in [6].

' By a solution of (1.1) (resp. (1.2)) we mean a function x: I—X, where I=
[t,— T, t,-+T1, T >0, which is Lipschitzean (hence x admits derivative a.e., since X
is reflexive), and satisfies (1.1) (resp. (1.2)) a.e.. By a polygonal solution of (1.2) we
mean a solution of (1.2) which has the following property: there exists a countable
family {/,} of nonempty pairwise disjoint open intervals I, C I such that in m(I\, 1,)
=0 (m denotes the Lebesgue measure in R) and, moreover, X is constant on each
interval I, and satisfies x(¢) € co F(z, x(¢)) for every te | J, I,.

Let Fsatisfies (i)-(iii). For notational convenience we introduce the multifunc-
tion G: D—% defined by

G(t, x)=co F(t, x) for each (¢, x) € D.

Observe that from (ii) it follows F(z, x)CaU(¢, x) and so G(¢, x)C U(t, x), (¢, x) € D.
Evidently G is Hausdorff continuous and satisfies #(G(t, x), 0)< M for each (¢, x) € D,.
Then, as in [6, proof of Proposition 2.1], it can be shown that (1.2) has polygonal
solutions which are defined on I=[t,— T, t,+ T'] where 0<<T <min {a, R/M}.

First of all we shall construct a nonempty set .# of solutions of (1.2) which is
complete under the metric of the uniform convergence. Next we shall show that the
set 4 consisting of all x e .# which are solutions of (1.1) is residual in .#. Since
M is complete, it follows that ./ is dense in .#, thus .# is nonempty and (1.1)
has solutions. _ o

Let f: D—X be a continuous function such that f(z, x) € int G(, x), (¢, x) € D.
The existence of such an fis ensured, for example, by [7, Remark 3.10].

For each (¢, x) e D and 0<<r<1 we set

G.(t, x)=f(t, x)+r[G(t, x)— f(t, X)].

If 0<r<1 we have G,(t, x) € #. Moreover, (t, X)—G,(t, x) is Hausdorff continuous
from D to #. Also observe that 0<<r’<r”<1 implies G,(t, X) CG,.(t, x) € G(t, x),
(t, x) e D.

Let {r,} be a strictly increasing sequence of numbers 0<r,<1 (k=0, L,2,--)
converging to 1. For each ke NV, let ¥°,, be the set of all polygonal solutions to
the Cauchy problem '

(2. 1) )C € il’lt Grk(t: X), x(t0)=x0’
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which are defined on I=[t,— T, t,+ T'] (where 0<<T <min {a, R/M}). Clearly each
x € ¥",, is solution to (1.2) and we have ¥*,,C¥",,C+-.. By [6, Proof of Proposi-
tion 2.1] for each k € N the Cauchy problem x € G,,_ (¢, x), x(¢,)=x, has a polygonal
solution x defined on I. Since G,,_,(t, x)Cint G, (t, X), (¢, x) € D, it follows that
x € /",,, that is for each k ¢ N the set ¥~,, is nonempty. Define

M=)V,
k=1

where the closure of the set on the right is taken in C(Z, X) (with the metric of the
uniform convergence). As in [6, Proposition 2.1], under our assumptions (X reflexive
and G: D—% Hausdorff continuous), it follows that each x e .# is also a solution
of (1.2). Hence .# is a (nonempty) closed subset of C(Z, X) consisting of solutions
of (1.2), thus .# is a complete metric space under the metric of the uniform con-
vergence.

For each u € X, (¢, x) and (¢, x,) € D we set
2.2) 10— £ty XD s2ce, 0y =i0F {r >0 u— f(t,, x) € rH(2, %)},
where
H(, x)=U(t, x)— f(¢, X).

This definition is meaningful for the origin is an interior point of H(¢, x). Further-
more, for each (¢, x) e D and 0<r <1, we put

U,(t, x)=f(t, x)+r[U(2, x)— f(t, x)].

Let o(t, x)=sup {s>0|S(f(z, x), s)CG(t, x)}, (t,x)e D. Since f(t, x) e int G(¢, x),
p(t, x) is well defined and positive. Observe that p(z, x) (resp. U,(t, x), H(t, x)) is
continuous (resp. Hausdorff continuous) as function of (7, x) € D.

Proposition 2.1. Let u, u;,, ve X and (t,x), (t;, x)e D (i=1,2,.--, k). We
have

(@) [u—fG, xl)”H(z,m) =0 if and only if u=f{(t,, x,).

(az) Il plu— f(2,, xl)]HH(t,w) =f*‘” u— f(t, xl)”H(t,z) (2> 0).
. (as) l g;kl v, — f(t,, xz)] ’H(t’x)ég tollu,— [, xi)”H(t,w) (;i =1, #120>-
~ (@) flu—f, x)IIH(t,.z)zl if and only if u € 8U(t, x).

