
Funkcialaj Ekvacioj, 26 (1983), 295-300

Absolute and Asymptotic Stability of Closed Sets

By

Roger C. MCCANN

(Mississippi State University, U.S.A.)

Introduction.

Absolute stability was originally defined by Ura using a prolongation, [10].
Auslander and Seibert showed that a compact subset $M$ of a locally compact metric
space is absolutely stable if and only if there is a continuous Liapunov function for
$M$, [1]. From this paper, if not earlier, until the present the appropriateness of a
stability concept is judged by whether it can be characterized in terms of Liapunov
functions.

Using a prolongation Hajek extended the concept of absolute stability to non-
compact sets, [4]. His results that are of interest here are:

Theorem A. Let $M$ be a subset of a phase space $X$ that is Hausdorff, para-
compact, and locally compact. Then $M$ is closed and absolutely stable ifand only if $M$
$=¥cap v_{i}^{-1}(0)$ for suitable Liapunov functions $u_{i}$ : $X¥rightarrow[0,1]$ .

Theorem B. Let $M$ be a subset of a phase space $X$ that is Hausdorff, para-
compact, and locally compact. Then a closed $G_{¥delta}$ set $M$ is absolutely stable if and only

if $M=u^{-1}(0)$ for some Liapunov function $l$) : $X¥rightarrow[0,1]$ . In particular, a cfosed subset
$M$ of a locally compact metric space $X$ is absolutely stable if and only if $M=v^{-1}(0)$ for
some Liapunov function $v:X¥rightarrow[0,1]$ .

In [7] the author characterized the absolute stability (in Hajek’s sense) of a
closed subset $M$ of a locally compact metric space in terms of the open positively
invariant neighborhoods of $M$. Specifically, such a set $M$ is absolutely stable if and
only if $M$ possesses a family $F$ of neighborhoods satisfying:

(i) If $U¥in F$, then $U$ is open and positively invariant.
(ii) $¥cap F=M$.
(iii) If $U¥in F$, then there is a $V¥in F$ such that $¥overline{V}¥subset U$ .

(iv) If $U$, $V¥in F$ are such that $¥overline{U}¥subset V$, then there is a $W¥in F$ such that $¥overline{U}¥subset W¥subset$

$¥overline{W}¥subset V$.

Notice that in all of these results the phase space is assumed to be locally
compact. This restriction prevents these results from being applied to dynamical or



296 R. C. McCANN

semidynamical systems that do not have locally compact phase spaces such as those
determined by Volterra integral equations ([8]), by functional differential equations
([2], [5]), or by differential equations without uniqueness ([9]).

We will give a definition that is equivalent to Hajek’ $¥mathrm{s}$ definition whenever tlie
phase space is locally compact and metric. With this definition of absolute stability
we will show that a closed proper subset $M$ of a connected Hausdorff space is abso-
lutely stable if and only if there is a Liapunov function for $M$. We then conclude
the paper with a characterization of asymptotic stability for such closed sets $M$.

Notation and Terminology.

A dynamical system on a topological space $X$ is a continuous mapping $¥pi$ of $X$

$¥times R$ onto $X$ satisfying the following axioms (where $ x¥pi t=¥pi$($x$ , $t$ )):
(1) $x¥pi 0=x$ for each $x¥in X$,

(2) $(x¥pi t)¥pi s=x¥pi(t+s)$ for each $x¥in X$ and $t$ , $s¥in R$ .

If, in the definition of dynamical system, $R$ is replaced by $R^{+}$ , the result is called a
semidynamical system. If $M¥subset X$ and $N¥subset R^{+}$ , then $M¥pi N$ will denote the set {$x¥pi t$ :
$x$ $¥in M$, $t¥in N¥}$ . A subset $M$ of $X$ is called positively invariant if $M¥pi R^{+}=M$.

A Liapunov function for a closed subset $M$ of $X$ is a continuous mapping $v$ of
a neighborhood $W$ of $M$ into $R^{+}$ such that $v^{-1}(0)=M$ and $u(x¥pi t)¥leq v(x)$ for each $x$ $¥in$

$W$ and $t¥in R^{+}$ .

