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In [1] sufficient conditions are given on systems of delay-differential equations
with almost periodic ($¥mathrm{a}.¥mathrm{p}$ . for short) time dependence for the existence of $¥mathrm{a}.¥mathrm{p}$ . solu-
tions. These conditions do not seem to imply any uniqueness or stability properties
for such $¥mathrm{a}.¥mathrm{p}$ . solutions. On the other hand for systems of ordinary differential
equations, analogous conditions are not only sufficient for the existence of $¥mathrm{a}.¥mathrm{p}$ . solu-
tions, but also for their uniqueness and asymptotic stability; cf. [2].

In our first result we show that a natural additional condition does in fact yield
the usual type of uniform stability for $¥mathrm{a}.¥mathrm{p}$ . solutions of the delay-differential systems
considered in [1]. Asymptotic stability, however, does not follow; in a sense, this
is probably due to the fact that we consider systems with infinite delays not explicitely
of fading memory type; cf. an example in [10].

Our next result is a Liapunov-Razumikhim theorem giving conditions for sta-
bility of solutions of systems with infinite delays also not explicitely of fading memory
type. It is similar to a result due to Driver in [6] and implies our first result if the
Euclidean norm in $R^{n}$ is used. An application of this theorem to systems of the
type considered in [1] is given.

For our first theorem we need the following two lemmas. Their proofs are
fairly simple, but we include them for the sake of clarity and completeness.

Lemma 1. Let $r(t)$ be real-valued, continuous on the closed bounded interval
$[a, b]$ , and continuously differentia $l$ on $(a, b)$ . Let $r(a)=0$, $r(b)>0$, and define

$m(t)=¥sup¥{r(s):a¥leq s¥leq t¥}$ for $t¥in[a, b]$

then there exists an open interval $I¥subset[a, b]$ in which $m(t)$ is increasing.

Proof. First, there exists a $t_{1}¥in(a, b)$ such that $D^{-}m(t_{1})$ , the upper left derivative
of $m$ is positive there; if not $D^{-}m(t)¥leq 0$ for $t¥in(a, b)$ and by a standard argument
(cf. for example, [11]: p. 354) we would have $m(b)¥leq m(a)=0$, a contradiction. It
follows that $r(t_{1})=m(t_{1})$ ; if not, $m(t_{1})=r(t_{0})$ for some $t_{0}¥in[a,$ $t_{1}$ ) and hence $m(t)=$

$m(t_{0})=m(t_{1})$ for $t¥in[t_{0}, t_{1}]$ which contradicts the fact that $D^{-}m(t_{1})>0$ .
Let $h<0$ and $|h|$ be sufficiently small; then since $m(t_{1}+h)¥geq r(t_{1}+h)$ , it follows that
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$(m(t_{1}+h)-m(t_{1}))h^{-1}¥leq(r(t_{1}+h)-r(t_{1}))h^{-1}$ ,

and letting $h¥rightarrow 0$ we get $D^{-}m(t_{1})¥leq r^{¥prime}(t_{1})$ ; i.e., $r^{¥prime}(t_{1})>0$ . But then $r^{¥prime}(t)>0$ in some
open interval $I=(t_{1}, t_{2})¥subset[a, b]$ , and this, with $m(t_{1})=r(t_{1})$ , clearly implies $m(t)=r(t)$,
and is therefore also increasing on $I$ ; $¥mathrm{q}.¥mathrm{e}.¥mathrm{d}$ .

Remark, The condition that $r(t)$ be continuously differentiable seems crucial
for Lemma 1; there are simple examples of functions with positive derivative at a
point, differentiable in an interval containing this point, and yet not nondecreasing
in such an interval. In fact, there exist non-trivial examples of functions continuous
on an interval and yet not monotonie on any subinterval; $¥mathrm{c}¥mathrm{f}$

$[3]$ , p. 29.
The next lemma uses a method due essentially to Medvedev [4]. In what fol-

lows, $R^{n}$ will denote the set of real $¥mathrm{n}$-vectors and $|x|$ a norm for $x¥in R^{n}$ such that
$|x(t)|$ is continuously differentiable whenever $x(t)$ is and $x(t)¥neq 0$ .

