Funkcialaj Ekvacioj, 26 (1983), 231-235

On the Nonexistence of Solutions for an Elliptic Problem in Unbounded Domains

By

Gustavo Perla MENZALA*)

(UFRJ, Brasil and Brown University, U.S.A.)

§1. Introduction.

In this paper we shall discuss Choquard's generalized equation, that is

(1.1)
$$-\Delta u - \alpha V(x)u - u(x) \int_{\mathbb{R}^n} V(x-y)u^2(y)dy = \lambda u$$

where $x \in \mathbb{R}^n$, Δ denotes the Laplacian operator and V is a non-negative real-valued function in \mathbb{R}^n , which depends only on the radius, r=|x|. In (1.1) α and λ are real numbers and $\alpha \ge 0$. In our previous work [4] we studied equation (1.1) and we concluded that under suitable assumptions on V and for any $\lambda \ge 0$ there are no positive solutions u of (1.1), $u \equiv 0$ which belongs to $H^1(\mathbb{R}^n)$, that is the Sobolev space of order one. In this note we shall give some further results on the nonexistence of such solutions of (1.1) in such a way that we will be allowed to consider V's in a much wider class.

Equation (1.1) in specific cases has been considered by a number of authors as an approximation to the Hartree-Fock theory for one component plasma. As P. L. Lions pointed out in [2], equation (1.1) provides solitary waves for the coupled Schrödinger-Klein Gordon system of equations.

In this paper we shall not discuss existence results which have been treated, for instance in [1], [2] and [3]. We shall use the standard notation: By $L^{p}(\mathbb{R}^{n})$ $1 \le p < \infty$ we denote the space of functions from \mathbb{R}^{n} into \mathbb{R} whose p-th powers are integrable. By $L^{\infty}(\mathbb{R}^{n})$ we denote the space of measurable functions which are essentially bounded. By $H^{m}(\mathbb{R}^{n})$ we shall denote the usual Sobolev space of order m.

§2. The results.

Lemma 2.1. Assume that $V: \mathbb{R}^n \to \mathbb{R}$ is non-negative and let us suppose that there exists a solution u of (1.1) which is positive, radial, decreasing with r = |x| and smooth

^{*)} This research was supported by CEP G (UFRJ) and CNP_q (Brasil) and was concluded while the author was visiting the Department of Mathematics at Brown University during 1982.

(say of class C^2), for some $\lambda > 0$. Then, there exists a constant C > 0 such that

$$u(|x|) \leq C \exp\left(-\frac{\lambda |x|^2}{4n}\right)$$
 for $r = |x| \geq 1$.

Proof. We shall write u(r) instead of u(x) = u(|x|). Let us write the Laplacian operator in spherical coordinates. Thus, from (1.1) we obtain

$$(2.1) -u_{rr} - \frac{(n-1)}{r} u_r \ge \lambda u$$

where

$$u_r = \frac{\partial u}{\partial r}$$
 and $u_{rr} = \frac{\partial^2 u}{\partial r^2}$, $r = |x|$.

Clearly, from (2.1) if follows that

$$(2.2) \qquad \qquad -(r^{n-1}u_r)_r \geq \lambda r^{n-1}u.$$

Let us integrate inequality (2.2) from $2^{-1/n}$ to r and use the fact that u is decreasing to obtain

(2.3)
$$u(r) \leq 2n\lambda^{-1}[2^{-(n-1)/n}u_r(2^{-1/n}) - r^{n-1}u_r(r)]r^{-n}$$

provided that $r \ge 1$. Since u is decreasing in r it follows that

$$(2.4) u(r) \leq -2n\lambda^{-1}r^{-1}u_r(r)$$

for $r \ge 1$. From (2.4) we obtain the inequality

(2.5)
$$\frac{d}{dr}\left(u(r)\exp\left(\frac{\lambda r^2}{4n}\right)\right) \leq 0$$

for $r \ge 1$. Integration of (2.5) from 1 to r gives us

$$u(r) \leq C \exp\left(-\frac{\lambda r^2}{4n}\right)$$

where

$$C=u(1)\exp\left(\frac{\lambda}{4n}\right).$$

This proves the lemma

Theorem 2.1. Suppose that $V: \mathbb{R}^n \to \mathbb{R}$ is a non-negative real-valued function which is radial and such that $V(x) \leq C (1+|x|)^{-n-\varepsilon}$ for some $\varepsilon > 0$ and some constant

C>0. Then, for any $\lambda > 0$, there is no solution u of (1.1) which is positive, radial, decreasing with r = |x|, $u \neq 0$ and belonging to $C^2(\mathbb{R}^n) \cap H^1(\mathbb{R}^n)$.

