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§1. Introduction.

In this paper we shall discuss Choquard’s generalized equation, that is

(1.1) $-¥Delta u-¥alpha V(x)u-u(x)¥int_{R^{n}}V(x-y)u^{2}(y)dy=¥lambda u$

where $x¥in R^{n}$ , $¥Delta$ denotes the Laplacian operator and $V$ is a non-negative real-valued
function in $R^{n}$ , which depends only on the radius, $r=|x|$ . In (1.1) $¥alpha$ and $¥lambda$ are real
numbers and $¥alpha¥geq 0$ . In our previous work [4] we studied equation (1.1) and we
concluded that under suitable assumptions on $V$ and for any $¥lambda¥geq 0$ there are no
positive solutions $u$ of (1.1), $u¥not¥equiv 0$ which belongs to $H^{1}(R^{n})$ , that is the Sobolev
space of order one. In this note we shall give some further results on the non-
existence of such solutions of (1.1) in such a way that we will be allowed to consider
$V$’s in a much wider class.

Equation (1.1) in specific cases has been considered by a number of authors as
an approximation to the Hartree-Fock theory for one component plasma. As P. L.
Lions pointed out in [2], equation (1.1) provides solitary waves for the coupled
Schrodinger-Klein Gordon system of equations.

In this paper we shall not discuss existence results which have been treated,
for instance in [1], [2] and [3]. We shall use the standard notation: By $L^{p}(R^{n})$

$ 1¥leq p<¥infty$ we denote the space of functions from $R^{n}$ into $R$ whose $¥mathrm{p}$ -th powers are
integrable. By $L^{¥infty}(R^{n})$ we denote the space of measurable functions which are
essentially bounded. By $H^{m}(R^{n})$ we shall denote the usual Sobolev space of order
$m$ .

§2. The results.

Lemma 2.1. Assume that $V:R^{n}¥rightarrow R$ is non-negative and let us suppose that there
exists a solution $u$ of (1.1) which is positive, radial, decreasing with $r=|x|$ and smooth
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(say of class $C^{2}$), for $some$ $¥lambda>0$ . $ Tf¥iota$en, there exists a constant $C>0$ such that

$u(|x|)¥leq C¥exp(-¥frac{¥lambda|x|^{2}}{4n})$ for $r=|x|¥geq 1$ .

Proof. We shall write $u(r)$ instead of $u(x)=u(|x|)$ . Let us write the Laplacian
operator in spherical coordinates. Thus, from (1.1) we obtain

(2. 1) $-u_{rr}-¥frac{(n-1)}{r}u_{r}¥geq¥lambda u$

where

$u_{r}=¥frac{¥partial u}{¥partial r}$ and $u_{rr}=¥frac{¥partial^{2}u}{¥partial r^{2}}$ , $r=|x|$ .

Clearly, from (2. 1) if follows that

(2.2) $-(r^{n-1}u_{r})_{r}¥geq¥lambda r^{n-1}u$.

Let us integrate inequality (2.2) from $2^{-1/n}$ to $r$ and use the fact that $u$ is decreasing
Io obtain

(2.3) $u(r)¥leq 2n¥lambda^{-1}[2^{-(n-1)/n}u_{r}(2^{-1/n})-r^{n-1}u_{¥gamma}(r)]r^{-n}$

provided that $r¥geq 1$ . Since $u$ is decreasing in $r$ it follows that

(2.4) $u(r)¥leq-2n¥lambda^{-1}r^{-1}u_{r}(r)$

for $r¥geq 1$ . From (2.4) we obtain the inequality

(2.5) $¥frac{d}{dr}(u(r)¥exp(¥frac{¥lambda r^{2}}{4n}))¥leq 0$

for $r¥geq 1$ . Integration of (2.5) from 1 to $r$ gives us

$u(r)¥leq C¥exp(-¥frac{¥lambda r^{2}}{4n})$

where

$C=u(1)¥exp(¥frac{¥lambda}{4n})$ .