Lemma 2. Let $z(t):[t_{1},$ $b$) $¥rightarrow R^{n}$ , $ b¥leq¥infty$ , and suppose on [ $t_{1}$ , $b)$ :

(i) the derivative $z^{¥prime}(t)$ exists, in a right hand sense at $t_{1}$ ;

(ii) there exist $p>0$ and $h>0$, $ph<1$ , such that

$|z(t)+hz^{¥prime}(t)|¥leq(1-pf¥iota)|z(t)|$ .

Then $|z(t)|¥leq|z(t_{1})|¥exp[-p(t-t_{1})]$, $t¥in[t_{1},$ $b)$ .

Proof. In what follows, $t¥in[t_{1},$ $b$) and $z=z(t)$, $z^{¥prime}=z^{¥prime}(t)$ . Using (ii) we get

$|hz^{¥prime}+(1+ph)z|¥leq|hz^{¥prime}+z|+ph|z|$

$¥leq(l-pf¥nu)|z|+ph|z|=|z|$.

Put $¥alpha=(1-ph)/h$ , multiply by $ h^{-1}¥exp$ $[¥alpha(t-t_{1})]$ , we obtain, eventually

$(¥exp [¥alpha(t-t_{1})]|z(t)|)^{¥prime}¥leq¥exp$ $[¥alpha(t-t_{1})]|z(t)|/h$ ,

from which we easily get the desired conclusion; $¥mathrm{q}.¥mathrm{e}.¥mathrm{d}$ .

Remarks. If $f:R¥times R^{n}¥rightarrow R^{n}$ is continuous and there exist positive numbers $p$ , $h$ ,

and $r$ with $ph<1$ , such that

(ii)’ $|x-y+h(f(t, x)-f(t, y))|¥leq(l-ph)|x-y|$

holds for $|x|¥leq r$ , $|y|¥leq r$ , $t¥in[t_{1},$ $b$), $ b¥leq¥infty$ , then if $x(t)$ and $y(t)$ are solutions of

(1.0) $x^{¥prime}=f(t, x)$

such that $|x(t)|¥leq r$, $|y(t)|¥leq r$ for $t¥in[t_{1},$ $b$), then by using Lemma 2 with $z(t)=x(t)-$

$y(t)$ , we get easily that

$|x(t)-y(t)|¥leq|x(t_{1})-y(t_{1})|¥exp[-p(t-t_{1})]$ , $t¥in[t_{1},$ $b)$ .
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If also $|f(t, ¥mathrm{O})|¥leq M$ for $t¥in[t_{1},$ $b$) where $M<pr$, it can be shown that if $x(t)$ solves
(1.0) on [ $t_{1}$ , $b)$ , and $|x(t_{1})|<r$, then $|x(t)|<r$ on this interval; for a proof, cf. [4].

The following is a simple generalization of Lemma 2:

Lemma 3. Let (i) of Lemma 2 hofd, and suppose there exists a reahalued func-
tion $p(t)$ locally integrable on [ $t_{1}$ , $b)$ and a constant $h¥neq 0$ such that $hp(t)<1$ and (ii)
holds with $p=p(t)$ . Then

$|z(t)|¥leq|z(t_{1})|¥mathrm{e}¥mathrm{x}¥mathrm{p}¥mathrm{H}_{t_{1}}^{t}p(s)ds]$ , $t¥in[t_{1},$ $b)$ .

A proof of this can easily be obtained following the proof of Lemma 2.
We also note that condition (ii) in Lemma 2 is implied by the limit condition:

there exists $p>0$ such that

$h¥overline{11¥rightarrow ¥mathrm{m}+}0$
$(|z(t)+hz^{¥prime}(t)|-|z(t)|)(f¥iota|z(t)|)^{-1}¥leq-p$

uniformly for $t¥in[t_{1},$ $b)$ , $|z(t)|¥neq 0$ .

