Funkcialaj Ekvacioj, 28 (1985), 117-119

Recurrent Solutions for Linear Almost Periodic Systems

By

Yoshiyuki HINO

(Chiba University, Japan)

In this note, we shall show the following:

Theorem. The sum of recurrent solutions of a linear almost periodic system is not necessarily recurrent.

Define the set BU by

 $BU = \{f(t): R \to R^n; f(t) \text{ is bounded and uniformly continuous on } R\},$ where $R = (-\infty, \infty)$. It is known that the set BU is a real linear space if we define the sum of functions f(t) and g(t) in BU by f + g = f(t) + g(t) for $t \in R$.

Define the set *RE* by

 $RE = \{f \in BU; f(t) \text{ is recurrent}\},\$

where a function f(t) is said to be recurrent, if for any $\varepsilon > 0$ and compact set $S \subset R$, there exists a $T(\varepsilon, S) > 0$ such that for any $t \in R$ and $a \in R$, there exists a $\tau \in [a, a + T(\varepsilon, S)]$ such that $|f(t+u) - f(\tau+u)| < \varepsilon$ for all $u \in S$, where $|\cdot|$ is the Euclidean norm of R^n . The concept that a function f(t) is recurrent corresponds to the concept that the motion $\pi(t, f) = f_t = f(t+s), s \in R$, in the dynamical system defined on $R \times ($ metric space $C([R, R^n])$ introduced by the compact open topology) is recurrent (refer to [2]). It is known [1] that the set of recurrent functions is not a linear space. On the other hand, the sum of recurrent solutions for the linear periodic system is recurrent by Floquet Theory.

Proof of Theorem. Let A(t) be an $n \times n$ matrix and a continuous, almost periodic function, p(t) be an \mathbb{R}^n -valued, continuous, almost periodic function and let H(A) be the hull of A(t), that is, $B(t) \in H(A)$ means that for a sequence $\{t_k\}$, $A(t+t_k) \rightarrow B(t)$ as $k \rightarrow \infty$ uniformly on \mathbb{R} .

Consider the systems

$$(1) \qquad \qquad \dot{x} = A(t)x$$

and

$$(2) \qquad \dot{x} = A(t)x + p(t),$$

and we assume that System (2) has a bounded solution defined on $[0, \infty)$. It is

Y. Hino

known [3] that System (2) has a solution u(t) with the minimal norm, that is, u(t) is defined on R and

 $\sup_{t \in \mathbb{R}} |u(t)| = \inf \{ \sup_{t \in \mathbb{R}} |v(t)|; v(t) \text{ is a bounded solution of (2) defined on } R \} = \lambda < \infty.$

Let H(u) and H(u, A+p) be the hulls of u(t) and (u(t), A(t)x+p(t)), respectively, that is, $(w(t), B(t)x+q(t)) \in H(u, A+p)$ means that for a sequence $\{t_k\}$, $u(t+t_k) \rightarrow w(t)$ as $k \rightarrow \infty$ uniformly on any compact interval in R and $A(t+t_k)x+p(t+t_k) \rightarrow B(t)x+q(t)$ as $k \rightarrow \infty$ uniformly on $R \times S$, $S = \{x \in R^n; |x| \leq \lambda\}$. By [3], w(t) is a solution of

$$\dot{x}(t) = B(t)x + q(t)$$

defined on R and satisfies $\inf_{t \in R} |w(t)| = \lambda$. We can show that if $(w^1, B+q)$ and $(w^2, B+q)$ are in H(u, A+p), then $\inf_{t \in R} |w^1(t) - w^2(t)| = 0$. In fact, $x(t) = \{w^1(t) + w^2(t)\}/2$ is a solution of (3) and $y(t) = \{w^1(t) - w^2(t)\}/2$ is a solution of the homogeneous system

Clearly, $\inf_{t \in R} |x(t)| \ge \lambda$. We have

$$|x(t)|^{2} + |y(t)|^{2} = \{|w^{1}(t)|^{2} + |w^{2}(t)|^{2}\}/2 \leq \lambda^{2}$$

for all $t \in R$. If $\inf_{t \in R} |y(t)| \ge \delta > 0$, we have $\{\sup_{t \in R} |x(t)|\}^2 \le \lambda^2 - \delta^2 < \lambda^2$, which is a contradiction.

Bender [2] has shown that System (3) has a recurrent solution z(t) in H(u). Let $(r^1, B+q)$ and $(r^2, B+q)$ be in H(z, A+p). It is known that if $f(t) \in RE$, then every function g(t) in H(f) is in RE (Lemma 3.2 in [2]). Hence $r^1(t)$ and $r^2(t)$ are recurrent solutions of (3) that satisfy $\inf_{t \in R} |r^1(t) - r^2(t)| = 0$. Therefore there exists an $(s, C) \in H(r^1 - r^2, B)$ and a sequence $\{t_k\}$ such that $\lim_{k \to \infty} |r^1(t_k) - r^2(t_k)| = 0$, $r^1(t + t_k) - r^2(t + t_k) \rightarrow s(t)$ as $k \rightarrow \infty$ uniformly on any compact interval in R and $B(t + t_k) \rightarrow C(t)$ as $k \rightarrow \infty$ uniformly on R. Since s(t) is the solution of $\dot{x} = C(t)x$ through (0, 0), s(t) = 0 for all $t \in R$.

Assume that the solution $r^{1}(t) - r^{2}(t)$ of (4) is in *RE*. It is known that if $f(t) \in RE$, then $f \in H(g)$ for every $g \in H(f)$ (Lemma 3.3 in [2]). Hence we have $r^{1}(t) = r^{2}(t)$ for all $t \in R$, because $s(t) \in H(r^{1} - r^{2})$, which implies that for every $B+g \in H(A+p)$, System (3) has only one solution in H(z). By Theorem 5 in [4], System (2) has an almost periodic solution. However, Johnson's example gives a contradiction, that is, Johnson [5] has shown that there exists a scalar, almost periodic system $\dot{x} = a(t)x + b(t)$ which admits bounded solutions, but no almost periodic solutions.

The author thanks the referee for some very helpful comments and suggestions.

118

References

- [1] Auslander, L. and Hahn, F., Real functions coming from flows on compact spaces and concepts of almost periodicity, Trans. Amer. Math. Soc., **106** (1963), 415–426.
- [2] Bender, P. R., Recurrent solutions to systems of ordinary differential equations, J. Differential Equations, 5 (1969), 271-282.
- [3] Favard, J., Leçons sur les Fonctions Presque-periodiques, Gauthier-Villars, Paris, 1933.
- [4] Hino, Y., Stability and existence of almost periodic solutions of some functional differential equations, Tōhoku Math. J., 28 (1976), 389-409.
- [5] Johnson, R. A., A linear, almost periodic equation with an almost automorphic solutions, Proc. Amer. Math. Soc., 82 (1981), 199-205.

nuna adreso: Department of Mathematics Chiba University Chiba, 260 Japan

(Ricevita la 17-an de januaro, 1984) (Reviziita la 26-an de marto, 1984) (Reviziita la 31-an de majo, 1984)