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Uniform Stability for Delay-Differential Equations
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In [1] sufficient conditions are given on systems of delay-differential equations
with almost periodic (a.p. for short) time dependence for the existence of a.p. solu-
tions. These conditions do not seem to imply any uniqueness or stability properties
for such a.p. solutions. On the other hand for systems of ordinary differential
equations, analogous conditions are not only sufficient for the existence of a.p. solu-
tions, but also for their uniqueness and asymptotic stability; cf. [2].

In our first result we show that a natural additional condition does in fact yield
the usual type of uniform stability for a.p. solutions of the delay-differential systems
considered in [1]. Asymptotic stability, however, does not follow; in a sense, this
is probably due to the fact that we consider systems with infinite delays not explicitely
of fading memory type; cf. an example in [10].

Our next result is a Liapunov-Razumikhim theorem giving conditions for sta-
bility of solutions of systems with infinite delays also not explicitely of fading memory
type. It is similar to a result due to Driver in [6] and implies our first result if the
Euclidean norm in R” is used. An application of this theorem to systems of the
type considered in [1] is given.

For our first theorem we need the following two lemmas. Their proofs are
fairly simple, but we include them for the sake of clarity and completeness.

Lemma 1. Let r(t) be real-valued, continuous on the closed bounded interval
[a, b], and continuously differentiable on (a, b). Let r(a)=0, r(b)>0, and define

m(t)=sup {r(s): a<s<r} for t € [a, b]
then there exists an open interval IC[a, b] in which m(t) is increasing.

Proof. First, there exists a ¢, € (a, b) such that D-m(t,), the upper left derivative
of m is positive there; if not D-m(¢)<0 for ¢ e (a, b) and by a standard argument
(cf. for example, [11]: p. 354) we would have m(b)<<m(a)=0, a contradiction. It
follows that r(¢,)=m(t)); if not, m(¢)=r(t,) for some ¢, ¢ [a, t,) and hence m(t)=
m(t,) =m(t,) for ¢ e [t,, ¢,] which contradicts the fact that D-m(t,)>0.

Let 2<<0 and | 4] be sufficiently small; then since m(¢, + h) >r(t,+ h), it follows that
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(m(t,+h)—m()h < (r(t,+ ) —r(E)h ™,

and letting ~—0 we get D-m(¢)<r'(¢); i.e., r’(t)>0. But then r/()>0 in some
open interval I=(¢,, t,)C[a, b], and this, with m(z,)=r(¢)), clearly implies m(¢)=r(¢),
and is therefore also increasing on 7; q.e.d.

Remark. The condition that r(¢) be continuously differentiable seems crucial
for Lemma 1; there are simple examples of functions with positive derivative at a
point, differentiable in an interval containing this point, and yet not nondecreasing
in such an interval. In fact, there exist non-trivial examples of functions continuous
on an interval and yet not monotonic on any subinterval; cf [3], p. 29.

The next lemma uses a method due essentially to Medvedev [4]. In what fol-
lows, R™ will denote the set of real n-vectors and |x| a norm for x € R* such that
|x(#)] is continuously differentiable whenever x(t) is and x(¢) 0.

Lemma 2. Let z(t): [t,, b)—R", b<< oo, and suppose on [t,, b):
(i) the derivative Z'(t) exists, in a right hand sense at t;
(ii) there exist p>0 and h>0, ph<1, such that

|z(2)+hz'(1)| < (1 —ph) | z(2)).
Then |z{t)|<|z(t,)| exp [—p(t—1))], t € [£,, D).
Proof. 1In what follows, ¢ € [t,, b) and z=2z(¢), z/=z'(¢). Using (ii) we get
|hz’ +(1+ph)z|<|hz' 42|+ ph |z
< —ph)|z|+ph|z|=|z|
Put a=(1—ph)/h, multiply by 4~ exp [a(t—?))], we obtain, eventually
(exp [a(t— 1)) |2() )Y < exp [alt— 1)]|2(0) |,
from which we easily get the desired conclusion; q.e.d.

