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Perturbation Method for Linear Periodic Systems III
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§1. As we indicated in the paper [2], the problem to obtain Floquet represen-
tation of a fundamental matrix of linear periodic systems

Xx=A(t)x, xeC", teR, '=dldt

can be reduced to find a nondegenerate periodic solution of a matrix differential
equation

(1) U=A(@t)U—UA(t).

(Here nondegeneracy of a matrix means that the eigenvalues belonging to different
Jordan blocks of its Jordan’s normal form are mutually different). However, since
it is difficult to solve (1) in general, we condider only the case when A(¢) is, in a
sense, sufficiently close to a constant matrix.

First we define two kinds of norms of a matrix to be used in this paper. For
an arbitrary matrix [A;,(¢)] with continuously differentiable entries #,,(¢), we define

(0] )}=sp max 3 (1)
and
1PN = Tres O+ e

Now let te R, ee C, and A(t,¢) be an n-by-n matrix with complex-valued
entires satisfying the following conditions:

(i) A(z, ¢) is continuously differentiable and periodic in ¢ with period T,

(ii) A(t, &)= 7 o A(t)e*, and A(t, &)= 7 , A.(t)e* are convergent when |e| is
small, and

I”Ak(t)||l<a(0_k’ k=0, 19 27 M)
where « and p are constants,
*10
(iii) A,=A4,0)= .
0 .1
2
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The aim of this paper is to get a recurrence formula for constructing a nondegenerate
periodic solution of

(2). U=A(t, ) U— UA(t, ¢).

The process follows the same outline as is indicated in [3] where (2), was considered
under the assumption

and

11
Ay =
0 2

instead of (iii). [First we show that the existence of a nondegenerate periodic solu-
tion U(z, ¢) of (2). with a condition

U(t, 0)=Uy?)

where Uy(t) is a nondegenerate periodic solution of (2), (§2). Next we determine a
nondegenerate periodic solution formally and finally show its convergence (§§ 3-5).
Throughout this paper, we assume 7T=2r for simplicity. Obviously this as-

sumption does not harm any generality. Also, regarding the indefinite symbol .[, we

adopt a following convention:

1 o
et t 0
(3) [erae=d” i

t if p=0.
§2. In this section we prove the following lemma.

Lemma. For an arbitrary nondegenerate periodic solution Uyt) of (2),, there
exists a nondegenerate periodic solution of (2), such that

U(t, 0)=Uy¢)
if |e| is sufficiently small.
Proof. The general solution of (2), has the form such as
U(t, )= X(t, )C X, &)

where X(¢, ¢) is a fundamental matrix of the system
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X=A(t, e)x

and C(e) is a matrix holomorphic in ¢ and independent of 7. Therefore U(t, ¢) is
periodic in ¢ if and only if

M()C(e)= C(e)M (¢).
Since U(t, 0)= Uy(¢), we should have
CO)=C,

if Uy(t)=X(t, 0)C,X(z, 0)-*. Therefore it is sufficient to show the existence of a holo-
morphic matrix C(e) such that

M(@ECle)=C(e)M (e
“ [roee—conm

M,=M(©O
. (M, =M(0)

for the proof of this lemma.
For simplicity, we choose X(¢,0) whose monodromy matrix has been already
reduced to Jordan’s normal form. Namely, if we put

o1 9
H=l o)
0 0
then
M,=e=1+H.

The solution of (4) satisfies

(5) {(M (e) — e NC(e)= C()(M () — &™)

HC,=C,H

and the solution of (5) also satisfies (4). So we may solve (5) instead of (4).
Now put

M,=H, M(E):EOM"E’C’ C(e)zgocke"

in (5), then
( 6 ) ‘ M0C0= CoMo

k-1
(7) Mock—CkM0: ZO (Cqu—q'_Mk—-qu)
=



106 1. TsukaMoTo
From (6),
n~1
Co=c I+, ¢, . H"
r=1

where c, are scalars. If we denote the solution of (5) by C,(¢) in case of C,=H",
r=1, -..,n—1, then

n—1
Ce)=cl+ Z_:l ¢, +1C(e)

satisfies (5) in case of C,=c,J+> "-lc,, H’”. So it is sufficient to show the ex-
istence of the solution of (5) under the assumption C,=H*, s=1, - --, n—1.
Now we claim that

(8) C= 2. M, --M

Ds
Pr+ece+ps=k

(k=0,1,2, --+)

satisfy (6) and (7). In fact if k=0, then (8) is compatible with the assumption C,=
Hs (s=1, ---,n—1). If k=1, then from (7) we obtain

(9) MOCI—CIMOZMSMI—MIMS;

and direct calculation shows (9) has a solution

s—1
C,= >, Mm---Mps:Z_E)Mg‘I‘TMIMOT.