This proves the lemma

Theorem 2.1. Suppose that $V:R^{n}¥rightarrow R$ is a non-negative real-valued function
which is radial and such that $V(x)¥leq C(1+|x|)^{-n-¥epsilon}$ for some $¥epsilon>0$ and some constant
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$C>0$. Then, for afiy $¥lambda>0$ , there is no solution $u$ of (1.1) $ wf¥iota$ ich is positive, radial,
decreasing with $r=|x|$ . $u¥not¥equiv 0$ and belonging to $C^{2}(R^{n})¥cap H^{1}(R^{n})$ .

Proof. We shall use a device pointed out by W. Strauss in [5] based on Kato’s
theorem on the absence of positive discrete eigenvalues for the Schrodinger operator.
Suppose that for some $¥lambda>0$ there is a solution $u$ of (1.1) with the above mentioned
properties. Let us denote by $q_{u}(x)=-¥alpha V(x)-(V*u^{2})(x)$ . Thus, we can write
equation (1.1) as $-¥Delta u+q_{u}(x)u=¥lambda u$ in $R^{n}$ with $¥lambda>0$ . We shall show that $q_{u}(x)$

satisfies the hypothesis of Kato’s theorem. Clearly $V*u^{2}$ belongs to $L^{¥infty}(R^{n})$ . Thus,
it remains to show that $V*u^{2}$ is of order $(1+|x|)^{-a}$ for some $a>1$ . Let $x¥in R^{n}$ such
that $|x|¥geq 2$ and let us write

(2.6) $(V*_{¥backslash }u^{2})(x)=¥int_{¥Omega_{x}}V(x-y)u^{2}(y)dy+¥int_{R^{n}-¥Omega_{x}}V(x^{¥prime}-y)u^{2}(y).dy$

where $¥Omega_{x}=¥{y¥in R^{n}, y¥cdot x¥leq|x|^{2}/2¥}$ and $y¥cdot x$ denotes the inner product of $y$ and $x$ . It
is clear that if $y¥in¥Omega_{x}$ then $|y-x|¥geq|x|/2$. Since $V(x-¥vee v)¥leq¥theta(x-y)$ where $¥theta(x)=$

$C(1+|x|)^{-n-¥epsilon}$ , then it follows that

$¥int_{¥Omega_{x}}V(x-y)u^{2}(y)dy¥leq¥int_{¥Omega_{x}}¥theta(x-y)u^{2}(y)dy$

(2. 7)
$¥leq¥theta(¥frac{|x|}{2})¥int_{R^{n}}u^{2}(y)dy=¥theta(¥frac{|x|}{2})||u||_{L2}^{2}$

because $¥theta$ is decreasing.
Similarly

$¥int_{R^{n}-¥Omega_{x}}V(x-y)u^{2}(y)dy¥leq¥int_{R^{n}-¥Omega_{x}}V(x-y)w^{2}(y)dy$

$¥leq w^{2}(¥frac{|x|}{2})¥int V(x-y)dy=w^{2}(¥frac{|x|}{2})||V||_{L^{1}}$

where $ w(x)=c¥exp$ $(-¥lambda|x|^{2}/n)$ and we have used Lemma 2. 1. Thus fro $¥mathrm{m}$ $(2.7)$ and
(2. 8) we obtain

$(V*¥prime u^{2})(x)¥leq¥theta(¥frac{|x|}{2})||u||_{L^{2}}^{2}+w^{2}(¥frac{|x|}{2})||V||_{L^{1}}$

for $|x|¥geq 2$ . This proves that $V*u^{2}$ decays at the desired rate as $|x|¥rightarrow+¥infty$ , which
proves the theorem.

In what follows we shall consider the case in which $¥lambda=0$ .