We introduce the following notation and definitions. $CB$ is the set of $¥mathrm{R}^{¥mathrm{n}}$ -valued
functions continuous and bounded on ( $-¥infty$ , 0]; with norm $||¥phi||=¥sup$ $¥{|¥phi(t)|:t¥leq 0¥}$

for $¥phi¥in CB$, $¥{CB, || ||¥}$ is a real Banach space. For $r>0$ define $CB_{r}=¥{¥phi¥in CB:||¥phi||$

$¥leq r¥}$ .
If $x(t):(-¥infty, b)¥rightarrow R^{n}$, $ b¥leq¥infty$ , then for any $t<b$ we denote $x_{t}$ the function

$x(t+s):s¥leq 0$ . Thus if $x(t)$ is continuous and bounded on $(-¥infty, b)$ , then $x_{t}¥in CB$

for $t¥in(-¥infty, b)$ .
Let $f(t, ¥phi):R¥times CB¥rightarrow R^{n}$ and $-¥infty<t_{0}<b¥leq¥infty$ . The function $x(t)$ : $(-¥infty, b)¥rightarrow$

$R^{n}$ is said to be a solution of

(1) $x^{¥prime}(t)=f(t, x_{t})$

for $t¥in[t_{0},$ $b$) if $x_{t}¥in CB$ for $t<b$ and the derivative $x^{¥prime}(t)$ exists on [ $t_{0}$ , $b)$ , in a right
hand sense at $t_{0}$ , and satisfies (1) on $[t_{0},$ $b)$ .

The following stability definition is standard: A solution $¥overline{x}(t)$ of (1) on $[t_{0},$ $¥infty)$

is uniformly stable (on $[t_{0},$ $¥infty$ )$)$ if given $¥epsilon>0$ , there exists $¥delta_{¥epsilon}>0$ such that for $t_{1}¥geq t_{0}$

and any solution $x(t)$ of (1) on [ $t_{1}$ , $b)$ with $||x_{t}-¥overline{x}_{t_{1}}||<¥delta_{¥epsilon}$ , it follows that $x(t)$ exists
for $t¥geq t_{1}$ and satisfies $|x(t)-¥overline{x}(t)|<¥epsilon$ for $t¥geq t_{1}$ .

In the above definitions, we also allow $ t_{0}=-¥infty$ ; in that case we simply replace
[ $t_{0}$ , $b)$ by $(-¥infty,$ $b$].

The question of whether, given $¥phi¥in CB$, and $t_{0}¥in R$, there exsts a $ b¥leq¥infty$ and a
solution $x(t)$ of (1) on [ $t_{0}$ , $b)$ such that $ x_{t}=¥phi$ , is the socalled initial value problem
(i.v.p. for short) for (1). Conditions on $f$ sufficient for its solution must be stronger
than continuity on $R¥times CB$ and locally Lipschitz in $¥phi$ , such an i.v.p. may have no
solutions; cf. [5]. On the other hand, if one restricts the class of initial functions $¥phi$
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to certain subspaces of $¥{CB, ||||¥}$ ; i.e., for example, $¥{CBU, ||||¥}$ where $CBU$ consist-
ing of functions of $CB$ uniformly continuous on ( $-¥infty$ , 0], and $||$ $||$ is as before,
then a Peano existence theorem for the i.v.p. can be established; i.e., continuity of
$f$ on $R¥times CB$ is sufficient. Also under the assumption that the composite $f(t, x_{t})$ is
continuous on [ $t_{0}$ , $¥infty)$ for any $x(t)$ , $R¥rightarrow R^{n}$ with $x_{t}¥in CB$ for $t¥in R$ , Peano type ex-
istence theorems follow; for early work on such problems, cf. Driver [6], and for
more recent work involving very general initial value (or state) spaces, cf. Hale and
Kato [7] and Kappel and Schappacher [8]. These references are also recommended
for conditions on $f$ under which $ b=¥infty$ for solutions of the $¥mathrm{i}.¥mathrm{v}.¥mathrm{p}.$ . For some stability
results; cf. [6] and [9].

If $f$ is almost periodic ($¥mathrm{a}.¥mathrm{p}$ . for short) in $t$ for each $¥phi¥in CB$ in a sufficiently uni-
form sense (cf. [1]) and one is concerned with existence of $¥mathrm{a}.¥mathrm{p}$ . solutions of (1) on
$(-¥infty, ¥infty)$, then since $x(t):R¥rightarrow R^{n}$ and $¥mathrm{a}.¥mathrm{p}$ . implies $x_{t}$ is in $CBU$ for any $t¥in R$, one
need not impose such strong conditions on $f$ as indicated above to get the existence
of $¥mathrm{a}.¥mathrm{p}$ . solutions. However, in order to establish stability of such $¥mathrm{a}.¥mathrm{p}$ . solutions in
the sense of our definition, one must be concerned with the i.v.p. for general $¥phi¥in CB$,
and hence a condition such as in $(¥mathrm{H}_{1})$ below seems quite natural. In fact, we will
use the following hypotheses:

$(¥mathrm{H}_{1})$ For any function $x(t):R¥rightarrow R^{n}$ such that $x_{t}¥in CB$ for $t¥in R,f(t, x_{t})$ is
continuous.

