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Recurrent Solutions for Linear Almost Periodic Systems
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In this note, we shall show the following:

Theorem. The sum of recurrent solutions of a linear almost periodic system is not
necessarily recurrent.

Define the set $BU$ by
$BU=$ {$f(t):R¥rightarrow R^{n}$ ; $f(t)$ is bounded and uniformly continuous on $R$ },

where $R=(-¥infty, ¥infty)$ . It is known that the set $BU$ is a real linear space if we define
the sum of functions $f(t)$ and $g(t)$ in $BU$ by$f+g=f(t)+g(t)$ for $t¥in R$ .

Define the set $RE$ by
$RE=$ {$f¥in BU;f(t)$ is recurrent},

where a function $f(t)$ is said to be recurrent, if for any $¥epsilon>0$ and compact set $S¥subset R$,
there exists a $T(¥epsilon, S)>0$ such that for any $t¥in R$ and $a¥in R$, there exists a $¥tau¥in[a,$ $a+$

$T(¥epsilon, S)]$ such that $|f(t+u)-f(¥tau+u)|<¥epsilon$ for all $u¥in S$, where $|¥cdot|$ is the Euclidean norm
of $R^{n}$ . The concept that a function $f(t)$ is recurrent corresponds to the concept that
the motion $¥pi(t,f)=f_{t}=f(t+s)$, $s¥in R$ , in the dynamical system defined on $ R¥times$ (metric
space $C([R, R^{n}])$ introduced by the compact open topology) is recurrent (refer to [2]).
It is known [1] that the set of recurrent functions is not a linear space. On the other
hand, the sum of recurrent solutions for the linear periodic system is recurrent by
Floquet Theory.

Proof of Theorem. Let $A(t)$ be an $n¥times n$ matrix and a continuous, almost peri-
odic function, $p(t)$ be an $¥mathrm{R}^{¥mathrm{n}}$-valued, continuous, almost periodic function and let
$H(¥mathrm{A})$ be the hull of $A(t)$ , that is, $B(t)¥in H(A)$ means that for a sequence $¥{t_{k}¥}$ ,
$¥mathrm{A}(t+t_{k})¥rightarrow B(t)$ as $ k¥rightarrow¥infty$ uniformly on $R$ .

Consider the systems

(1) $¥dot{x}=A(t)x$

and

(2) $¥dot{x}=A(t)x+p(t)$,

and we assume that System (2) has a bounded solution defined on [0, $¥infty$ ). It is
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known [3] that System (2) has a solution $u(t)$ with the minimal norm, that is, $u(t)$ is
defined on $R$ and

$¥sup_{t¥in R}|u(t)|=¥inf$ { $¥sup_{t¥in R}|v(t)|$ ; $v(t)$ is a bounded solution of (2) defined on $R$}
$=¥lambda<¥infty$ .

Let $H(u)$ and $H(u, A+p)$ be the hulls of $u(t)$ and $(u(t), A(t)x+p(t))$ , respec-
tively, that is, $(w(t), B(t)x+q(t))¥in H$($u$ , A $+p$) means that for a sequence $¥{t_{k}¥}$ ,
$u(t+t_{k})¥rightarrow w(t)$ as $ k¥rightarrow¥infty$ uniformly on any compact interval in $R$ and $A(t+t_{k})x+$

$p(t+t_{k})¥rightarrow B(t)x+q(t)$ as $ k¥rightarrow¥infty$ uniformly on $R¥times S$, $S=¥{x¥in R^{n} ; |x|¥leqq¥lambda¥}$ . By [3],
$w(t)$ is a solution of

(3) $¥dot{x}(t)=B(t)x+q(t)$

defined on $R$ and satisfies $¥inf_{t¥in R}|w(t)|=¥lambda$ . We can show that if $(w^{1}, B+q)$ and
$(w^{2}, B+q)$ are in $H(u, A+p)$, then $¥inf_{t¥in R}|w^{1}(t)-w^{2}(t)|=0$ . In fact, $x(t)=¥{w^{1}(t)+$

$w^{2}(t)¥}/2$ is a solution of (3) and $y(t)=¥{w^{1}(t)-w^{2}.(t)¥}/2$ is a solution of the homoge-
neous system

(4) $¥dot{x}=B(t)x$.

Clearly, $¥inf_{t¥in R}|x(t)|¥geqq¥lambda$ . We have

$|x(t)|^{2}+|y(t)|^{2}=¥{|w^{1}(t)|^{2}+|w^{2}(t)|^{2}¥}/2¥leqq¥lambda^{2}$

for all $t¥in R$ . If $¥inf_{t¥in R}|y(t)|¥geqq¥delta>0$ , we have $¥{¥sup_{¥iota¥in R}|x(t)|¥}^{2}¥leqq¥lambda^{2}-¥delta^{2}<¥lambda^{2}$ , which is a
contradiction.

Bender [2] has shown that System (3) has a recurrent solution $z(t)$ in $H(u)$ . Let
$(r^{1}, B+q)$ and $(r^{2}, B+q)$ be in $H(z, A+p)$ . It is known that iff(t) $¥in RE$, then every
function $g(t)$ in $H(f)$ is in $RE$ (Lemma 3.2 in [2]). Hence $r^{1}(t)$ and $r^{2}(t)$ are recur-
rent solutions of (3) that satisfy $¥inf_{t¥in R}|r^{1}(t)-r^{2}(t)|=0$ . Therefore there exists an
$(s, C)¥in H(r^{1}-r^{2}, B)$ and a sequence $¥{t_{k}¥}$ such that $¥lim_{k¥rightarrow¥infty}|r^{1}(t_{k})-r^{2}(t_{k})|=0$, $r^{1}(t+t_{k})$

$-r^{2}(t+t_{k})¥rightarrow s(t)$ as $ k¥rightarrow¥infty$ uniformly on any compact interval in $R$ and $ B(t+t_{k})¥rightarrow$

$C(t)$ as $ k¥rightarrow¥infty$ uniformly on $R$ . Since $s(t)$ is the solution of $¥dot{x}=C(t)x$ through (0, 0),
$s(t)=0$ for all $t¥in R$.

Assume that the solution $r^{1}(t)-r^{2}(t)$ of (4) is in $RE$. It is known that if
$f(t)¥in RE$, then $f¥in H(g)$ for every $g¥in H(f)$ (Lemma 3.3 in [2]). Hence we have
$r^{1}(t)=r^{2}(t)$ for all $t¥in R$, because $s(t)¥in H(r^{1}-r^{2})$ , which implies that for every $ B+g¥in$

$H(A+p)$, System (3) has only one solution in $H(z)$ . By Theorem 5 in [4], System
(2) has an almost periodic solution. However, Johnson’s example gives a contradic-
tion, that is, Johnson [5] has shown that there exists a scalar, almost periodic system
$¥dot{x}=a(t)x+b(t)$ which admits bounded solutions, but no almost periodic solutions.

The author thanks the referee for some very helpful comments and suggestions.
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