Remarks. If f: RX R*—R" is continuous and there exist positive numbers p, h,
and r with ph<1, such that

(i) |x—y+ha(ft, x)— 1t Y)I<A—ph) | x—y|
holds for |x|<r, |y|<r, t € [t,, b), b<< oo, then if x(¢) and y(¢) are solutions of
(1.0) x' = f(t, x)

such that | x(¢)|<r, |¥(¢)|<r for t € [t,, b), then by using Lemma 2 with z(t)=x(t)—
¥(t), we get easily that

%) —y(O)|<|x(#) =yt exp [—p(t—1)),  telt, b).
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If also | f(¢, 0)|< M for ¢ € [t,, b) where M<pr, it can be shown that if x(¢) solves
(1.0) on [#,, b), and | x(z,)|<r, then | x(¢)|<r on this interval; for a proof, cf. [4].
The following is a simple generalization of Lemma 2:

Lemma 3. Let (i) of Lemma 2 hold, and suppose there exists a realvalued func-
tion p(t) locally integrable on [t,, b) and a constant h=0 such that hp(t)<1 and (ii)
holds with p=p(t). Then

z0\<lzw e |~ poys|. el

A proof of this can easily be obtained following the proof of Lemma 2.
We also note that condition (ii) in Lemma 2 is implied by the limit condition:
there exists p >0 such that

}E@o (2(0)+hz' (D] —|z(OD* [z < —p

uniformly for ¢ € [¢,, b), |z(¢)| 0.

We introduce the following notation and definitions. CB is the set of R"-valued
functions continuous and bounded on (— oo, 0]; with norm ||é||=sup {|¢(¢)|: t<0}
for ¢ ¢ CB, {CB,|| |} is a real Banach space. For r>0 define CB,={¢$ e CB: |||
<r}. 4

If x(¢): (— o0, b)—R", b<oco, then for any t<b we denote x, the function
x(t4s): s<0. Thus if x(¢) is continuous and bounded on (— o, b), then x, € CB
for t e (— o0, b).

Let f(t, $): RX CB—R"™ and — oo <1,<b<co. The function x(¢): (— oo, b)—
R™ is said to be a solution of

(1) X'()=f{, x)

for t e [¢,, b) if x, € CB for t<b and the derivative x'(¢) exists on [z, b), in a right
hand sense at ¢,, and satisfies (1) on [Z,, b).

The following stability definition is standard: A solution x(¢) of (1) on [#,, o)
is uniformly stable (on [¢,, o0)) if given ¢>0, there exists §,>0 such that for #,>1,
and any solution x(¢) of (1) on [t,, b) with || x,—X,,||<d., it follows that x(z) exists
for ¢t >1¢, and satisfies | x(#) — X(¢)|<e for ¢ >1,.

In the above definitions, we also allow #,= — co; in that case we simply replace
[¢,, b) by (— o0, B]. _

The question of whether, given ¢ € CB, and ¢, € R, there exsts a b<Coo and a
solution x(¢) of (1) on [#,, b) such that x,=¢, is the socalled initial value problem
(i.v.p. for short) for (1). Conditions on f sufficient for its solution must be stronger
than continuity on RX CB and locally Lipschitz in ¢, such an i.v.p. may have no
solutions; cf. [5]. On the other hand, if one restricts the class of initial functions ¢
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to certain subspaces of {CB, || |[}}; i.e., for example, {CBU, || |} where CBU consist-
ing of functions of CB uniformly continuous on (—oo, 0], and || | is as before,
then a Peano existence theorem for the i.v.p. can be established; i.e., continuity of
Jon RX CB is sufficient. Also under the assumption that the composite f(, x,) is
continuous on [¢, co) for any x(¢), R—R" with x, € CB for ¢ e R, Peano type ex-
istence theorems follow; for early work on such problems, cf. Driver [6], and for
more recent work involving very general initial value (or state) spaces, cf. Hale and
Kato [7] and Kappel and Schappacher [8]. These references are also recommended
for conditions on f under which b= co for solutions of the i.v.p.. For some stability
results; cf. [6] and [9].

If f'is almost periodic (a.p. for short) in ¢ for each ¢ € CB in a sufficiently uni-
form sense (cf. [1]) and one is concerned with existence of a.p. solutions of (1) on
(— o0, o), then since x(z): R—R" and a.p. implies x, is in CBU for any ¢ € R, one
need not impose such strong conditions on f as indicated above to get the existence
of a.p. solutions. However, in order to establish stability of such a.p. solutions in
the sense of our definition, one must be concerned with the i.v.p. for general ¢ € CB,
and hence a condition such as in (H,) below seems quite natural. In fact, we will
use the following hypotheses:

(H,) For any function x(¢): R—~R" such that x, e CB for te R, f(t, x,) is
continuous.