@) flu—ft Xt — p(‘t""x) < [Jutve=Ft %)z

<le=ft WDl + p(ltl,)Lc) '
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(ag) Let H(t, x)D6S, 6>>0. Then we have

“u_‘f(t]: xl)”H(t,x)g “ u—f(tla xl)”H(t1,z1)[1 +0—1h(H(ta .X'), H(tla xl))]-
(a)) Let H(t, x)D0S, 6>0. Then we have |ju—f(t,, x|z, v <0 |u—f(t,, x)).

Proposition 2.2. If x: I-X is continuous and z: I—-X (Bochner) measurable
and bounded, then || z(t) —f(t, X(t))|| g ¢, = vy, 5 @ measurable and bounded function of t e I.

For each 0<{g <1 define
do={x e t| [ RO Ol >},

where |/|=2T. Under our hypotheses the integral makes sense by virtue of Propo-
sition 2.2.

Theorem 2.3. Let X be a real reflexive Banach space. Let D, 4 be as above
and suppose that F: D—X" satisfies (1)-(iii). Then, for every 0<o<1, the set M, is
open and desne in M.

By means of Theorem 2.3 we can prove our main result, that is the Cauchy
problem (1.1) has solutions if F: D—2¢ satisfies (i)—(iii). In fact, denote by £,
the set of all x e .# which are solutions of (1.1). Let {5,} (0<0,<1,ke N)bea
strlctly increasing sequence converging to 1. Since M, is open and dense in the
nonempty complete metric space .#, the set 7

‘/ﬂ*zﬁ ‘///wc
k=1

is residual in .#. Hence .#* is dense in .# and, in particular, .#* is nonempty.
We claim that #*=.#,. Letxe #* Clearly, x(¢) € G(¢, x(¢)) a.e. in I and so

3(8)—(t, X(2)) € G(t, () —f(t, X(O) U, X(6) —£(t, x(1) = H(&, x(2)).

This implies that b(¢)<1 a.e. in I, where b(t)=[%(t)— f(t, X(*))lz ¢, sc» On the
other hand

1
i L_b(;) dr>1,

since x € #,, for each k e N. Consequently, b(¢)=1 a.e. in I, and so by Proposition
2.1 (a,), X(t) e dU(¢, x(¢)). By virtue of hypothesis (ii) we.can conclude that x is a
solution to (1.1), that is x € 4. Conversely, in view of (ii), each x € #, satisfies
x(t) e 9U(t, x(¢)) and hence, by Proposition 2.1 (a,) b(#)=1 a.e. in I. Thus x ¢ .4,,,
for each k e NV, that is x e #*. Therefore A ,=.#*. We have proved the follow-
ing - :
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Theorem 2.4. Let X be a real reflexive Banach space. Let D, 4 and A be as
above and suppose that F: D—X" satisfies (1)—(iii). -Then the set of all x e M which
satisfy (1.1) is a residual subset of M. In particular M . is nonempty and the Cauchy
problem (1.1) has solutions.

Let f: RX X —X be continuous. By a solution of the Cauchy problem
(2.3) Xx=f(x, t), x(t)=u

(ue X) we mean a continuously differentiable function x: I.—X, I.=(t,—c, t,+c),
¢ >0, satisfying (2.3) for each ¢ ¢ I,.

We are going to show that there exist multifunctions F: R X X —¢" satisfying
the hypotheses of Theorem 2.4 (thus the Cauchy problem (1.1) has solutions) while,
for each continuous selection f of F, the Cauchy problem (2.3) has no solution.

In the following theorem X stands for the real infinite dimensional Hilbert space
1, and, accordingly, the spaces ¢ and % are supposed to consist of subsets of 1,.

Theorem 2.5. There exists a Hausdorff continuous multifunction F: RX X-—>X"
(X=1,) satisfying the following properties: (j) co F(t, x) e # for each (t,x) e RX X,
(jj) there exists a Hausdorff continuous multifunction U: R X X—% such that dU(t, x)
Nco F(t, x)=F(t, x) for each (t, x) e RXX; (jij) MF(t, x), 0)<2 for each (t,x) e R
X X; (jv)' the set { f;} of all continuous selections f; of F is denumerable; (v) for each
ie Nanduin a neighborhood of the origin (depending on i) the Cauchy problem

x=fi(t, x), x(0) =u,
has no solution; (vj) the Cauchy problem
X e F(t, x), x(0) =x,,

has solutions for each x, e X.

§ 3. Proof of Propositions 2.1 and 2.2

Proof of Proposition 2.1. The statements (a,) and (a,) follow easily from the
definition (2.2).

(a;) Let ¢>0. For each i=1, 2, .-, k, put b,=|u,— f(¢;, X))l g, s and let
b, <r,<b;+e be such that u,— f(¢,, x;) e r,H(t, xX). Hence

;: palu,— f(t,, x;)] e (i:; .Ui"i)H(t, Xx),

from which

g plu;— (2, x)]

k k
<2 pare <) pibi+te
) =1 i

H(t,x
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follows. Since ¢>0 is arbitrary, (a,) is true.