Absolute Stability.

De finition 1. A closed nonempty subset $M$ of a Hausdorff space $X$, on which a
semidynamical system $¥pi$ is defined, is said to be absolutely stable with respect to $¥pi$ if
there exists a set $¥swarrow¥sigma^{-}$ of open, positively invariant neighborhoods of $M$ such that

(i) if $U$, $V¥in¥swarrow ¥mathrm{C}^{¥prime-}$ with $U¥neq V$, then either $¥overline{U}¥subset V$ or $¥overline{V}¥subset U$,

(ii) $¥cap¥swarrow^{¥varpi}=M$,

(iii) for each $ U¥in¥swarrow¥varpi$ , the set $¥{V ¥in¥swarrow^{¥varpi}: V¥subset U¥}$ is uncountable.

If $M$ is compact and $X$ is connected, locally compact, and metric, then this defi
nition is equivalent to the usual definition of absolute stability, [6].

Lemma 2. Let $X$ be a connected Hausdorffspace that satisfies the first axiom $o_{J}$

countability and let $N$ be a closed, nonempty proper subset of X. Let $G$ be a set $o_{J}$

open subsets of $X$ such that
(i) $N=¥cap G$,

(ii) if $U$, $V¥in G$ with $U¥neq V$, then $¥overline{U}¥subset V$ or $¥overline{V}¥subset U$ .
$ Tf¥iota$en there exists a countabfe subset $¥{U_{i}¥}$ of $G$ such that $¥overline{U}_{i+1}¥subset U_{i}$ , $N=¥cap U_{i}$ , and for
each $V¥in G$ there is an $i$ such that $¥overline{U}_{i}¥subset V$.

Proof. Since $X$ is connected and $N$ is closed, $N$ is not also open. Hence, $¥partial N¥neq$
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$¥phi$ . Let $x¥in¥partial N$ and let $¥{V_{i}¥}$ be a countable fundamental system of open neighbor-
hoods of $x$ . We will define inductively the desired subset $¥{U_{i}¥}$ of $G$ in such a way
that $V_{i}¥not¥subset U_{i}$ for each /. Since each $V_{i}$ is a neighborhood of $x¥in¥partial N$ we must have
$ V_{i}-N¥neq¥phi$ for each $i$ . Moreover, for each $i$ there must be an element $W_{i}$ of $G$ such
that $V_{i}¥not¥subset W_{i}$ . Otherwise $N=¥cap G¥supset V_{i}$ which is impossible because $ V_{i}-N¥neq¥phi$ .

Set $U_{1}=W_{1}$ and suppose that for some positive integer $k$ we have determined
elements $U_{1}$,?, $U_{k-1}$ of $G$ such that $¥overline{U}_{i}¥subset U_{i-1}$ for $i=2,3$,?, $k-l$ and $V_{i}¥not¥subset U_{i}$ ,

for $i=1,2$,?, $¥mathrm{k}-1$ . Since $U_{k-1}$ is a neighborhood of the closed, nonopen set $N$,
properties (i) and (ii) assure us that there is a $U¥in G$ such that $¥overline{U}¥subset U_{k-1}$ . By property
(ii) we have $¥overline{U}¥subset W_{k}$ , $W_{k}¥subset¥overline{U}$, or $W_{k}=U$. In the first case set $U_{k}=U$ and in the latter
two cases set $U_{k}=W_{k}$ . Evidently we have determined an $¥mathrm{e}1¥mathrm{e}¥mathrm{i}¥eta_{1}¥mathrm{e}¥mathrm{n}¥mathrm{t}¥mathrm{U}_{k}$ of $G$ such that
$¥overline{U}_{k}¥subset U_{k-1}$ and $V_{k}¥not¥subset U_{k}$ . Therefore, we can determine inductively a countable subset
$¥{U_{i}¥}$ of $G$ such that $¥overline{U}_{i}¥subset U_{i-1}$ and $V_{i}¥not¥subset U_{i}$ for every /.