(H,) There exist positive numbers r, p, and % such that p2<{1, and if x(z) and
() are functions on R to R" such that x, ¢ CB,, y, € CB, for t € R, then

(2) |x(1) =)+ h(f(t, x)— [ y)I<(A—ph) || x,— .|,
for t e R.

Remark. It is not difficult to show that (H,) implies that fis globally Lipschitz
in ¢ on CB,; it follows therefore from known results ([6], [7], [8]) that (H,) and
(H,) imply that the i.v.p. for (1) has a solution for any ¢ ¢ CB,.

Theorem 1. Let X(2) be a solution of (1) on [t,, oo) such that |x(t)|<r,<r for
t € R, and (H,) and (H,) hold. Then X(t) is uniformly stable on [t,, o). This result
also holds if t,= — oo.

Proof. Fix 6, 0<d,<r—r,. Then sup {{x—X(?)|: t ¢ R}<4, implies |x|<r.
Let ¢ ¢ CB be such that ||¢ —X,,[|<J, for t,>1#,. Let x(t)=x(z, $, t)) be a solution
of (1) such that x,,=¢. Clearly x,, € CB,. Suppose there exists ,>>¢, such that
0o <|x(#,)—X(%,)]. Then there exists ¢ (¢, %) such that |x(7) — %(7)| =0, and
|x(2)—x(1)| <4, for #,<t<7. We may suppose #, to be such that |x(z)—x(z)|>0
for i<t<t,, We now define r(t)=|x(1)—x(¢)|—d, and if a=7, b=t,, r(¢) satisfies
the hypotheses of Lemma 1 on [7, £,]; note that (H,) implies that any solution of (1)
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is continuously differentiable for 7>7 whereever it is defined, and so r(¢) is on
(7, t,). Let m(r) and the open interval IC[7, #,] be as defined in Lemma 1; clearly
m(t)>0 for ¢ e I, and from the definition of m(z), it follows that for t e I, r(s)<r(t)
for 1<s<t; i.e., |x(s)—x(s)|<|x(#)—x(t)| for such s. But since |x(s)—X(s)|=46,
for s=1, and | x(s)—x(s)| <9, for s<7, it follows that

|x(s)—x(s)|<| x(¢) —x(2)) for s<t,tel,

i.e.,
(3) x| =IO -5, tel
Using (2) in (H,) we get
(1) — 5O Bt x)— (6, T (1 —ph) | x(0)—5(0)];
e,
(4) O —HO MO —F )< —ph) () —FO),  te

Using Lemma 2 with z(¢)=x(¢)—y(¢), t,=t" e I, and b e I, b>1’, it follows that
|x(2)—x(2)|<|x(z")—X(¢")| exp [—p(t—1')] forte[t/,b)C1,

which contradicts the fact that |x(¢) —X(¢)| is increasing on 1. We therefore con-
clude that |x(z) —x(¢)|<d, for all >t for which x(¢) is defined. By a standard
argument on continuation of solutions, it follows that x(¢) is a solution of (1) for
all £>>1,. Thus X(¢) is stable, and the proof is complete.

Remarks. As was the case with condition (ii) in Lemma 2, (H,) is implied by
the following limit condition:
(H,Y There exist positive numbers p and r such that

E (@O =y +h(f(t, x)— f& yD| = %=y, D] x, =y D' < —p

uniformly for ¢ € R and functions x(¢), y(¢) with x, e CB,, y, e CB,, x,#»,, t € R.
Also, it is clear that if #,> — oo, conditions (H,) and (H,) need hold only for
t € [t,, o), and the constants p, /#, and r in (H,) may depend on ¢,.

As remarked earlier, sufficient conditions for the existence of an a.p. solution
for delay-differential systems with a.p. time dependence of the form

(5) x'(B)=F(t, x(1), x,)

are given by Theorem 2 in [1]. One of these, specifically (ii) of (H,) in this result,
implies our (H,) with F(z, x(¢), x,)=f(¢, x,). Thus if we add to the hypotheses of
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this theorem the condition that for any x(z): R—R" such that x, e CB for te R,
F(t, x(¢), x,) is continuous on R, then by our Theorem 1 with #,= — co, the a.p.
solution of (5) is uniformly stable on (— oo, o). It should be observed that even
under the additional condition (H,), no uniqueness for the a.p. solution is implied.

