Funkcialaj Ekvacioj, 25 (1982) 223-226

A Matrix Analogue of Atkinson's Oscillation Theorem

By

Takeshi Kura

(Hiroshima University, Japan)

Consider the nonlinear matrix differential equation

(1)
$$X'' + X^{**}Q(t)X^{k+1} = 0,$$

where k is a positive integer, Q(t) is a real valued $n \times n$ matrix function which is continuous, symmetric and positive definite on $[t_0, \infty)$, $t_0 > 0$, and X^* denotes the transpose of X.

By a solution of equation (1) we mean a real valued $n \times n$ matrix function X(t) which exists on some ray $[T_x, \infty)$, satisfies (1) for all sufficiently large t and is not identically singular in any neighborhood of infinity. Any solution X(t) of (1) satisfies the relation

(2)
$$X^{*}(t)X'(t) - X^{*'}(t)X(t) = C, \quad t \in [T_x, \infty),$$

where C is a constant matrix. A solution X(t) of (1) is called *prepared* if C=0 and *oscillatory* if the determinant of X(t), det X(t), has arbitrarily large zeros.

An oscillation criterion for (1) was first given by Tomastik [3] who showed that all prepared solutions of (1) are oscillatory if

(3)
$$\int_{t_0}^t Q(\tau) d\tau \quad \text{is unbounded as } t \to \infty.$$

In view of the well-known oscillation theorem of Atkinson [1] for the scalar equation $x'' + q(t)x^{2k+1} = 0$, it is natural to ask what will happen for (1) if condition (3) is replaced by the following weaker one:

(4)
$$\int_{t_0}^t \tau Q(\tau) d\tau \quad \text{is unbounded as } t \to \infty.$$

Below we show that condition (4) ensures that all symmetric prepared solutions of (1) are oscillatory and that, in case Q(t) commutes Q(s) for any values of $t, s \in$ $[t_0, \infty)$, (4) is a necessary and sufficient condition for the oscillation of all symmetric prepared solutions of (1). Thus we are able to obtain a matrix analogue of Atkinson's oscillation theorem [1, Theorem 1].

T. KURA

Theorem 1. If (4) holds, then all symmetric prepared solutions of (1) are oscillatory.

Proof. Suppose to the contrary that there exists a symmetric prepared solution X(t) of (1) such that det $X(t) \neq 0$ on some interval $[t_1, \infty)$, $t_1 \ge t_0$. Then according to a lemma of [3], det $X'(t) \neq 0$ on some interval $[t_2, \infty)$, $t_2 \ge t_1$, and the symmetric matrix $S(t) = X'(t)X^{-1}(t)$ satisfies

(5)
$$S^{-1}(t) = S^{-1}(t_2) + \int_{t_2}^t S^{-1}(\tau) X^k(\tau) Q(\tau) X^k(\tau) S^{-1}(\tau) d\tau + (t - t_2) I$$

for $t \ge t_2$, where *I* is the identity matrix. From (5) we see that $\lim_{t\to\infty} \lambda(S^{-1}(t)) = \infty$, where $\lambda(S^{-1}(t))$ denotes the smallest eigenvalue of $S^{-1}(t)$. Therefore, S(t) is positive definite on some interval $[T, \infty)$, $T \ge t_2$. Using (1) and the symmetry of X(t), we have

$$(tX^{-k}(t)X'(t)X^{-k-1}(t))' = -\frac{1}{2k}(X^{-2k}(t))' - (2k+1)tX^{-k}(t)S^{2}(t)X^{-k}(t) - tQ(t).$$

Integrating the above over $[T, t], t \ge T$, gives

$$TX^{-k}(T)S(T)X^{-k}(T) + \frac{1}{2k}X^{-2k}(T)$$

= $tX^{-k}(t)S(t)X^{-k}(t) + \frac{1}{2k}X^{-2k}(t) + (2k+1)\int_{T}^{t} \tau X^{-k}(\tau)S^{2}(\tau)X^{-k}(\tau)d\tau$
+ $\int_{T}^{t} \tau Q(\tau)d\tau$,

from which it follows that

$$(6) \qquad \qquad \Lambda \bigg(TX^{-k}(T)S(T)X^{-k}(T) + \frac{1}{2k} X^{-2k}(T) \bigg) \geq \Lambda \bigg(\int_T^t \tau Q(\tau) d\tau \bigg),$$

where $\Lambda(M)$ denotes the largest eigenvalue of M. This implies that the right-hand side of (6) remains bounded as $t \to \infty$, which contradicts (4).