Since each $U_{i}$ is an element of $G$ we have that $N¥subset U_{i}$ for each $¥mathrm{f}$ . Suppose there
is a $y¥in¥cap U_{i}-N$. Since $y¥in¥cup G$ and $y¥not¥in N=¥cap G$ there is a $V¥in G$ such that $y¥not¥in V$.
Since $y¥in U_{i}¥in G$ for every $i$ we conclude from property (ii) that $V¥subset U_{i}$ for every /.

Since $¥{V_{i}¥}$ is a fundamental system of neighborhoods of $x¥in N¥subset V$, there is a $j$ such
that $V_{j}¥subset V$. This is impossible because $V_{j}¥not¥subset U_{j}$ . Hence, we must have $N=¥cap U_{i}$ .

Now let $V$ denote any element of $G$ . By property (ii) we have $¥overline{U}_{i}¥subset V,¥overline{V}¥subset U_{i}$ ,
or $V=U_{i}$ for each /. If $¥overline{V}¥subset U_{i}$ or $V=U_{i}$ for each $i$ then $N=¥cap U_{i}¥supset V$, which is
impossible because $V$ is a neighborhood of $N$. Therefore, there is an $i$ such that $¥overline{U}_{i}$

$¥subset V$. This completes the proof.

Lemma 3. Let $G$ be as in Lemma 2 and satisfy
(iii) for each $U¥in G$ the set $¥{V ¥in G:V¥subset U¥}$ is uncountable.

Tfien there is a $W¥in G$ such that both of tfie sets $¥{V ¥in G:V¥subset W¥}$ and $¥{¥nabla¥in G:W¥subset V¥}$

are uncountable.

Proof. Let $¥{U_{i}¥}$ be a subset of $G$ as determined in Lemma 1. Since each $ U_{i}¥in$

$G$ , it suffices to show that for some $i$ the set $¥{V ¥in G:U_{i}¥subset V¥}$ is uncountable. Sup-
pose the contrary. Then the set $G_{i}=¥{V¥in¥swarrow^{¥varpi} : U_{i}¥subset V¥}$ is countable. From Lemma
2 we have that if $W¥in G$, then $W¥in¥{V ¥in G:U_{i}¥subset V¥}$ for some /. It follows that $G=$

$¥cup G_{i}$ . This is impossible because $G$ is uncountable. The desired result follows.

Theorem 4. Let $M$ be a closed, nonemptyproper subset of a connected Hausdorff
space that satisfies the first axiom of countability. Then $M$ is absolutely stable with
respect to a semidyna mical system $¥pi$ on $X$ if and only if there is a Liapunov fun.ction
for $M$.

Proof. Let $u$ be a Liapunov function for $M$. Set

$¥swarrow^{¥varpi}=$ { $v^{-1}$ ([0, $r$ )$):r$ is in the range of $v$ and $v^{-1}$ ( $¥lfloor|0$ , $r))¥neq X$ }.
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We will show that $¥swarrow¥varpi$ satisfies the three properties in Definition 1. It is clear that
$v^{-1}([0, r))$ is positively invariant and that

$¥cap v^{-1}([0, r))=M$.

Moreover, since $u$ is continuous, we also have that $v^{-1}([0, r))$ is an open neighbor-
hood of $M$ and that

(1) $v^{-1}([0, r))¥subset¥overline{v^{-1}([0r}))¥subset¥overline{u^{-1}([0,r}])=V^{-1}([0, r])¥subset v^{-1}([0, s))$

whenever $r<s$. If $v^{-1}([0, r))¥neq X$, then $u^{-1}([0, r))$ is not both open and closed since
$X$ is connected. Therefore by (1), $v^{-1}([0, r))¥neq v^{-1}([0, s))$ whenever $r<s$ . Collecting
together these properties of the elements of $F^{¥varpi}$ we conclude that $d^{¥varpi}$ satisfies the three
properties in Definition 1. Therefore, $M$ is absolutely stable.