Theorem 2.2. Let $V:R^{n}¥rightarrow R$ be a non-negative radial function such that $V$ is
continuously differentiable and $V¥in L^{n/2}(R^{n})+L^{¥infty}(R^{n})(n¥geq 3)$ . Let us consider equation
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(1.1) with $¥lambda=0$ . If $2¥mathrm{V}(¥mathrm{x})+¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}$ $V(x)¥cdot x>0$ for If $¥in R^{n}$ then any solution $u$ of (1.1)
with $¥lambda=0$ such that $u¥in H^{1}(R^{n})$ has to be zero almost everywhere.

Proof. Suppose that $u$ is a solution of (1.1) with $¥lambda=0$ . Thus, the functional
$J:H^{1}(R^{n})¥rightarrow R$ given by

$J(u)=¥frac{1}{2}¥int_{R^{n}}|¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}u|^{2}dx-¥frac{¥alpha}{2}¥int_{R^{n}}V(x)u^{2}(x)dx$

$-¥frac{1}{4}¥int_{R^{n}}¥int_{R^{n}}V(x-y)u^{2}(x)u^{2}(y)dxdy$

is Frechet differentiable and $u$ is a critical point of $J$, i.e., $J^{¥prime}(u)=0$ (see Theorem 5.1
in [3]$)$ . Let us consider the path $¥epsilon¥rightarrow u(x/¥epsilon)$ $(¥epsilon>0)$ which passes through the given
solution $u$ . By the “chain rule” we know that

$0=¥frac{d}{d¥epsilon}J(u(¥frac{x}{¥epsilon}))|_{¥mathrm{e}=1}$ .

Thu $¥mathrm{s}$

$0=¥frac{d}{d¥epsilon}[¥frac{1}{2}¥int_{R^{n}}|¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}u(¥frac{x}{¥epsilon})|^{2}dx-¥frac{¥alpha}{2}¥int_{R^{n}}V(x)u^{2}(¥frac{x}{¥epsilon})dx$

(2.8)
$-¥frac{1}{4}¥int_{R^{n}}¥int_{R^{n}}V(x-y)u^{2}(¥frac{x}{¥epsilon})u^{2}(¥frac{y}{¥epsilon})dxdy]|_{¥epsilon=1}$ .

Direct calculation on each term of (2.9) gives us

$0=¥frac{n-2}{2}¥int_{R^{n}}|¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}u|^{2}dx-¥frac{n¥alpha}{2}¥int_{R^{n}}V(x)u^{2}(x)dx$

$-¥frac{¥alpha}{2}¥int_{R^{n}}¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}V(x)¥cdot xu^{2}(x)dx-¥frac{n}{2}¥int_{R^{n}}¥int_{R^{n}}V(x-y)u^{2}(x)u^{2}(y)dxdy$

$-¥frac{1}{4}¥int_{R^{n}}¥int_{R^{n}}¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}V(x-y)¥cdot(x-y)¥iota/^{2}(x)u^{2}(y)dxdy$.

Let us multiply equation (1.1) by $u$ and integrate by parts to obtain

$0=¥int_{R^{n}}|¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}u|^{2}dx-¥alpha¥int_{R^{n}}V(x)u^{2}(x)dx-¥int_{R^{n}}¥int_{R^{n}}V(x-y)u^{2}(x)u^{2}(y)dxdy$

which together with the above identity gives us

$0=2¥alpha¥int_{R^{n}}[2V(x)+¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}V(x)¥cdot x]u^{2}(x)dx$

$+¥int_{R^{n}}¥int_{R^{n}}[4V(x-y)+¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}V(x-y)¥cdot(x-y)]u^{2}(x)u^{2}(y)dxdy$.
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By hypothesis we know that $V¥geq 0$ and $2V(i¥lambda^{¥prime})+¥mathrm{g}¥mathrm{r}¥mathrm{a}¥mathrm{d}V(x)¥cdot x$ is positive, thus we
conclude that $u$ has to be zero almost everywhere.

Acknowledgments. I wish to thank Professor W. Strauss for stimulating dis-
cussions concerning this work. I also would like to thank the referee of this Journal
for pointing out to us an error in our earlier proof of theorem 2.2.
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