We now state and prove a Liapunov-Razumikhin stability result which can
also be used to establish stability conditions for a.p. solutions of (1). In fact, if the
Euclidean norm on R" is used in Theorem 1, this theorem is a corollary of this
result. This result is also related to Theorem 5 in [6] and in fact uses the important
Lemma 1 in this paper, which we state below as Lemma 4.

For other stability results for systems with infinite delays using Liapunov-
Razumikhin conditions, cf. [9].

Lemma 4 (cf. Lemma 1 in [6]). Suppose that if the real-valued function w(t),
continuous for t<b and satisfying w(s)<w(t) for s<t<b, t fixed, we have

im (w(t+h) —w@)/h<0,  t,<t<b;
=0+

then w(t)<sup {w(s): s<t} for t,<t<b.

Theorem 2. Let V(t, x): RX R*—R be continuous and satisfy

(i) u(xD<V(, x)<v(x]) on RX R, where u(r) and v(r) are continuous and
increasing on [0, oo) and u(0)=v(0)=0, and

(i) there exists a number r,>>0 such that if x(¢) is a solution of (1) on [t,, o0)
Jor which |x(t)|<r,, t € R and

Ve, x@) =V (s, x(s))  for s<t, t>1,

then
V(t, x(1))=lim (V(t+h, x(t+h))— V(z, x()))/h<0 for t>1,.

Finally, let f be such that the i.v.p. for (1) has a solution for any ¢ e CB,, and
f(t,0)=0 for te R.
Then x(t)=0 is uniformly stable on [t,, ).

Remark. The theorem also holds if 7,=—oco; again we replace [t,, co) by
(— o0, o0) in this case, and the proof is as below.

Proof of Theorem 2. Lete, 0<e<r, be given; there exists §,(¢)>>0 such that
0<r<d,(e) implies u~'(r)<e, where u~* denotes the inverse of u. Thus V (¢, x(¢))<<
0,(e) implies u(|x(¢)[) <,(e), which in turn implies |x(¢)|<e. Fix d,(e)<<r, and that
0<r<d,(e) implies v(r)<d,(). Now consider a solution x(¢) of (1) on [t,, b), such
that | x(¢)|<0,(e) for t<t,; here t,>1,. Then V(z, x(¢))<<v(|x(¢)])<d,(e) for t<t,.
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With w(t)=V(t, x(t)), condition (ii) and Lemma 4 imply V(¢, x(¢))<d,(e) for
telt, b); ie.|x(¢)|<e for te[t,b). Since the i.v.p. for (1) and any initial function
¢ € CB,, has a local solution for any initial time, a standard continuation argument
shows that x(¢) exists for # >, and satisfies | x(¢)|<e there.

This proves the theorem.

In the following application of Theorem 2 to systems like (5), we use the inner

product x-y=>"_, x;y; for x=(x,, ---, x,), y=(y, - - -, »,), and the Euclidean
norm |x|=(x-x)"* for xe R*, y ¢ R™.

Theorem 3. Let F: RX R" X CB—R" be continuous, locally Lipschitz in (x, ¢)
e R"X CB, and satisfy (H,) with f(t, $)=F(t, $(0), #). Let x(t) be a solution of (5)
on [t,, oo) such that for |x|<r, ||§||<r, and [t,, o0), we have

(H3) X (F(t, x—}—)?(l‘), ft)—F(l‘, X(t): x—t))g "‘a(t) lxlz’
and '
(H) |F(t, x4X(2), ¢+X)— F(t, x+X%(t), X,)| <P, %) || B]]-

Suppose that there exists a >0 such that a(t)— B(t)>p for t > 1, where
ABO(t) = llilrfl»O ﬁ(ta .X),

the limit being uniform for t >t,, and that B(t) is bounded on [t,, o0). Then X(t) is
uniformly stable on [t,, 00). This also holds for t,= — oo} i.e., we replace [t,, o) by
('_ oo, oo)