p1+“'+p8=1

This implies that (8) satisfies (7) if k=1. Next we assume that (8) satisfies (6) and
(7) for k=0, - --,j. Then from (7) and the hypothesis of induction we have

MOCj+1'_Cj+1Mo

J
= Z (CTMj+1—T—Mj+1-TCT)
=0
J
=2{C 2 M, MM, ,—M;.,..( 2. M, --M,)}
7=0 Pprtec-+ps=7 Pitecct+ps=7
= Mpl' "Mps+1_ . Mpl"'Mps+1
{P1+---+ps+1=j+1 {p1+-'-+ps+1=.7+1
DPs+170 p1#0
= Z Mpl"'Mps+1_ Mpl"'Mps+1
Di+eeetpst1=7+1 Prteec+ps1=7+1
1705 ps+17#0 D1#0; Ds+1%0
s
q . e — e q
+2. (M 2. M,.---M,_ ., 2. M,.--M, M)
g=1 Prtece+Ps—g+1=7+1 Pr+cectPs—gr1=7+1
D1#0; Ps—q+1%0 P1#0; Ps—g+170
s
— aq ... —_ R q
=> (M >, . My ---M, ... _ M, - -M,_ . M.
q=1 D1+eer+Ps—gi1=j+1 Plteeet+Ps_gr1=j+1
DP1#0; ps—g+1%0 P1#0; Ps—gq+150

Since we may regard M, in (9) as an arbitary matrix, we can replace M, by
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) M}n' : 'Mps—q+1
Prt s+ Ds—gr1=7+1
2170; ps—q+170
and s by ¢ in (9). Thus we obtain
s g-—-1 1
f— g—1-7 T
Ciii=2, M3 >, . M, - -M,_ . M
g=1r=0 Prteect+Ds—gr1=7+1
01%#0; Ds—g+1#0
- M,---M,,

Prteer+ps=j+1

Since M(e)=> 7, M,e* is convergent, there exist constants & and y such that

HMkHSSW"“
Therefore
A D N e (i e
Pre+ps=k k
and
LA
ko || Cyps |

Consequently C(e)=>_5_, C,e* defined by (8) converges for |¢|<<7 and the proof is
completed.

§3. Here we put formally

U(t, &)= ,{i U (t)e*

and substituting this into (2). then we obtain

(10) U,=A,U,— U,A,
(11) Uk:AOUk—UkA0+Fk(t)
(12) Fy(t)= z (AT, g —Us_AD).

Let X(z, ¢) be a fundamental matrix of a linear periodic system
x=A(t, e)x, xeC”
with an initial condition

X, o)=1
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Then, as was shown in [1], (11) is solved in a form:

(13) Uk(t)=Xo(t)[ X(1) F(O)Xo(t)dt + ck]Xoa‘)-l
where
X, ()=X(z, 0)

and C, is a constant matrix. Since C, is not uniquely determined, our main task in
this paper is to determine these C,’s properly.

Now we represent (11) by its elements. Since

210
4,= -,
..1
5 0 A
we obtain
EEr LA
. (n—1)!
Xy(t) =e* Lo
t
L O 1 .
and
1 (D
- n—1)!
X (1) =e 5
. 0 .. _—t
i 1 |

Suppose that, stating from some U(t), we can obtain U,(¢t) (r=1, ---,k—1) to
be periodic in 2. Then F,(¢) are obviously periodic and can be represented by con-
vergent Fourier series ‘

F, ()= i‘. F(m) exp (mv/ —1¢).
If we set
Fu(m)=[f$(m)]
then
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X)) 'Fu(1)Xy(1)

(=D k q1-1+j-qz v —
[m;—:w q1Z:z szzl (g.—D)!(J—q,)! fq(lq)z(m)t exp (m lt)]-

However, if p is a non-zero complex number and 7 is a nonnegative integer, then

[ rrertar— 33 DT

thert
ﬂ E+1

from our convention (3). Hence

jxo(t)-l () X(0)dt

_— S & . (_I)QI_i 2 (K q1—i+j~qe2 .
-2 & B G—DIG— qz)zfq(‘q)z(m)ft exp (my/ = D)t

:-I:ji i: (__1)q1 qu(lkq)Z(O) t(11-i+J'—lZz+1
a=i i2=1 (¢, — ) (j—g) (g1 —i+]—q+1)
o n J qi-i+j—qz
+ 2 2
m=—oo q1=% q2=0  g3=0
m+0

(=), —i] =B oy g =T
G D a0t TG xR G/ =T0)

and from (13)

) vo-[3 35 355
(_ )cn q4+J- Qs (k)(())

q192 tq1—¢+]’-¢12+1
(@.—D!'(—a)' (01— q)' (@ — ) (@ — 9+ 9 — ¢+ 1)
115 q1—Qq4+35—q2
NI DD
m=*—°° qs+=1% ¢5=1 q1=q4 q2=1 q3=0
(_‘l)j @ qa(ql—q4+Q5”—qZ)!ft;fcq)z(m)tqriﬂ—q“qa exp( /-—-ll)

2— (=) (@ —9)! (@s—q2) ! g5 (my/ — 1) 127 aav s aamaatd

+ i J (—1)/-9 e tcu—ﬂj—qs].
di=t as=1 (¢, —1)! (j—g5)!