$(¥mathrm{H}_{2})$ There exist positive numbers $r,p$ , and $h$ such that $ph<1$ , and if $x(t)$ and
$y(t)$ are functions on $R$ to $R^{n}$ such that $x_{t}¥in CB_{r}$ , $y_{t}¥in CB_{r}$ for $t¥in R$ , then

(2) $|x(t)-y(t)+h(f(t, x_{t})-f(t, y_{t}))|¥leq(1-ph)||x_{t}-y_{t}||$ ,

for $t¥in R$ .

Remark. It is not difficult to show that $(¥mathrm{H}_{2})$ implies that $f$ is globally Lipschitz
in $¥phi$ on $CB_{r}$ ; it follows therefore from known results ([6], [7], [8]) that $(¥mathrm{H}_{1})$ and
$(¥mathrm{H}_{2})$ imply that the i.v.p. for (1) has a solution for any $¥emptyset¥in CB_{r}$ .

Theorem 1. Let $¥overline{x}(t)$ be a sofution of (1) on [ $t_{0}$ , $¥infty)$ such that $|¥overline{x}(t)|¥leq r_{1}<r$ for
$t¥in R$, and $(¥mathrm{H}_{1})$ and $(¥mathrm{H}_{2})$ hold. Then $¥overline{x}(t)$ is uniformly stable on [ $t_{0}$ , $¥infty)$ . Tfris result
also holds $ iJ.t_{0}=-¥infty$ .

Proof. Fix $¥delta_{0},0<¥delta_{0}<r-r_{1}$ . Then $¥sup$ $¥{|x-¥overline{x}(t)|:t¥in R¥}¥leq¥delta_{0}$ implies $|x|<r$.
Let $¥phi¥in CB$ be such that $||¥phi-¥overline{x}_{t_{1}}||<¥delta_{0}$ for $t_{1}¥geq t_{0}$ . Let $x(t)=x(t, ¥phi, t_{1})$ be a solution
of (1) such that $ x_{¥iota_{1}}=¥phi$ . Clearly $x_{t_{l}}¥in CB_{r}$ . Suppose there exists $t_{2}>t_{1}$ such that
$¥delta_{0}<|x(t_{2})-¥overline{x}(t_{2})|$ . Then there exists $¥overline{t}¥in(t_{1}, t_{2})$ such that $|x(¥overline{t})-¥overline{x}(¥overline{t})|=¥delta_{0}$ and
$|x(t)-¥overline{x}(t)|<¥delta_{0}$ for $t_{1}<t<¥overline{t}$. We may suppose $t_{2}$ to be such that $|x(t)-¥overline{x}(t)|>0$

for $¥overline{t}¥leq t¥leq t_{2}$ . We now define $r(t)=|x(t)-¥overline{x}(t)|-¥delta_{0}$ and if $a=¥overline{t}$, $b=t_{2}$ , $r(t)$ satisfies
the hypotheses of Lemma 1 on $[¥overline{t}, t_{2}]$ ; note that $(¥mathrm{H}_{1})$ implies that any solution of (1)
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is continuously differentiable for $t¥geq t_{1}$ whereever it is defined, and so $r(t)$ is on
$(¥overline{t}, t_{2})$ . Let $m(t)$ and the open interval $I¥subset[¥overline{t}, t_{2}]$ be as defined in Lemma 1; clearly
$m(t)>0$ for $t¥in L$ and from the definition of $m(t)$ , it follows that for $t¥in Lr(s)<r(t)$

for $¥overline{t}¥leq s<t$ ; i.e., $|x(s)-¥overline{x}(s)|<|x(t)-¥overline{x}(t)|$ for such $s$ . But since $|x(s)-¥overline{x}(s)|=¥delta_{0}$

for $s=¥overline{t}$, and $|x(s)-¥overline{x}(s)|<¥delta_{0}$ for $s<¥overline{t}$, it follows that