Now assume that $M$ is absolutely stable. Let $¥ovalbox{¥tt¥small REJECT}$ be a set of open positively
invariant neighborhoods of $M$ that satisfies properties $(¥mathrm{i})-(¥mathrm{i}¥mathrm{i}¥mathrm{i})$ of Definition 1. For
each dyadic rational $r$, we will construct a set $U(r)¥in¥ovalbox{¥tt¥small REJECT}$ such that $U(r)¥subset U(s)$ when-
ever $r<s$. We first obtain from $A^{¥varpi}$ a set of neighborhoods { $U(2^{-n}):n$ a positive
integer} such that $U(2^{-n-1})¥subset U(2^{-n})$ and the set {A $¥in¥swarrow¥varpi$ : $U(2^{-n-1})¥subset ¥mathrm{A}¥subset U(2^{-n})$} is
uncountable. This can be done by induction in the following manner. Let $¥{N_{i}¥}$ be
a countable subset of $¥ovalbox{¥tt¥small REJECT}$ such that $¥cap N_{i}=M$ (Lemma 2). Set $U(2^{-1})=N_{1}$ . Suppose
$U(2^{-n})$ has been defined. Since $U(2^{-n})$ , $N_{n+1}¥in d^{¥varpi}$ , either $U(2^{-n})¥cap N_{n+1}=N_{n+1}$ or
$U(2^{-n})¥cap N_{n+1}=U(2^{-n})$ . Set $G=¥{V¥in¥swarrow^{¥varpi}: V¥subset U(2^{-n})¥cap N_{n+1}¥}$ . By Lemma 3 there
is a $B¥in G$ such that $¥{W ¥in y^{¥varpi}, : W¥subset B¥}$ and $¥{W ¥in¥ovalbox{¥tt¥small REJECT}:B¥subset W¥subset U(2^{-n})¥}$ are uncountable.
Set $U(2^{-n-1})=B$. Now extend this system to one with the desired properties. To
illustrate this extension we will construct $U(3/8)$ . Set $C=¥{W¥in A^{¥varpi}$ : $ U(1/4)¥subset W¥subset$

$U(1/2)¥}$ , $G=$ { $W¥in C;¥{U$ $¥in C$, $U¥subset W¥}$ is uncountable}, and $N=U(1/4)$ . By Lemma
3 there is a $D¥in G$ such that $¥{V ¥in G:V¥subset D¥}$ and $¥{V ¥in G:D¥subset V¥}$ are uncountable.
Set $U(3/8)=D$. Now define $v:U(1)¥rightarrow R^{+}$ by $v(x)=¥inf¥{r:x ¥in U(r)¥}$ . Evidently
$v(x)=0$ if and only if $x¥in M$. If $x¥in U(r)$ and $t¥in R^{+}$ , then $x¥pi t$ $¥in U(r)$ since $U(r)$ is
positively invariant. It easily follows that $u(x¥pi t)¥leq u(x)$ . The continuity of $v$ is
proved as in the proof of Urysohm’s lemma. Thus, we have constructed a Liapunov
function for $M$. This completes the proof.

Combining the previous theorem and Theorem $¥mathrm{B}$ we obtain the following result.

Corollary. Let $X$ be locally compact, connected and metric. $ Tf¥iota$en a cfosed subset
$M$ of $X$ is absolutely stable if and only if $M$ is absolutely stable according to Hajek’s

definition ([3, Definition 12]).

In the proof of Theorem 4 we have actually proved more than is stated in
Theorem 4. We have proved:

Theorem 5. Let $M$ be a closed subset of a Hausdorff space that satisfies the first
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axiom of countability. Let $M$ be absolutely stable with respect to a semidynamical
system $¥pi$ on $X$ and let $¥ovalbox{¥tt¥small REJECT}$ be a set of open positively invariatn neighborhoods of $M$ satis-
fying properties $(¥mathrm{i})-(¥mathrm{i}¥mathrm{i}¥mathrm{i})$ ofDefinition 1. Then there is a Liapunov function $u$for $M$ such
that $v^{-1}([0, r))¥in¥ovalbox{¥tt¥small REJECT}$ for every dyadic rational $r$ .