Proof. We shall use a device pointed out by W. Strauss in [5] based on Kato's theorem on the absence of positive discrete eigenvalues for the Schrödinger operator. Suppose that for some $\lambda > 0$ there is a solution u of (1.1) with the above mentioned properties. Let us denote by $q_u(x) = -\alpha V(x) - (V*u^2)(x)$. Thus, we can write equation (1.1) as $-\Delta u + q_u(x)u = \lambda u$ in \mathbb{R}^n with $\lambda > 0$. We shall show that $q_u(x)$ satisfies the hypothesis of Kato's theorem. Clearly $V*u^2$ belongs to $L^{\infty}(\mathbb{R}^n)$. Thus, it remains to show that $V*u^2$ is of order $(1+|x|)^{-\alpha}$ for some a>1. Let $x \in \mathbb{R}^n$ such that $|x| \ge 2$ and let us write

(2.6)
$$(V*u^2)(x) = \int_{\mathcal{Q}_x} V(x-y)u^2(y)dy + \int_{\mathbf{R}^n - \mathcal{Q}_x} V(x-y)u^2(y)dy$$

where $\Omega_x = \{y \in \mathbb{R}^n, y \cdot x \le |x|^2/2\}$ and $y \cdot x$ denotes the inner product of y and x. It is clear that if $y \in \Omega_x$ then $|y-x| \ge |x|/2$. Since $V(x-y) \le \theta(x-y)$ where $\theta(x) = C(1+|x|)^{-n-\epsilon}$, then it follows that

(2.7)
$$\int_{\Omega_x} V(x-y)u^2(y)dy \leq \int_{\Omega_x} \theta(x-y)u^2(y)dy \leq \theta\left(\frac{|x|}{2}\right) \int_{\mathbb{R}^n} u^2(y)dy = \theta\left(\frac{|x|}{2}\right) ||u||_{L^2}^2$$

because θ is decreasing.

Similarly

$$\int_{\mathbb{R}^{n-\Omega_{x}}} V(x-y)u^{2}(y)dy \leq \int_{\mathbb{R}^{n-\Omega_{x}}} V(x-y)w^{2}(y)dy$$
$$\leq w^{2}\left(\frac{|x|}{2}\right) \int V(x-y)dy = w^{2}\left(\frac{|x|}{2}\right) ||V||_{L^{1}}$$

where $w(x) = c \exp(-\lambda |x|^2/n)$ and we have used Lemma 2.1. Thus from (2.7) and (2.8) we obtain

$$(V*u^2)(x) \leq \theta\left(\frac{|x|}{2}\right) ||u||_{L^2}^2 + w^2\left(\frac{|x|}{2}\right) ||V||_{L^1}$$

for $|x| \ge 2$. This proves that $V * u^2$ decays at the desired rate as $|x| \to +\infty$, which proves the theorem.

In what follows we shall consider the case in which $\lambda = 0$.

Theorem 2.2. Let $V: \mathbb{R}^n \to \mathbb{R}$ be a non-negative radial function such that V is continuously differentiable and $V \in L^{n/2}(\mathbb{R}^n) + L^{\infty}(\mathbb{R}^n)$ ($n \ge 3$). Let us consider equation

(1.1) with $\lambda = 0$. If $2V(x) + \text{grad } V(x) \cdot x > 0$ for all $x \in \mathbb{R}^n$ then any solution u of (1.1) with $\lambda = 0$ such that $u \in H^1(\mathbb{R}^n)$ has to be zero almost everywhere.