(a,) Suppose uedU(t,x). We have u—f(z, x) e U(t, x)— f(t, x)=H(t, x),
thus b<1 where b=|u— f(t, )|z, . Assume b<1. Then, for some b<r<1, we
have u— f(t, x) e rH(¢, x) and hence, u— f(¢, x)+ (1 —r)H(t, x)C H(t, x). Since the
origin is in the interior of H(¢, x), there is a §>>0 such that 6SC(1—r)H(t, x) and
so u— f(t, x)+0S C H(t, x). Therefore u+6SCH(t, x)+ f(t, x)=U(t, x), a con-
tradiction. Hence b=1. Conversely, let b=1. Suppose that u e int U(¢, x), that is
u+0SCU(t, x) for some §>0. Let 1<<r<{2 be such that (r—1)H(t, x)C80S. We
have u—f(t, x)+(r—DH(t, x) Cu+0S—f(t, x) CU(t, x)— f(t, x) = H(t, x), that is
u— f(t, x)-+(r—DH(, x)C(2—r)H(t, x)+(r—1)H(¢, x) and, by Radstrém’s cancel-
lation rule [21], u—f(¢, x) e Q—r)H(t, x). This implies b<<2—r, that is r<1, a
contradiction. Now suppose u € int (X\U(¢, x)). Since b=1 there is a sequence {s;}
(s;>1) converging to 1, such that u—f{(t, x) € s, H(t, x), k ¢ N. It follows u— f{(z, x)

e H@t, x)+(s,—1)H(t, x) and so ue U(t, x)+(s,—1)H(t, x). Letting k—+ o0, a
contradiction follows. Therefore u e dU(, x). '

(a;) Let ¢>0. Let b=|lu—f(t;, X)|lz¢,»- There is b<r<b-+4e such that
u—f(t, x) e rH(t, x). Since p(t, x)SCH(t, x), we have v e ([v]/p(t, x)p(t, x)SC
(vl/o(t, X)H(2, X), thus

u— f(t,, x))+v e rH(t, x)+|—UI—H(t, X)= <r+—|lil_~)H(t, X).
p(t, x) p(t, x)
From this, the second inequality in (a,) follows at once. Let us prove the first
inequality. Set b,=|u—v— f(t;, X)|lx¢, .- Take b;<r,<<b,+e such that u—v—
f(t, x)) e r,H(t, x). Hence u— f(t,, x,) e v+r H(t, x)C(v|/p(t, x)+r)H(t, x), from
which the first inequality in (a;) follows at once.

(a)) Lete>0. There is b<r<b-+e, where b=|u— f(t;, x|z ¢y, 2y, sSuch that
u—f(t, x,) € rH(t,, x,). Clearly H(t,, x,) C H(t, x)+ (h,+¢)S, hy=h(H(t, x), H(t,, x,)).
Thus

U f(t %) € [H(t, )+ (%)03] c:r(i 4+ h ;FE’)H(t, %),

because 6SC H(¢, x). Hence

”u—f(tb x1)”H(t,x)£r(l —+ ho;'5 )<(b+5)<1 + hog‘e )

and, since ¢ >0 is arbitrary, (a,) is proved.
(a;) Since u— f(t,, x,) € (6~ {u— f(t,, x)|)4S, and 6SC H(t, x), also (a,) is true.
This completes the proof.

Observe that for each u € X and 4 e &, e(u, sA) is continuous as function of
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§>0. To prove Proposition 2.2 we use the following lemma the proof of which is
routine and is omitted.

Lemma 3.1. Let d(t)=2, uX;,(?), If(t):}:'j KjX,J,.(t), where u; e X, K; € 4,
and t e I.  Suppose that the sets I,, with i in a countable set (resp. 1}, with j in a coun-
table set) are measurable, pairwise disjoint, and such that \ ), I,=I (resp. \ J; I;=1).
Then e(ii(t), K(t)) is a measurable function of t € L. '

Proof of Proposition 2.2. Set u(t)=z(t)—f(t, x(¢)), K@)=H(t, x(¢)), tel
We have

b(t)=|z(¢) — f(t, (DN 2 e, ooy =1nf {s>0|u(r) € sK(2)}
=inf {s>0]e(u(t), sK(t))=0}, tel