$|x(s)-¥overline{x}(s)|<|x(t)-¥overline{x}(t)|$ for $s<t$, $t¥in I$;

i.e. ,

(3) $||x_{t}-¥overline{x}_{t}||=|x(t)-¥overline{x}(t)|$, $t¥in L$

Using (2) in $(¥mathrm{H}_{2})$ we get

$|x(t)-¥overline{x}(t)+f¥iota(f(t, x_{t})-f(t,¥overline{x}_{t}))|¥leq(1-ph)|x(t)-¥overline{x}(t)|$ ;

i.e.,

(4) $|x(t)-¥overline{x}(t)+h(x^{¥prime}(t)-¥overline{x}^{¥prime}(t))|¥leq(1-ph)|x(t)-¥overline{x}(t)|$ , $t¥in L$

Using Lemma 2 with $z(t)=x(t)-y(t)$, $t_{1}=t^{¥prime}¥in L$ and $b¥in Lb>t^{¥prime}$ , it follows that

$|x(t)-¥overline{x}(t)|¥leq|x(t^{¥prime})-¥overline{x}(t^{¥prime})|¥exp[-p(t-t^{¥prime})]$ for $t¥in[t^{¥prime},$ $b)¥subset L$

which contradicts the fact that $|x(t)-¥overline{x}(t)|$ is increasing on $L$ We therefore con-
clude that $|x(t)-¥overline{x}(t)|¥leq¥delta_{0}$ for all $t¥geq t_{1}$ for which $x(t)$ is defined. By a standard
argument on continuation of solutions, it follows that $x(t)$ is a solution of (1) for
all $t>t_{1}$ . Thus $¥overline{x}(t)$ is stable, and the proof is complete.

Remarks. As was the case with condition (ii) in Lemma 2, $(¥mathrm{H}_{2})$ is implied by
the following limit condition:

$(¥mathrm{H}_{2})^{¥prime}$ There exist positive numbers $p$ and $r$ such that

$h¥overline{1¥rightarrow 1¥mathrm{m}0+}(|x(t)-y(t)+h(f(t, x_{t})-f(t, y_{t}))|-||x_{t}-y_{t}||)(h||x_{t}-y_{t}||)^{-1}¥leq-p$

uniformly for $t¥in R$ and functions $x(t)$ , $y(t)$ with $x_{t}¥in CB_{r}$ , $y_{t}¥in CB_{r}$ , $x_{t}¥neq y_{t}$ , $t¥in R$ .
Also, it is clear that if $ t_{0}>-¥infty$ , conditions $(¥mathrm{H}_{1})$ and $(¥mathrm{H}_{2})$ need hold only for

$t¥in[t_{0},$ $¥infty$ ), and the constants $p$ , $h$ , and $r$ in $(¥mathrm{H}_{2})$ may depend on $t_{0}$ .

As remarked earlier, sufficient conditions for the existence of an $¥mathrm{a}.¥mathrm{p}$ . solution
for delay-differential systems with $¥mathrm{a}.¥mathrm{p}$ . time dependence of the form

(5) $x^{¥prime}(t)=F(t, x(t), x_{t})$

are given by Theorem 2 in [1]. One of these, specifically (ii) of $(¥mathrm{H}_{4})$ in this result,
implies our $(¥mathrm{H}_{2})$ with $F(t, x(t), x_{t})=f(t, x_{t})$ . Thus if we add to the hypotheses of
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this theorem the condition that for any $x(t):R¥rightarrow R^{n}$ such that $x_{t}¥in CB$ for $t¥in R$,
$F(t, x(t), x_{t})$ is continuous on $R$, then by our Theorem 1 with $ t_{0}=-¥infty$ , the $¥mathrm{a}.¥mathrm{p}$ .

solution of (5) is uniformly stable on $(-¥infty, ¥infty)$ . It should be observed that even
under the additional condition $(¥mathrm{H}_{1})$ , no uniqueness for the $¥mathrm{a}.¥mathrm{p}$ . solution is implied.

We now state and prove a Liapunov-Razumikhin stability result which can
also be used to establish stability conditions for $¥mathrm{a}.¥mathrm{p}$ . solutions of (1). In fact, if the
Euclidean norm on $R^{n}$ is used in Theorem 1, this theorem is a corollary of this
result. This result is also related to Theorem 5 in [6] and in fact uses the important
Lemma 1 in this paper, which we state below as Lemma 4.

For other stability results for systems with infinite delays using Liapunov-
Razumikhin conditions, cf. [9].