If U,(¢) is periodic, then all terms including #%(¢>1) must vanish and hence

(15) . U=lg,@)+cf

where

®) (1) = (=1 (qs—i+]— )/ 2(m) exp (my/ —11)
g1 (t) =Z‘:°° ‘ZIZIZ 42}: (91—i)!(j_42)!(m\/“—l)qrﬂj_““ .

m=0
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Indeed, in (14) the first term must vanish, the second term appears only if ¢,=i,
q;=J, 4,=0, and the third term appear only if ¢,=1i, ¢,=j. Since linear terms of ¢
in (14) must vahish, we obtain

(16) FiPO) +ef—cfl =0,
where ¢{®;=0if i=n and ¢{¥ ,=0if j=1. From (16) we obtain
17 == 2 f B0 e =L
In fact if j=1, then from (16)
FPO) + ey, =
namely
= —F2 (0) @i=2, ---,n).
Therefore (17) is valid for j=1. If (17) is valid for j=1, - - -, r, then
FS2,(0)+ ¢y — e =0
and therefore
{2 rir= —f$.(0)— Z FiE)iq 04:00)

= —_qz=:0 fAi(1031+7' q+1(0)'

Namely
(18) cilﬁ)-e-l: - qzzzofi(f)(r+1)+q q+1(0) (l:r+2a R n)-

Therefore by induction (17) is valid.
Next we consider the case when i <j. Ifj—i=1+4r (r=0,1, ---,n—2), then

Zl+1+T(O)+c’L+1t+1+T tH-'r O l=19 M) n—r—1

from (16) and hence
Cyilz+1+r_cll+r_quq+l+'r(0)9 i=1, s, n—r—1L

Here we remark that c¢{¥,, cannot be determined. Changing the indices i+ 14r

and i+ 1 for j and 7 respectively, we obtain
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i-1
(19) ey =esi— 20 fePnas0), 2K

From (17) and (19)

cif eff el
EN—[6® .
[ciP1=[&{7(0)] + 0 ®
i’
where
i=1 . e
_‘q=0ft£(-l—c‘)7‘+q q+1(0) lfl>.]3
500 (0 — i-1
(20) g7O=1_%1 7w () ifi<jandi=2, ---,n,

g=1

0 ifi<j and i=1

From the form of X(¢), the undetermined part

% % %
e e e
: (&

0 oo
k

ci®

of C, is found to be commutative with X (¢). In what follows, we will denote this
undetermined part of C, by D,.

§4. In this section we shall show that D, (k=1,2, ---) can be taken to be
zero. The verification of this follows the same outline as in §5 of [3], and so we
shall state only the outline of the proof.

First we define operators as follows. For every matrix-valued periodic function

HO)=[ho0)=| 3 hum) exp /=11)],

we put
A H=AOHO—HOALD,  4=0,1, -+,
FH=X0)| [ X HOXOdr+ o) | X0

where
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O(H)=[p.,(H)]
S R en©® P>,

Z
oy (H) = _;\jl By oores a0 ifi<jand i=2, - -, n,
0 ifi<jand i=1,
and
Y, =% ot

Using these operators, U,(¢) can be expressed as
k

21 U(t)= ZO Z_ Dy (k=0,1,2, --4)
e

where

& (identity operator) if g=0,
171> 1%, ifg=1,2, ---.
Zp;=q ¢
In fact (21) can be shown by induction.
Next we shall show that secular terms of U,(¢) vanish for every D, belonging to
4 where 4 denotes the totality of the matrices of the form

C; Cyp-+-Cy
0o -.©
(&

Let Sy (t, D,) be secular terms of U,(t)=>% %, ,D,, and & be an operator
defined by

Sy(t, D) =FLF(t).
Then we have
St D)= 3, #(5, KD,
where

k=1
W(s, k)=3] Pl % g
q=s

- However by the same procedure stated in §2 of [3], we can show that #7(s, k) are
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null operators defined on 4. Therefore for every D, ¢ 4, the secular terms S,(z, D)
vanish.