Since u is measurable and K is Hausdorff continuous, there exist sequences {a,} and
{Ifn}, with 4, and K, satisfying the hypotheses of Lemma 3.1, such that #,—u a.e.
in I, and K,—K uniformly on I. Set c(t, s)=e(u(t), sK(2)), (¢, s) e IXR*. For
fixed 7€ I, c(t,5) is continuous as function of s € R*. For fixed se R*, c(t, s)=
lim,_, .. e(d,(¢), sK,(t)) for teI ae., thus using Lemma 3.1 it follows that ¢(z, 5)
is a measurable function of te 7. By [16, Theorem 6.4], the multifunction #~—»
{s>0]c(t, s)=0} is measurable. Hence by [16, Theorem 6.6], so is the multifunction
t—inf {s >0|c(z, s)=0}, and the measurability of b is proved. Since, for each t ¢ I,
we have H(t, x(1))Dp,S, where p,=min {o(t, x(¢))| ¢ € I} is positive, by Proposition
2.1 (a;) we have b(t)<p;'[z(¢) — f(¢, x(¢))| a.e. in I and so b is bounded. This com-
pletes the proof. -

§4. Proof of Theorem 2.3 (.#, is open)

In this section we shall prove that for each 0<¢<1 the set .#, is open in A.
It will suffice to show that .#Z,=.#\.#, is closed in .#. To this end let us consider
a sequence {x,}C.#, which converges uniformly to x € .#. We want to prove that
xe .4, Since{x,}is a bounded sequence contained in the reflexive Banach space
L*(1, X), there exists a subsequence, say {x,}, which converges weakly to some
o e IXI, X). By a corollary to Mazur’s theorem [15, p. 36], there exists a sequence
{208y g%y} (2 >0, D%k, 2 =1) which converges strongly to » in L*7, X) and so

: t
also in L'(I, X). A simple computation gives x(t)=x0+j wo(s)ds, from which one
to

obtains X(#)=w(?) a.e. in I. Let 0<<e<p,, where p,=min {p(t, x(¢))|¢ € I}. Since
the multifunction H is Hausdorff continuous and {x,} converges uniformly to x, by
Lebesgue’s covering lemma, one can find and integer n, € N such that

4.1 h(H (2, x,(1)), H(t, x(2)))<e for each n>n,, tel
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Now, set b(z)=||%(t) — f(t, (), s> ¢ € I a.e.. We have

b(t)=

3% 1l )= £t %, 0) +pn<t)+qn(t)]||

H(¢, z(2))

where
PuO=XO = 3 D), GO= 5 1 %, )= 6 X))
Hence, by Proposition 2.1 (a,), (ay),

b(f)é}kf ]| X i) = S X0 s dENH2ul) + 4Ol 20, 2 0
(4.2) 0

gf_gmxm(n—f(r,xm(t))nm,er‘Pn(;&‘;gf)’w)(”', tel ac.

Since H(t, x(t)) D p,S, t € I, by Proposition 2.1 (a,), we have

”xn+i(t)—f(ta xn+i(t))”H(t,x(t))£”xn+ i(t)'—f(ts xn+i(t))”H(t, Tn+i(2))
X[1+p5 h(H (2, x(2)), H(, x,, ()], tel ae.

Observe that by (4.1) the quantity in brackets is less than 14 p;’e whenever n>n,.
Now, fix n>n,. Then from (4.2) we obtain

0o

b<t>£(1+;j—) 35 1015t A =1 e W o+ A 2OITNLOL
‘ tel a.e.

Therefore
kn

J pOdr<(14-2) 31 [ 1200 )= S % kD

41 j (1 2u()|+] 4,1 dt.
0o V1

Hence, dividing by |/| and taking into account that x,, ; € .#,, it follows

1
|11 0,

Since the integral on the right hand side vanishes as #n— + oo, and ¢>>0 is arbitrary,
we obtain

ﬁ J s g(” i)‘”r | RUXGIERPAG

1
m I b(t)di<o.

Thus x € .#, and the proof is complete.
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§ 5. Proof of Theorem 2.3 (.#, is dense)

In this section we shall prove that for each 0<o<{1 the set ., is dense in .
Indeed, fix x e # and let ¢0. From the definition of .#, it follows that there
exists an Xe 7", (for some k,e N) such that |%(z)—x(¢)|<¢/2, te 1l Choose
k>k, such that ¢<r,<1 ({r,}) has been defined in Section 2). The density of .Z,
in ./ is certainly established if we find an x e ¥~ satisfying both the inequalities:

(5.1) |x(1)—X()|<ef2 el

1

5.2 —
(5-2) ]

[ 15— 1 2Ozt >

Since % is a polygonal solution of (2.1) (with k, in the place of k), there exists
a countable family {/,} of nonempty pairwise disjoint open intervals I, I, with
m(I\, I,)=0, such that % is constant in each interval T .- Without loss of gener-
ality we can and do assume that no 7, contains #,. Consider an arbitrary /, ane let
zel,. On each (sufficiently small) closed interval J,,=[r—d, +0] (6>>0) we
shall define a function x, ;: J, ;—X which enjoys the properties stated in the follow-
ing Proposition 5.1. Our purpose is to construct the desired x € ¥, ,,, satisfying
(5.1) and (5.2) by pasting conveniently a countable subfamily of the x, ;’s.