Lemma 4 (cf. Lemma 1 in [6]). Suppose that if the real-valued function $w(t)$ ,
continuous for $t<b$ and satisfying $w(s)¥leq w(t)$ for $s¥leq t<b$, $t$ fixed, we have

$¥overline{h11¥rightarrow ¥mathrm{m}0+}(w(t+h)-w(t))/h¥leq 0$ , $t_{0}¥leq t<b$ ;

then $w(t)¥leq¥sup¥{w(s):s¥leq t_{0}¥}$ for $t_{0}<t<b$ .

Theorem 2. Let $V(t, x):R¥times R^{n}¥rightarrow R$ be continuous and satisfy
(i) $u(|x|)¥leq V(t, x)¥leq u(|x|)$ on $R¥times R^{n}$ , where $u(r)$ and $v(r)$ are continuous and

increasing on [0, $¥infty$ ) and $u(0)=u(0)=0$, and
(ii) there exists a number $r_{0}>0$ such that if $x(t)$ is a solution of (1) on $[t_{0},$ $¥infty)$

[or which $|x(t)|¥leq r_{0}$ , $t¥in R$ and

$V(t, x(t))¥geq¥nabla(s, x(s))$ for $s¥leq t$, $t¥geq t_{0}$ ,

then

$¥dot{V}(t, x(t))=¥overline{h¥rightarrow 0+11¥mathrm{m}}(V(t+h, x(t+h))-V(_{¥nu}t, x(t)))/h¥leq 0$ for $t¥geq t_{0}$ .

Finally, $fetf$ be such that the $i.v.p$ . for (1) has a solution for any $¥phi¥in CB_{r¥mathrm{o}}$ and
$f(t, 0)=0$ for $t¥in R$ .

Then $x(t)=0$ is uniformly stable on $[t_{0},$ $¥infty)$ .

Remark. The theorem also holds if $ t_{0}=-¥infty$ ; again we replace [ $t_{0}$ , $¥infty)$ by
$(-¥infty, ¥infty)$ in this case, and the proof is as below.

Proof of Theorem 2. Let $¥epsilon$ , $0<¥epsilon<r_{0}$ be given; there exists $¥delta_{1}(¥epsilon)>0$ such that
$0¥leq r<¥delta_{1}(¥epsilon)$ implies $ u^{-1}(r)<¥epsilon$ , where $u^{-1}$ denotes the inverse of $u$ . Thus $V(t, x(t))<$

$¥delta_{1}(¥epsilon)$ implies $u(|x(t)|)<¥delta_{1}(¥epsilon)$ , which in turn implies $|x(t)|<¥epsilon$ . Fix $¥delta_{2}(¥epsilon)<r_{0}$ and that
$0¥leq r<¥delta_{2}(¥epsilon)$ implies $v(r)<¥delta_{1}(¥epsilon)$ . Now consider a solution $x(t)$ of (1) on [ $t_{1}$ , $b)$ , such
that $|x(t)|<¥delta_{2}(¥epsilon)$ for $t¥leq t_{1}$ ; here $t_{1}¥geq t_{0}$ . Then $V(t, x(t))<v(|x(t)|)<¥delta_{1}(¥epsilon)$ for $t¥leq t_{1}$ .
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With $w(t)=V(t, x(t))$, condition (ii) and Lemma 4 imply $V(t, x(t))¥leq¥delta_{1}(¥epsilon)$ for
$t¥in[t_{1},$ $b$); i.e. $|x(t)|<¥epsilon$ for $t¥in[t_{1},$ $b$). Since the i.v.p. for (1) and any initial function
$¥phi¥in CB_{r¥mathrm{o}}$ has a local solution for any initial time, a standard continuation argument
shows that $x(t)$ exists for $t>t_{1}$ and satisfies $|x(t)|<¥epsilon$ there.

This proves the theorem.

In the following application of Theorem 2 to systems like (5), we use the inner
product $x¥cdot y=¥sum_{j=1}^{n}x_{j}y_{j}$ for $x=(x_{1^{ }},--, x_{n})$ , $y=(y_{1^{ }},--, y_{n})$, and the Euclidean
norm $|x|=(x¥cdot x)^{1/2}$ for $x¥in R^{n}$ , $y¥in R^{n}$ .

