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§1. Introduction.

In this paper we shall discuss Choquard’s generalized equation, that is
(1.1) —Au—on(x)u—u(x)J V(x—yW(y)dy=2u
Rn

where x € R", 4 denotes the Laplacian operator and V is a non-negative real-valued
function in R", which depends only on the radius, r=|x|. In (1.1) « and 2 are real
numbers and «>0. In our previous work [4] we studied equation (1.1) and we
concluded that under suitable assumptions on ¥ and for any 1>0 there are no
positive solutions # of (1.1), uz=0 which belongs to H'(R"™), that is the Sobolev
space of order one. In this note we shall give some further results on the non-
existence of such solutions of (1.1) in such a way that we will be allowed to consider
V’s in a much wider class.

Equation (1.1) in specific cases has been considered by a number of authors as
an approximation to the Hartree-Fock theory for one component plasma. As P. L.
Lions pointed out in [2], equation (1.1) provides solitary waves for the coupled
Schrédinger-Klein Gordon system of equations. '

In this paper we shall not discuss existence results which have been treated,
for instance in [1], [2] and [3]. We shall use the standard notation: By L?(R")
1<p<co we denote the space of functions from R" into R whose p-th powers are
integrable. By L*(R™) we denote the space of measurable functions which are
essentially bounded. By H™(R"™) we shall denote the usual Sobolev space of order
m.

§2. The results.

Lemma 2.1. Assume that V: R"— R is non-negative and let us suppose that there
exists a solution u of (1.1) which is positive, radial, decreasing with r=|x| and smooth
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(say of class C?), for some 2>0. Then, there exists a constant C>0 such that

(| x)< C exp (—%’;‘2) for r=|x|>1.

Proof. We shall write u(r) instead of u(x)=u(|x]). Let us write the Laplacian
operator in spherical coordinates. Thus, from (1.1) we obtain

2.0 cu, — =D S
r
where
2
urzﬂ and uM:_aH_’ r=|x|.
or or®

Clearly, from (2.1) if follows that
(2.2) —(r™'u,),>Ar" 'u.

Let us integrate inequality (2.2) from 2-'/" to r and use the fact that u is decreasing
to obtain

2.3) u(r)<2na-2-"-D/my (2-Y™) —r =ty (F)r"
provided that r>1. Since u is decreasing in r it follows that
2.4 u(r)< —2n2"'r'u,(r)

for r>1. From (2.4) we obtain the inequality

i (0o ()
2.5 ——{u(r) ex <0
(2.5) o u(r) exp )=
for r>1. Integration of (2.5) from 1 to r gives us
2
u(r)< Cexp <_2r>
4n
where
A
C=u(l) exp (—)
4n

This proves the lemma

Theorem 2.1. Suppose that V: R"—R is a non-negative real-valued function
which is radial and such that V(x)<C (1+]|x|)~""* for some ¢>0 and some constant



On the Nonexistence of Solutions 233

C>0. Then, for any 2>0, there is no solution u of (1.1) which is positive, radial,
decreasing with r=|x|, u=0 and belonging to C*(R™) N H'(R").

Proof. We shall use a device pointed out by W. Strauss in [5] based on Kato’s
theorem on the absence of positive discrete eigenvalues for the Schrddinger operator.
Suppose that for some 1>>0 there is a solution u of (1.1) with the above mentioned
properties. Let us denote by g,(x)=—aV(x)—(Vsu?)(x). Thus, we can write
equation (1.1) as —Au-+q,(x)u=2u in R* with 2>0. We shall show that g,(x)
satisfies the hypothesis of Kato’s theorem. Clearly Vi belongs to L*(R*). Thus,
it remains to show that Vxu/’ is of order (1 +|x[)-® for some a>1. Let x € R* such
that |x|>2 and let us write :

(2.6) Vo= Ver—yueday+| Vi
where 2,={y e R", y-x<|x[/2} and y-x denotes the inner product of y and x. It

is clear that if y € Q, then | y—x|>|x|/2. Since V(x—))<6(x—y) where 0(x)=
C(1+]x])~"-¢, then it follows that

V=M< 00— yue(i)dy

<o(Z0) [ worty=o (131) juiz.

2z

Q.7

because 4 is decreasing.
Similarly

J wroa, | ST gjm_g Vx—ywi(y)dy

<w (B0 [ re—nay=w (131 171,

where w(x)=c exp (—2|x[*/n) and we have used Lemma 2.1. Thus from (2.7) aﬁd
(2.8) we obtain

ey <o B) fulgrwi(130) v,

for [x|>2. This proves that Vxu* decays at the desired rate as |x|— -+ oo, which
proves the theorem.
In what follows we shall consider the case in which 1=0.

Theorem 2.2. Let V:R"—R be a non-negative radial function such that V is
continuously differentiable and V e L"*(R")+ L=(R") (n>>3). Let us consider equation
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(1.1) with 2=0. If2V(x)-+grad V(x)-x>0 for all x € R" then any solution u of (1.1)
with 2=0 such that u e H'(R™) has to be zero almost everywhere.

Proof. Suppose that u is a solution of (1.1) with 2=0. Thus, the functional
J: H(R™)—R given by

J(v)= % jRn lerad v ds— 2 JRn V() vH(x)dx
— i [ ] vy

is Frechet differentiable and u is a critical point of J, i.e., J'(#)=0 (see Theorem 5.1

in [3]). Let us consider the path e—u(x/e) (¢ >>0) which passes through the given
solution u. By the “chain rule” we know that

0= 57 ((7))

e=1

Thus

O:L[ij‘ gradu(i>rdx——ai V(x)uz(i)dx
de L2 JR» e 2 JRn &

=L e (E e (L)axar

Direct calculation on each term of (2.9) gives us

2.8)

e=1

n—2
2

0=

2 ho 2
J s ut s 22 [ Vnioas
~3 J pored V- i dx—7- || ve—yneCou(yydsay

_1 j j grad V(x—y)-(x—y)u*(x)u*(y)dxdy.
4 JRrnJR»
Let us multiply equation (1.1) by v and integrate by parts to obtain
0=f |grad ufP dx—a I V(x)u*(x) dx—_[ .[ V(x — () u?(y)dxdy

R™ R R™ J R™
which together with the above identity gives us

O:2cxj [2V(x)+grad V(x)- xJu*(x)dx

Rn

. ' + Im jm [4V(x—y)+grad V(x—y)-(x — W)X (y)dxdy.
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By hypothesis we know that >0 and 2V (x)-+grad V(x)-x is positive, thus we
conclude that u has to be zero almost everywhere.
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