Set D,={te R||t—t|<a}X{xe X||x—x,|<R}. Clearly D,cD,cD. We
recall that a, R, D,, D are defined in Section 2. ‘

Proposition 5.1. Let Xev",, and let 0. Let t be in an open interval I,
from the countable family {I,} (where no I, contains t)). Let ke N (k>k,) be such
that 6<r,<1. Then there is a 6,=0,(t, ) >0 such that for each 0<5<48, the multi-
valued differential equation

(5.3) % e int G,, (¢, Xx)

admits a polygonal solution x.;: J. ;—X (J.;=[ct—d, t+d]lcC1,, 6>>0) satisfying

(5.4 X, {(t+£08)=%(r+0)
(5.5) Xo (1) — S, x.,5(1)) ¢ 1 H (2, x.5(2)) ted.; ae.
(5.6) = FOI<e2 ted,

We postpone the lengthy proof of Proposition 5.1. Using this proposition we
are ready to complete the proof of the density of .#, in .#. To this end observe
that the family {/, ;|7 € I,, 0<3<{d,(z, ¢)} of nondegenerate closed intervals J, ,C1,
is a Vitali’s covering of 7,. Evidently no J, ; contains #,. By Vitali’s theorem there
exists a countable subfamily of pairwise disjoint closed intervals J¢=J,, ;,CI, such
that m(7,\|_J; J9)=0. Repeating this procedure for any other interval of the coun-
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table family {/,} and relabelling the family of all J¢, we obtain a countable family,
JI={J.}, of pairwise disjoint nondegenerate closed intervals J,—I such that ¢, ¢ J,
and m(Z\(J,; J,)=0. -‘

Let x., ;, correspond to J; € . Set

() =2 %05 () 5,(2) tel a.e.

x(t):xo—l—J: w(s)ds tel

It is easy to see that x(¢)=x,,,,(¢) on each interval J; € J. To this end, consider

an arbitrary J; e § and set J;=la;, b;]. We have ¢,¢J,. Now, suppose a;,>f,

(whenever a;<t, the proof is similar). Denote by {J%} the subfamily of  consisting

of those intervals belonging to the family § which are contained in [¢,, a;]. Notice

that [t,, a]\J; J; has measure zero, and at the end pomts of each J’; we have
X.,(t;£0,)= x(z-j+5 ;). Therefore we can write.

x(a)=x,+ Z L Xep0,(8)ds =X, L x:(s)ds = X(a).
7 J7; 7 J7;
It follows x(a,)=x.,;,(a,), since x., ;,(a;)=3%(a;), thus
X)) =x@)+ [ s =@+ | FsMs=xa D), 1€,
a; g

Taking into consideration the definition of x and the fact that x(t)=x,,,(¢), on
each closed interval J; of the countable family , one has that x is a polygonal
solution of (2.1) (with r,,, in the place of r.), that is x e ¥7,, ,; furthermore x
satisfies (5.1), and =x(¢)—f(¢, x(¢)) ¢ r, H(t, x(¢)), tel ae.. This implies that
1) — f(t, x|z ¢z, siey) > Fr @-€. in I and thus, integrating on 7, (5.2) follows. This
completes the proof.

§ 6. Proof of Proposition 5.1
Let 4, B be nonempty subsets of X. We set w(A4, B)y=inf {{a—b||aec 4, b e B}.

Proof of Proposition 5.1. Let Xe 7", and let e>>0. Let ¢ be in an interval
I,=(b,, b,) from the countable family {7, } deﬁned in Section 4. Take ke N (k>k,)
so that ¢<r, <1, where {r,} is the sequence introduced in Section 2. Let 8 satisfy

0<0<p0 min {rk+1—rka rk+2_rk+1}’

where p,=min {p(t, X(¢))|? el }. Evidently p,>0. Since U,,, G,,,,, and G, are
Hausdorff continuous at (z, %(z)) € D, there exists a d, 0<<d<min {a, R}, such that
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6.1) WU, (t, ), U, (z, 5(2)))<6/4
(6'2)s h(Gs(ts u)> Gs(fs i(7'-))) <0/4 (S: Pyt T 2)3

for all (¢, u) € S((z, %(¢)), d)CD,. We have U,,, (t, )="U, (t, )+ (ry..—r)H(Z, u),
(t, u) e D. From this (for (¢, u)=(z, £(z))), observing that H(z, X(z)) D p(z, X(z))SD
oS and py(ry,,—7:) >0, we obtain

(6.3) U,,.(z, %(2) D U, (z, %())+0S.
Similarly 7
64 G,,..(t, X(2)DG,,, (z, () +05S.