Theorem 3. Let $F:R¥times R^{n}¥times CB¥rightarrow R^{n}$ be continuous, locally Lipschitz in $(x, ¥phi)$

$¥in R^{n}¥times CB$ , and satisfy $(¥mathrm{H}_{1})$ with $f(t, ¥phi)=F(t, ¥phi(0), ¥phi)$ . Let $¥overline{x}(t)$ be a solution of (5)
on [ $t_{0}$ , $¥infty)$ such that for $|x|¥leq r$, $||¥phi||¥leq r$ , and [ $t_{0}$ , $¥infty)$ , we have

$(¥mathrm{H}_{3})$ $x$ . $(F(t, x+¥overline{x}(t),¥overline{x}_{t})-F(t,¥overline{x}(t),¥overline{x}_{t}))¥leq-¥alpha(t)|x|^{2}$ ,

and

$(¥mathrm{H}_{4})$ $|F(t, x+¥overline{x}(t), ¥phi+¥overline{x}_{t})-F(t, x+¥overline{x}(t),¥overline{x}_{t})|¥leq¥beta(t, x)||¥phi||$ .

Suppose that there exists a $¥mu>0$ such that $¥alpha(t)-¥beta_{0}(t)¥geq¥mu$ for $t¥geq t_{0}$ , where

$¥beta_{0}(t)=¥lim_{|x|¥rightarrow 0}¥beta(t, x)$ ,

the limit being uniform for $t¥geq t_{0}$ , and that $¥beta_{0}(t)$ is bounded on [ $t_{0}$ , $¥infty)$ . $TJ¥iota en¥overline{x}(t)$ is
uniformly stable on [ $t_{0}$ , $¥infty)$ . This also holds for $t_{0}=-¥infty;i.e.$ , we replace [ $t_{0}$ , $¥infty)$ by
$(-¥infty, ¥infty)$ .

Proof. Define $h(t, x, ¥phi)=F(t, x+¥overline{x}(t), ¥phi+¥overline{x}_{t})-F(t,¥overline{x}(t),¥overline{x}_{t})$ ; we apply Theo-
rem 2 to (1) with $f(t, ¥phi)=h(t, ¥phi(0), ¥phi)$ . From known results, the conditions on $F$

imply the existence of solutions for the $¥mathrm{i}.¥mathrm{v}.¥mathrm{p}$ . for (1) with $f$ as above.
It is easily seen that $(¥mathrm{H}_{3})$ is equivalent to

$x¥cdot h(t, x, 0)¥leq-¥alpha(t)|x|^{2}$

and $(¥mathrm{H}_{4})$ to

$|h(t, x, ¥phi)-h(t, x, ¥mathrm{O})|¥leq¥beta(t, x)||¥phi||$ .

Clearly, there exists $r_{0}>0$ such that

$¥alpha(t)-¥beta(t, x)¥geq 0$ for $|x|¥leq r_{0}$ , $t¥geq t_{0}$ .

With this $r_{0}$ and $V(t, x)=|x|^{2}/2$, $u(r)=v(r)=r^{2}/2$ , we apply Theorem 2 to (1) where
$f(t, ¥phi)=h(t, ¥phi(0), ¥phi)$ , i.e. to

(6) $x^{¥prime}(t)=h(t, x(t), x_{t})$ .
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Let $x(t)$ solve this equation, $|x(t)|¥leq r_{0}$ , $t¥in R$ , and satisfy $V(t, x(t))>V(s, x(s))$,
$s¥leq t$, $t¥geq t_{0}$ ; i.e.,

$|x(t)|¥geq||x_{t}||$ .

Then

$¥dot{V}(t, x(t))=x(t)¥cdot x^{¥prime}(t)$

$=x(t)¥cdot h(t, x(t), 0)+x(t)¥cdot(h(t, x(t), x_{t})-h(t, x(t), 0))$

$¥leq-¥alpha(t)|x(t)|^{2}+¥beta(t, x(t))|x(t)|||x_{t}||$

$¥leq-¥alpha(t)|x(t)|^{2}+¥beta(t, x(t))|x(t)|^{2}$

$¥leq 0$ , $t¥geq t_{0}$ .

Thus by Theorem 2, $x(t)¥equiv 0$ is a solution of (6) uniformly stable on $[t_{0},$ $¥infty)$

and hence the solution $¥overline{x}(t)$ of (5) is also; q.e.d.