Finally, we shall show that the formal solution 7, U,(¢)e* obtained by putting
D=0 (k=1,2, --.) does converge. Since secular terms vanish, we have

T F=[gH()+&{70)]

and hence
S 5 (g1 —i+j—q)! NE
T [mz 4 @) g |t o] 150
+@—=1) [[FD) ||
<BIIFDI
where
_ A 2, & (g —i+j—g)! .
P 2 WD 2 2 ()1 (=g oo
Moreover
”dfm 4 x0) [ x,0) F o)X (0)dt + BEFY) X, ()
@R <-4 [ X FOX0d+ 0ENX (D) |
<|| L ZF(2)+Fi(2)|
<QCaB+D || F(0)]]]-
Therefore
[|Z F < T || F(D)]]]
where
r=B+4+2aB+1.
However

k

[ Fell]< g]l M- MU o O < 25 2007 4[| Us— (0]

and therefore
N UON<|||ZF, (l‘)|H<TZ 2ap? ||| Uy— ((OII]-
If we choose

0 =||D
U< T+1 =D
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then

(22) MU <Ly~
In fact, if k=0, then (22) is evidently valid, and if (22) is valid for k=1, .- -, r—1,
then

NTOI<T 3, 2ap™ ey~

Szar_)?_/p___ﬂv_r
1—n/p

, <p’
Therefore > 7_, U,(t)e* converges for |e|<<p/(2at - 1).

§5. It follows from the hypothesis (i) in § 1 that (7, j)-elements a{®(¢) of A(¢)
can be expressed by uniformly convergent Fourier series such as

aP(t)=_3, 4f(m) exp (my'—11).

m=—co

By the discussion in the previosu sections we can put
———[gﬂ,sf)(())], k=1, 25 R

in (13) where £{¥(0) are defined by (20). If g{¥(m) denote Fourier coefficients of
£{¥(t), then from (12) nad (15), we have

5k o (=1’ q2(qr“‘l+] gz)! f 2(m)
23 éj) p— 9192 0 R
23) &5 (m) qlz—:—i qu=:1 (¢ — D' (j—q,)! (my/ —T)ar-i+i-aa+t (m+0)

=1 4
— S0 ® (>

5 () — i-1
(24) 87O=1_5 w0 0 (<) i=2 ---,n)
g=1
0 (i<Lj,i=1)
@) pem=3 3 30 {aipm)Es o m—m)— giO(m—m)ap )}

Substituting (25) into (23) and (24), we obtain the desired recurrence formula.

Theorem. Let there be given a matrix differential equation (2), with coefficient
A(t, &) satisfying (i), (ii) and (iii) in §1. Then we can construct a nondegenerate
periodic solution of (2),
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U= Un)et, U=l

by the following recurrence formula:

c Gy c,
o= :
0o .o

¢

where ¢y, - - -, ¢, are arbitrary constants which do not vanish at the same time.

epem= 51 3 3333 CDTai !

X{d g (m)g e P(m—my) —ggs O (m—my)a g (my)}

3

Py
I
|
8

-

IS
(3
)

1l

[
=

1

[y

@

I
[u
~

o)
-
~
\/
~~
~
N
0
\-/
3
[y
"
_
-
.
+
-,
)
)
+
-

if m=+0 and

k n oo
-2 212 ; {d{1)., o (mDEY A (—my) — g5 (—m)alsy (m,)}
@fi>j)
gR0)=1 S & & o (a0 5 (k—q1) 5 (kE—aq1)
- 2. 2. Z {a (ml)gsq+l+j (—m)— gL (—m,)d q+1+]+1(m1)}

(fi<jandi=2, ---,n)
(if i<jand i=1)

)

where §{%)(m) are Fourier coefficients of g{¥(t).
Moreover the nondegenerate periodic solution U(t, &)= ,v_o, U(¢)e* thus obtained
is valid at least for

< P
el 207+ 1
where
W e m s !
:maXZ Z Z Z ’(ql l"{".'] qq2) P —
RS 2B () g |
r=p8+2ap+1.

During the above discussion we obtain the following expression of a non-
degenerate periodic solution of (2)..

Corollary. For every matrix-valued periodic function
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H(f)=[ i hyy(m) exp(mx/——_Tt)],

m=—oco

define
oA H=A (t)H(t)—H(t)A, (1), g=1,2, ---
~S hsan® P>
P S by i) and =2,
0 ifi<j and i=1

oo ” 7 —1D (g, —{ -7 — 14
T B IOyt s e 50 O/ =T+ (D)
Y, =&,
> {E (identitity operator) if q=0
q Z ]—[@pi quzl,z’....

Zpi: q %

Then there exists a nondegenerate periodic solution expressed by
U(t, &)= >, Z D"
k=0

where Dy € 4 is a nondegerate constant matrix.
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