From (6.2),,,,, (6.4) and (6.2),,,, it follows
Gty )+ S DG (o, M) DGl %)+ 5+2-608
SG,, (1, )+ 0S=G,,, (t, )+ s+ 25
R 2°7%

and, by Radstrdm cancellation rule [21],

65 Grult: DG, 1)+ % S for each (1, u) & S((z, %)), ).

Now, set

(6.6) @) =Fanle S LS,

where F,(t, u)=f(t, )+ r[F(t, )— f(t, )], (t,u) e D, 0<r<1. Observe that for
each «>0 we have

G,(t, uy=co F,(t, u)Cco F,(t, u)+aS.

From (6.6), by virtue of (6.2),,,, and (5.5), we obtain
C(z, ) Cco F,,, (v, %)+ % SCG,,, (c, X))+ LZ: S
CG,,,.(, u)-{-%S-—i—%SC G, (t, )
and hence

67  Clc, (2)CintG,,,(tu)  for each (¢, u) € S((z, £(z)), d).
On the other hand (6.3) implies o
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~ 7 - /) /)
w( U, (z, X(T))+ZS’ oU,, (s, x(T))‘i‘ZS >‘Z

From (6.1) one has U, .(t, u)C U, (z, (2))+(0/4)S, (¢, u) € S((z, %(z)), d), while from
(6.6)

C(z, () C f(z, K@)+ 1o lF (e, 3(2)— f(z, f(r»]+%s

C Az, K@)+ e 0U(r, 5@ — Sz, x(r))]+-—§s

=9U,,, (z, X(z))+ %’S,
thus
(6.8) w(U, (t, u), C(z, %()))> _Z_ for each (1, u) € S((z, #(2)), ).

Now we are ready to construct the functions x.; enjoying the properties stated in
Proposition 5.1. Let %, z, I, r,, 6 be as at the beginning of the proof. Recall that
on the interval I, =(b,, b,) the function % e 7",, has constant derivative, say &; in

particular at the point = € I, we have )'C:(T)zc. Evidently v*,, C7",,, being k> k,,
thus X € ¥7,,. Therefore ¢ € int G, (¢, X(z)).. Since

G, (7, (@) C Gy, (7, H(2))Coo F,, (7, X(2))+ %S
=co [F,Hl(z', X))+ % S] =co C(z, X(7)),

it follows that & can be expressed as a convex combination of points
(6.9) z,e C(e, #(2))  i=1,2, --+,n,

that is, £§=2 7., gz £, >0, 27 =1, Let

. d 3

0<5<mn{ LS, -b,b—}
e TG Y SV AR

where M is defined in Section 2 (hypothesis iii). For each 0<{§<(4,, consider the

closed interval J,;=[r—d, t+4], which is contained in I,. Devide J,, into n

nonempty pairwise disjoint intervals J¥CJ,, such that m(J¥)=pm(J. ;) (i=1,2,

ee,n),and JFUJFU - - UJF=J, ;. Define

(6.10) x,,a(z)—_~x(f—5)+f 0us)s, 0. f1Y=3120nt) ted.,
T—30 i=1
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To complete the proof it remains to be shown that x.; satisfies (5.3)~(5.6).
Let us prove (5.4). We have ‘

x e+ ==+ [ 0, )ds=(—0)+ 3 zm(T?)
—%(e—3)+ (Zl yizi)m(J,,,,) — %(c—3)+Em(J,.,)
:3?(?——5)4—]‘1?s % (8)ds = F(c+9).

Evidently x, ,(z —6)=X(r—9), thus (5.4) is true.
Let us prove that x, , satisfies (5.3) a.e.. Observe that for each ¢ € J, ; we have
|t—7|<d, and

6.11) 1. o) — H(O)| <[ %, o8 — e — ) |-+ (e —8) — H(1) | <45 M.

Since < 3,<d and 45M<d, it follows |

(6.12) (t, x..41)) € S((z, %(7)), d) for each t € J, ;.

Taking into consideration (6.10), (6.9), (6.12)3 and (6.7) we obtain
x.,t) e C(z, X(r))Cint G,, (1, x, 1))

for t e J, ; a.e., thus also (5.3) is satisfied.

The inequality (5.6) follows from (6.11), because 6 <e/(6M).

Finally let us consider (5.5). Observe that (6.12) and (6.8) imply that, for each
te J,; the sets U, (¢, x. () and C(z, X(r)) have empty intersection. Thus, by virtue
of (6.10) and (6.9) we obtain x_,(¢) ¢ U, (2, x. (2)), that is

xr,&(t)—f(ta xr,&(t)) ¢ rk[U(t9 xr,ﬁ(t))'“f(t’ x'z,&(t))]:rkH(t’ xr,ﬁ(t))a

for te J.;a.e.. Hence also (5.5) is satisfied. This completes the proof of Proposi-
tion 5.1.

§7. A singular example of a multivalued differential equation

This section is devoted to the proof of Theorem 2.5. From now on, X will
denote the real (infinite dimensional) Hilbert space /. S, S stand respectively for
the unit balls S(0, 1), S(0, 1) in X. The space Rx X is supposed to be endowed
with norm | (¢, x)|=max {|¢], | x|}, (¢, x) e RXX.