Proof. Suppose that u is a solution of (1.1) with $\lambda = 0$. Thus, the functional $J: H^1(\mathbb{R}^n) \to \mathbb{R}$ given by

$$J(v) = \frac{1}{2} \int_{\mathbb{R}^n} |\operatorname{grad} v|^2 dx - \frac{\alpha}{2} \int_{\mathbb{R}^n} V(x) v^2(x) dx$$
$$- \frac{1}{4} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} V(x-y) v^2(x) v^2(y) dx dy$$

is Frechet differentiable and u is a critical point of J, i.e., J'(u)=0 (see Theorem 5.1 in [3]). Let us consider the path $\varepsilon \rightarrow u(x/\varepsilon)$ ($\varepsilon > 0$) which passes through the given solution u. By the "chain rule" we know that

$$0 = \frac{d}{d\varepsilon} J\left(u\left(\frac{x}{\varepsilon}\right)\right)\Big|_{\varepsilon=1}$$

Thus

(2.8)
$$0 = \frac{d}{d\varepsilon} \left[\frac{1}{2} \int_{\mathbb{R}^n} \left| \operatorname{grad} u\left(\frac{x}{\varepsilon}\right) \right|^2 dx - \frac{\alpha}{2} \int_{\mathbb{R}^n} V(x) u^2\left(\frac{x}{\varepsilon}\right) dx - \frac{1}{4} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} V(x-y) u^2\left(\frac{x}{\varepsilon}\right) u^2\left(\frac{y}{\varepsilon}\right) dx dy \right] \Big|_{\varepsilon=1}.$$

Direct calculation on each term of (2.9) gives us

$$0 = \frac{n-2}{2} \int_{\mathbb{R}^n} |\operatorname{grad} u|^2 dx - \frac{n\alpha}{2} \int_{\mathbb{R}^n} V(x) u^2(x) dx$$

$$- \frac{\alpha}{2} \int_{\mathbb{R}^n} \operatorname{grad} V(x) \cdot x u^2(x) dx - \frac{n}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} V(x-y) u^2(x) u^2(y) dx dy$$

$$- \frac{1}{4} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \operatorname{grad} V(x-y) \cdot (x-y) u^2(x) u^2(y) dx dy.$$

Let us multiply equation (1.1) by u and integrate by parts to obtain

$$0 = \int_{\mathbf{R}^n} |\operatorname{grad} u|^2 \, dx - \alpha \int_{\mathbf{R}^n} V(x) u^2(x) \, dx - \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} V(x-y) u^2(x) u^2(y) \, dx \, dy$$

which together with the above identity gives us

$$0 = 2\alpha \int_{\mathbb{R}^n} [2V(x) + \text{grad } V(x) \cdot x] u^2(x) dx$$

+ $\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [4V(x-y) + \text{grad } V(x-y) \cdot (x-y)] u^2(x) u^2(y) dx dy.$

By hypothesis we know that $V \ge 0$ and $2V(x) + \text{grad } V(x) \cdot x$ is positive, thus we conclude that u has to be zero almost everywhere.

Acknowledgments. I wish to thank Professor W. Strauss for stimulating discussions concerning this work. I also would like to thank the referee of this Journal for pointing out to us an error in our earlier proof of theorem 2.2.

References

- [1] Lieb, E., Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1977), 93-195.
- [2] Lions, P. L., The Choquard equation and related questions, Nonlinear Analysis, 4-6 (1980), 1063-1073.
- [3] Menzala, G. Perla, On regular solutions of a monlinear equation of Choquard's type, Proc. Roy. Soc. Edinburgh, Sect. A., 86 (1980), 293-301.
- [4] —, On an elliptic equation with a non-local nonlinearlity, Computational and Applied Mathematics, SBMA C (Brasil), 2–1 (1983), 75–80.
- [5] Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

nuna adreso: Instituto de Matematica, UFRJ Caixa Postal 68530 Rio de Janeiro, RJ CEP 21944, Brasil

(Ricevita la 5-an de oktobro, 1982) (Reviziita la 1-an de februaro, 1983)