Theorem 2. Suppose that

(7)
$$Q(t_1)Q(t_2) = Q(t_2)Q(t_1)$$
 for all $t_1, t_2 \in [t_0, \infty)$.

Then equation (1) has a prepared solution which is symmetric and nonsingular for all large t if the limit

(8)
$$\lim_{t\to\infty}\int_{t_0}^t\tau Q(\tau)d\tau$$

exists and is finite.

Proof. Choose $T > t_0$ so large that

(9)
$$(1+n^{1/2})^{2k+1}\int_{T}^{\infty} (\tau-T) \|Q(\tau)\| d\tau \leq 1,$$

where $||Q(t)|| = (\sum_{i,j=1}^{n} q_{ij}^2(t))^{1/2}$, $Q(t) = (q_{ij}(t))_{i,j=1}^n$. This is possible because of (8). Let \mathscr{C} denote the locally convex space of $n \times n$ matrix continuous functions on $[T, \infty)$ with the topology of uniform convergence on compact subintervals. Let \mathscr{X} denote the set of functions $X \in \mathscr{C}$ such that

(10)
$$||X(t)-I|| \leq 1, \quad X^*(t) = X(t), \quad Q(t_1)X(t_2) = X(t_2)Q(t_1)$$

for all $t, t_1, t_2 \in [T, \infty)$. Then \mathscr{X} is a nonempty convex subset of \mathscr{C} . For $X \in \mathscr{X}$, cefine the map F by

(1)
$$(FX)(t) = I - \int_t^\infty (\tau - t) X^k(\tau) Q(\tau) X^{k+1}(\tau) d\tau, \quad t \ge T.$$

Using (7), (9) and (10), we see that F maps \mathscr{X} into itself. The continuity of F is cbvious. It is easy to verify that

$$||(FX)(t)|| \leq 1 + n^{1/2}$$

and

$$\|(FX)(t_1) - (FX)(t_2)\| \leq |t_1 - t_2| (1 + n^{1/2})^{2k+1} \int_T^\infty \|Q(\tau)\| d\tau$$

for all $X \in \mathscr{X}$ and for all $t, t_1, t_2 \in [T, \infty)$. Therefore, $F(\mathscr{X})$ is precompact by the Ascoli-Arzela theorem. From the Schauder-Tychonoff fixed point theorem it follows that the map F has a fixed point $X \in \mathscr{X}$. In view of (11) this fixed point X=X(t) is a symmetric nonsingular solution of equation (1) on some interval $[T_1, \infty), T_1 \ge T$. That X(t) is prepared follows from the fact that $\lim_{t\to\infty} X(t)=I$ and $\lim_{t\to\infty} X'(t)=0$.

Remark. From a result of Kartsatos and Walters [2, Theorem 1] it follows that condition (8) guarantees the existence of a nonsingular solution of (1). Theorem 2 asserts that under the additional condition (7) equation (1) possesses a *symmetric* nonsingular solution.

Combining Theorem 1 with Theorem 2 we have the following result which extends the oscillation theorem of Atkinson to the matrix differential equation (1).

Theorem 3. Suppose that (7) holds. Then condition (4) is necessary and sufficient for all symmetric prepared solutions of (1) to be oscillatory.

An example of matrices satisfying the conditions of Theorem 3 is

T. Kura

$$Q(t) = \begin{pmatrix} q_1(t) & q_2(t) \\ q_2(t) & q_1(t) \end{pmatrix} \qquad n = 2$$

where $q_1(t)$ and $q_2(t)$ are continuous functions on $[t_0, \infty)$ such that

$$q_1(t) > 0, \quad q_1(t) > |q_2(t)| \quad \text{and} \quad \int_{t_0}^{\infty} t q_1(t) dt = \infty.$$

Acknowledgement, The author wishes to thank Professor Takasi Kusano for many helpful comments and suggestions.

References

- [1] Atkinson, F. V., On second-order non-linear oscillation, Pacific J. Math., 5 (1955), 643-647.
- [2] Kartsatos, A. G. and Walters, T., Some oscillation results for matrix and vector differential equations with forcing term, J. Math. Anal. Appl., 73 (1980), 506-513.
- [3] Tomastik, E. C., Oscillation of nonlinear matrix differential equations of second order, Proc. Amer. Math. Soc., 19 (1968), 1427-1431.

nuna adreso: Department of Mathematics Faculty of Science Hiroshima University Hiroshima, Japan

(Ricevita la 27-an de novembro, 1981)

and the second second

e yn yt

226