To prove Theorem 2.5, we establish some lemmas.

Lemma 7.1. Let 0<d,<l. Then there is a denumerable set E={e;}CaS
satisfying the properties: (,) |e;—e;|>d,, if i =j; (a;) 0SCE+4dS for each d>d,;



The Baire Category Method in Existence Problems 153

(a,) for each d such that d,<d<1, one has (1—d)S Cco E, that is coE ¢ A.

Proof. Let 0<d,<l. Let E:{él, &,, - - -} be a denumerable dense subset of
8S. We associate to E the family {S(Z,, d,)}, which is a denumerable closed covering
of 8S. Set e,=¢,. Hence define e,=é&,,, where i, is the smallest integer i >1 such
that &, ¢ S(e,, d;). Similarly e;=¢&,,, where i, is the smallest integer i >i, such that
&, ¢ S(e;, d)) U S(es, dy). Continuing in this manner one obtains a countable set E =
{es, €5, - --}CdS. (The proof that E is actually denumerable is postponed). It is
evident that E satisfies (a,). To prove (a,), let d>d, and consider any x € 3S.
Choose &, ¢ E such that |x—&,|<<d—d,. From the construction of E, there exists
on e; € E such that |&,—e;|<<d,. Then |x—e;|<|x—8&,|+|8,—e;|<(d—d,)+d,=d,
and so xe S(e;,d). Since x € dS is arbitrary, one has S CE-}dS, and (a,) is
proved. Consider (a,). From S CE+dS (d,<d<1), it follows S cco E-+dS,
thus (1—d)S+dS Cco E+dS. Hence, by Radstrom cancellation rule [21], co ED
(1—d)S, thus co Ee 4. Since co E has nonempty interior and X is infinite dimen-
sional, it follows that X is denumerable. This completes the proofs.

Lemma 7.2. Let g: RX X—X be continuous. Let e>0. Then there is a 6,>0
such that, for each 0<5<0,, there exists a function f;: RX X—X satisfying the
Jfollowing properties:

(bl) f;?(oa 0) =g(0’ 0)’ andﬁ(ta x):g(ta x) when (1, x) ¢ S((O» O)a 0);

(by) | fi(t, x)—g(t, x)|<e for each (t, x) e RX X;

(by) for each u e (9/3)S, the Cauchy problem x= fi(t, x), x(0)=u has no solu-
tion.

Proof. By Godunov’s theorem [13] there exists a continuous function g,: R X
X—X, with g«(0,0)=0 (x € X), such that the Cauchy problem x=g(z, x), x(0)=u
has no solution whatever may be v € X. As in [20], define g,: RX X—X by g,(¢, x)
=gy, x—bt)+b (b=g(0, 0)) for each (z, x) e RX X, |and observe that the Cauchy
problem x=g,(¢, x), x(0)=u has no solution whatever may be u ¢ X. In fact, if there
were a solution x: I,— X, I,=(—c, ¢), ¢ >0, then x would satisfy x(¢) =g,(¢, x(¢) —bt)
+b for every t € I,, and x(0)=u. Thus the function z: I,—X given by z(¢)=x(t) —
bt, t e I,, would be a solution of the Cauchy problem x=g, (¢, x), x(0)=u, a con-
tradiction. Now, take ¢>0. Since g and g, are continuous and assume at (0, 0)
the same value b, there exists a d, >0 such that

lg(t, x)—b|<ef2, |g,(t, x)—b|<e/2 for each (¢, x) € S((0, 0), 5,)-
For each fixed 0<<§<d,, consider the function ¢; defined by

g,(t, x) if (¢, x) € S((0, 0), 5/3)

(Pﬁ(ta x) = { . _
g(, x) if (¢, x) € S0, 0), G)\S((0, 0), (2/3)9).-
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Clearly ¢, is defined on a closed set 4CS((0, 0), d), is continuous, and satisfies
l@s(t, x)—b|<e/2 for each (¢, x) € 4. By Dugundji’s theorem [9, p. 188], ¢; admits a
continuous extension f; defined on S((0, 0), d), and satisfying | f;(z, x) —b|<e/2, for
each (¢, x) € S((0, 0), 8). Putting fi(¢, x)=g(¢, x) outside S((0, 0), §), one has that f;
is continuous all over RX X. It is straightforward to verify that f; satisfies (b,)—(b,).

Lemma 7.3. Let E={e;}C0S be a denumerable set satisfying the properties (a,)
and (a,) of Lemma 7.1 (with 0<d,<1). Let {e;} be a strictly decreasing sequence of
positive numbers e, converging to zero, such that 0<e,;<min {(1 —d,)/2, d,/4}. Then
there exists a strictly decreasing sequence {3;} of positive numbers &,, converging to
zero, and there is a sequence { f;} (fi=1;,) of functions f,: R X X —X such that:

(c) |fi(t, x)—e;|<e; for each (t, x) e RX X, (0, 0)=e,;

- (c)) for every i,je N (i+Jj), we have | fi(t, x)— fi(t, X)|>d,/2 for all (t,X)e R
X X; ,
(c)) the family { f} is equicontinuous at each point (t, x) € R X X;
(c) for each u e (6,/3)S, the Cauchy problem

(7.1) xX=fi(t, x), x(0)=u
has no solution.