We note finally that if $¥overline{x}(t)$ is $¥mathrm{a}.¥mathrm{p}$ . and $F$ is $¥mathrm{a}.¥mathrm{p}$ . in $t$ uniformly for $(x, ¥phi)$ in $ R¥times$

$CB$ on suitable subsets thereof, then $h(t, x, ¥phi)$ is also. In this case $¥alpha(t)$ and $¥beta(t, x)$

could clearly be assumed $¥mathrm{a}.¥mathrm{p}$ . in $t$ .

Also if $F$ in (5) is continuously differentiable with respect to each component
of $x$, the left side of the inequality of condition $(¥mathrm{H}_{3})$ can be replaced by

$¥frac{¥partial F}{¥partial x}(t,¥overline{x}(t),¥overline{x}_{t})x¥cdot x$

where $¥partial F/¥partial x$ denotes the Jacobian matrix of $F$ with respect to $x$ ; i.e.,

$¥frac{¥partial F}{¥partial x}=(¥frac{¥partial F_{i}}{¥partial x_{j}})$ .

In case $F$ is $¥mathrm{T}$-periodic in $t$ and $¥overline{x}(t)$ is a $¥mathrm{T}$-periodic solution of (5), Floquet theory
can be applied, and the condition $(¥mathrm{H}_{3})$ then clearly requires that the so called char-
acteristic multipliers corresponding to the linear system

(7) $x^{¥prime}=¥frac{¥partial F}{¥partial x}(t,¥overline{x}(t),¥overline{x}_{t})x$

must be less than one in absolute value. For the non-periodic $¥mathrm{a}.¥mathrm{p}$ . case, we do not
have a general Floquet theory, however.

Some final comments concerning Theorem 2 are in order. First, as was
previously remarked, it is related to Theorem 5 in [6]. While this result in [6]
assumes growth and derivative conditions on $V(t, x)$ less restrictive than ours, it
assumes $V$ to be locally Lipschitz in $x$ and yields only stability and not uniform
stability of the trivial solution.
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Finally, if the Euclideaii norm and associated inner product is used in $R^{n}$ ,
Theorem 1 follows from Theorem 2; we indicate some of the details of the proof.
Let $¥overline{x}(t)$ be the solution of (1) on [ $t_{0}$ , $¥infty)$ satisfying the conditions of Theorem 1.
Define $g(t, ¥phi)=f(t,¥overline{x}_{t}+¥phi)-f(t,¥overline{x}_{t})$. Let $x(t)$ be another solution of (1) such that
$|x(t)-¥overline{x}(t)|$ is suitably bounded on $R$ . If $z(t)=x(t)-¥overline{x}(t)$ , then $z(t)$ solves

(8) $z^{¥prime}(t)=g(t, z_{t})$ .

Using $(¥mathrm{H}_{2})$ , we have

$|z(t)+h(f(t,¥overline{x}_{t}+z_{t})-f(t,¥overline{x}_{t}))|¥leq(1-ph)||z_{t}||$ ;

i.e.

(9) $(|z(t)|^{2}+2hg(t, z_{t})¥cdot z(t)+h^{2}|g(t, z_{t})|^{2})^{1/2}¥leq(1-ph)¥sup¥{|z(s)|:s¥leq t¥}$ .

Choose $V(t, z)=|z|^{2}/2$ ; let $z(t)$ solve (8) on [ $t_{0}$ , $¥infty)$ and satisfy $ V(t, z(t))¥geq$

$V(s, z(s))$ for $t¥geq s$, $t¥geq t_{0}$ ; i.e., $|z(t)|¥geq|z(s)|$ for such $t$ and $¥mathrm{s}$ . Then using (9) it fol-
lows easily that

$g(t, z_{t})¥cdot z(t)+h|g(t, z_{t})|^{2}¥leq-p|z(t)|^{2}/2$;

i.e.

$g(t, z_{t})¥cdot z(t)¥leq 0$ for $t¥geq t_{0}$ .

But this is just $¥dot{V}(t, z(t))¥leq 0$, and by Theorem 2 we conclude that the trivial solution
$z¥equiv 0$ of (8) is uniformly stable; i.e., that $¥overline{x}(t)$ is a uniformly stable solution of (1)
on $[t_{0},$ $¥infty)$ .

The author thanks the referee for some very helpful comments and suggestions.
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