Proof. Define h(t, x, ¢)=F(¢t, x+x(t), ¢+ x,)— F(t, X(¢), X,); we apply Theo-
rem 2 to (1) with f(¢, ¢)=h(t, $(0), ¢). From known results, the conditions on F
imply the existence of solutions for the i.v.p. for (1) with f as above.
‘ It is easily seen that (H,) is equivalent to

x-h(t, x, 0)< —alt) | x]*
and (H)) to

|2, x, $)—h(2, x, 0)| < B, X) [|$].
Clearly, there exists ,>>0 such that
a(t)—pB(t, x)>0 for | x|<ry, t > 1,

With this r, and V (¢, x)=|x|’/2, u(r)=v(r)=r?2, we apply Theorem 2 to (1) where
f(t, §)=h(t, $(0), $), i.e. to

(6) X' ()=h(t, x(2), x,).
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Let x(¢) solve this equation, |x(¢)|<r,, t € R, and satisfy V(z, x(¢))> V (s, x(s)),
s<t, t>1,; 1.e.,

|x()| =11 x.l.
Then

V(t, x(2))=x(t)- x'(2)
=x(t)- Wz, x(t), 0)+ x(t)- (h(t, x(t), x,)— h(t, x(t), 0))
< —a(®) [ x(@) [ 4B, x(2)) | x(2)] ]| x|
< —a(t) | x() [P+ B(2, x(2)) | x()
<0, t>1,.

Thus by Theorem 2, x(¢)=0 is a solution of (6) uniformly stable on [?,, o)
and hence the solution X(z) of (5) is also; q.e.d.

We note finally that if X(¢) is a.p. and F is a.p. in ¢ uniformly for (x, ¢) in RX
CB on suitable subsets thereof, then A(t, x, ¢) is also. In this case a(¢) and B(z, x)
could clearly be assumed a.p. in 7.

Also if F in (5) is continuously differentiable with respect to each component
of x, the left side of the inequality of condition (H,) can be replaced by

F 4, 3(1), T )x-x
0x

where 0F/ox denotes the Jacobian matrix of F with respect to x; i.e.,

ox ox,/
In case Fis T-periodic in ¢ and X(¢) is a T-periodic solution of (5), Floquet theory

can be applied, and the condition (H,) then clearly requires that the so called char-
acteristic multipliers corresponding to the linear system

(7) ¥ =2F 4, x(t), x)x
ox

must be less than one in absolute value. For the non-periodic a.p. case, we do not
have a general Floquet theory, however.

Some final comments concerning Theorem 2 are in order. First, as was
previously remarked, it is related to Theorem 5 in [6]. While this result in [6]
assumes growth and derivative conditions on V(¢, x) less restrictive than ours, it
assumes V to be locally Lipschitz in x and yields only stability and not uniform
stability of the trivial solution.
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Finally, if the Euclidean norm and associated inner product is used in R”,
Theorem 1 follows from Theorem 2; we indicate some of the details of the proof.
Let x(¢) be the solution of (1) on [¢, co) satisfying the conditions of Theorem 1.
Define g(t, )= f(¢, Xx,+¢)— f(t, X,). Let x(¢) be another solution of (1) such that
| x(#)—X(¢)| is suitably bounded on R. If z(¢)=x(¢)—x(¢), then z(¢) solves

(8) Z(t)=g(t, z.).
Using (H,), we have

|2(2)+h(f(t, X, +2)— f(t, ) |<A—ph) || z.||;
i.e.
(9) (2(F+2hg(2, z,)- z(t)+ 1 |g (8, ) )< (1 —ph) sup {|z(s)|: s< 1}

Choose V(t, z)=|z['/2; let z(z) solve (8) on [t,, co) and satisfy V(¢ z(¢))>
Vs, z(s)) for t >s, t >1,; i.e., |z(t)|>]2(s)| for such # and s. Then using (9) it fol-
lows easily that

8(t,z,)-z(t)+h|gt, z)F < —p|z(D)/2;
i.e.
g(t,z) z(t)<0 for t > 1,

But this is just V(z, z(t))<0, and by Theorem 2 we conclude that the trivial solution
z=0 of (8) is uniformly stable; i.e., that x(¢) is a uniformly stable solution of (1)
on [t,, o).

The author thanks the referee for some very helpful comments and suggestions.
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