Proof. Let {g,} be a sequence of functions g,: RX X—X which are equicon-
tinuous at each point (7, x) € RX X and satisfy |g,(¢, x)—e,;|<e;/2, (¢, X) € RX X,
g0, 0)=e,. Evidently there do exist such sequences. By Lemma 7.2 (taking g=g,
and e=¢,/2) one can find a strictly decreasing sequence {J,} of positive numbers 4,
converging to zero, and a sequence {f;} of continuous functions f;: R X X—X such
that:

(1) f40, 0)=e,, and fi(t, x) =g.(t, x) when (¢, x) ¢ S((0, 0), 6,);

2) |ft, x)—gu(t, x)|<e;/2 for each (t, x) e RX X;

(3) for each u € (9,/3)S, the Cauchy problem (7.1) has no solution.

We shall verify that the sequence { f;} satisfies (c,)—(c,). In fact, by construction
[0, 0)=g,(0, 0)=e,; moreover for each (7, x) e R X X we have

|f;l(t’ x)_ei[£|f‘i(t> x)—gi(ts x){‘l—lgz(ts x)_eil<5i/2+5i/2=5ia

and so (c,) is true. Also (c,) is satisfied because, for any i+ (i,j € N) and (¢, x) €
R X X, we have

|fit, )= fi(t, X) | =] es— 5| — e — ;> dy — 2(dy/4) =y 2.

To prove (c;), fix a point (7, X)~(0, 0). Take i, € IV such that (7, %) ¢ §,S for each
i>1i,. This is possible for §,—0 as i—-+oco. Hence there is a §,>>0 such that for
all (¢, x) e S((7, %), 6,) we have fi(t, x) =g.(t, x) (i >i,) and thus, since {g,} is equicon-
tinuous at (7, X) also {f;} is so. Now, suppose (7, £)=(0,0). Let ¢>0. Since
g;—0 as i— - oo, by virtue of (c,) there an i, € N such that, whenever i >i,, we have
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| fi(t, x)—e;|<e for every (¢, x) e RXX. From this and the continuity of the func-
tions f; (1<i<i,), it follows that {f;} is equicontinuous also at (0, 0). Hence (c,) is
true. Since (c,) is trivially fulfilled, the proof is complete.

Remark 7.1. Let the hypotheses of Lemma 7.3 be satisfied. Let {f;} be a
sequence of functions f;: RX X —X satisfying properties (c,)—(c,), whose existence
has been established in Lemma 7.3. Define F: RX X —X" by

(7.2) F(, x)=[_] i, %), (X eRXX.

Observe that from (c,) and (c,) it follows that F is a Hausdorff continuous multifunc-
tion with values F(¢, x) € . In addition, as consequence of (c,), one has that
h(F(z, x), 0)<2 for each (¢, x) e R X X.

The following lemma has been proved in [8].

Lemma 7.4. In addition to the hypotheses of Lemma 1.3, suppose that ¢, is such
that 0<e,<d?%/384. Then there is a Hausdorff continuous multifunction U: RX X —%#
satisfying oU(t, x) N co F(t, x)=F(t, x), for each (t, x) € R X X.

Now we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Let E={e,}CdS and {¢,;} be as in Lemma 7.3. In addi-
tion, suppose that ¢, is such that 0<<e,<d3/384. Consider the multifunction F: R X X
—" defined by (7.2). Clearly F is Hausdorff continuous and satisfies (jjj). Proper-
ties (jv) and (v) follow from Lemma 7.3 (c;) (c,), while (jj) follows from Lemma 7.4.
Now, let us prove (j). Let (¢, x) e RXX. By Lemma 7.3 (c,), we obtain A(F(Z, x),
F(0,0))<e, and so E=F(0,0)CF(t, X)+&S. Set d=(1+d,)/2. Since d >d,, by
Lemma 7.1 (a,), we have 3S C E+dS C F(t, x)+(e;+d)S, which implies

Scco F(t, x)+ (e, +4)S.

Note that &, +d<<(1—d,)/2+(1+dy)/2=1. Replacing S by (,4+d)S+(1—&—d)S
on the left hand side of the above inclusicn, and using the Radstrém’s cancellation
rule [21], we obtain co F(f, x) D(1—e—d)S. Hence co F(t, x) € # and, since (Z, x)
€ R X X is arbitrary, also (j) is satisfied. Finally (vj) follows by Theorem 2.4, since
F satisfies (j)~(jjj). This completes the proof.
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