Asymptotic Stability.

Deffiition 6. A closed subset $M$ of a Hausdorff space $X$, on which a semi-
dynamical system $¥pi$ is defined, is said to be asymptotically stable with respect to $¥pi$ if
there exists a set $¥ovalbox{¥tt¥small REJECT}$ of open, positively invariant neighborhoods of $M$ such that

(i) $¥cap¥ovalbox{¥tt¥small REJECT}=M$,

(ii) if $U$, $V¥in ff$ with $U¥neq V$, then either $¥overline{U}¥subset V$ or $¥overline{V}¥subset U$,
(iii) for each $U¥in¥ovalbox{¥tt¥small REJECT}$, the set $¥{V¥in¥ovalbox{¥tt¥small REJECT}:V¥subset U¥}$ is uncountable,
(iv) for each $x¥in¥cup¥ovalbox{¥tt¥small REJECT}$ and each $U¥in¥ovalbox{¥tt¥small REJECT}$ , xrut is eventually in $U$.

Theorem 7. Let $M$ be a closed subset of a Hausdorff space that satisfies thefirst
axiom of countability. If $M$ is asymptotically stable with respect to a semidynamical
system $¥pi$ on $X$, then there is a Liapunov function $v$ for $M$ such that

(i) $v(x¥pi t)¥rightarrow 0$ as $ t¥rightarrow¥infty$ for every $x$ in the domain of $u$ ,

(ii) $v(x¥pi t)<v(x)$ for every $x$ in the domain of $u$ and every $t>0$ .

Proof. Let $¥ovalbox{¥tt¥small REJECT}$ be a set of open positively invariant neighborhoods of $M$ satis-
fying properties $(¥mathrm{i})-(¥mathrm{i}¥mathrm{v})$ of Definition 6. Clearly $M$ is absolutely stable. By Theorem
5 there is a Liapunov function $w$ for $M$ mapping a neighborhood $U$ of $M$ into the
interval [0, 1] such that $w^{-1}([0, r))¥in¥ovalbox{¥tt¥small REJECT}$ for each dyadic rational $r$ . Define $v:U¥rightarrow R^{+}$

by

$v(x)=¥int_{0}^{¥infty}e^{-s}w(x¥pi s)ds$.

Evidently $v$ is continuous since $w$ is continuous. For each $x$ $¥in U$ and dyadic rational
$r$ there is a $t^{¥prime}$ such that $x¥pi t$ $¥in w^{-1}([0, r))$ for all $t¥geq t^{¥prime}$ . Then

$v(x¥pi t)=¥int_{0}^{¥infty}e^{-s}w(x¥pi(t+s))ds$

$¥leq r¥int_{0}^{¥infty}e^{-s}ds=r$.

It follows that $v(x¥pi t)¥rightarrow 0$ as $ t¥rightarrow¥infty$ . This proves (i). A standard argument that can
be found on page 145 of [3] establishes (ii).

Elementary examples show that the existence of a Liapunov function satisfying
property (ii) in Theorem 7 is not sufficient to assure the asymptotic stability of $M$.
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However, the $¥mathrm{e}¥mathrm{x}¥mathrm{i}¥mathrm{s}^{+},¥mathrm{e}¥mathrm{n}¥mathrm{c}_{¥vee}^{¥mathrm{a}}$ of a Liapunov function satisfyin $ i¥sigma¥supset$ the first property do $¥Psi ¥mathrm{s}$

assure that $M$ is asymptotically stable.

Theorem 8. Let $Rf$ be a closed subset of a Hausdorjf space. $Arf$ there is $a$

Liapunov function $v$ for $M$ such that $v(x¥pi t)¥rightarrow 0$ as $ t¥rightarrow¥infty$ for $ever_{f}l$) $x$ in $ tf¥iota edo¥gamma$} $/ain$ of
$v$ , then $M$ is asymptotically stable.

The proof of this Theorem is nearly identical to the first half of the proof of
Theorem 4 and will $¥mathrm{b}_{¥mathrm{c}^{¥mathrm{P}}}$ omitted.
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