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A Matrix Analogue of Atkinson’s Oscillation Theorem
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Consider the nonlinear matrix differential equation

(1) $X^{¥prime¥prime}+X^{*k}Q(t)X^{k+1}=0$,

where $k$ is a positive integer, $Q(t)$ is a real valued $n¥times n$ matrix function which is con-
tinuous, symmetric and positive definite on [ $t_{0}$ , $¥infty)$ , $t_{0}>0$, and $X^{*}$ denotes the trans-
pose of $X$.

By a solution of equation (1) we mean a real valued $n¥times n$ matrix function $X(t)$

which exists on some ray [ $T_{x}$ , $¥infty)$ , satisfies (1) for all sufficiently large $t$ and is not
identically singular in any neighborhood of infinity. Any solution $X(t)$ of (1)
satisfies the relation

(2) $X^{*}(t)X^{¥prime}(t)-X^{*}’(t)X(t)=C$, $t$ $¥in[T_{x},$ $¥infty)$ ,

where $C$ is a constant matrix. A solution $X(t)$ of (1) is called prepared if $C=0$ and
oscillatory if the determinant of $X(t)$ , $¥det X(t)$, has arbitrarily large zeros.

An oscillation criterion for (1) was first given by Tomastik [3] who showed that
all prepared solutions of (1) are oscillatory if

(3) $¥int_{t¥mathrm{o}}^{t}Q(¥tau)d¥tau$ is unbounded as $ t¥rightarrow¥infty$ .

In view of the well-known oscillation theorem of Atkinson [1] for the scalar equation
$x^{¥prime¥prime}+q(t)x^{2k+1}=0$ , it is natural to ask wh.qt will happen for (1) if condition (3) is
replaced by the following weaker one:

(4) $¥int_{t¥mathrm{o}}^{t}¥tau Q(¥tau)d¥tau$ is unbounded as $ t¥rightarrow¥infty$ .

Below we show that condition (4) ensures that all symmetric prepared solutions
of (1) are oscillatory and that, in case $Q(t)$ commutes $Q(s)$ for any values of $t$, $ s¥in$

[ $t_{0}$ , $¥infty)$ , (4) is a necessary and sufficient condition for the oscillation of all symmetric
prepared solutions of (1). Thus we are able to obtain a matrix analogue of Atkinson’ $¥mathrm{s}$

oscillation theorem [1, Theorem 1].
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Theorem 1. If (4) holds, then all symmetric prepared solutions of (1) are oscil-
latory.

Proof. Suppose to the contrary that there exists a symmetric prepared solution
$X(t)$ of (1) such that $¥det X(t)¥neq 0$ on some interval [ $t_{1}$ . $¥infty$ ), $t_{1}¥geqq t_{0}$ . Then according
to a lemma of [3], $¥det X^{¥prime}(t)¥neq 0$ on some interval [ $t_{2}$ , $¥infty)$ , $t_{2}¥geqq t_{1}$ , and the symmetric
matrix $S(t)=X^{¥prime}(t)X^{-1}(t)$ satisfies

(5) $S^{-1}(t)=S^{-1}(t_{2})+¥int_{t_{2}}^{t}S^{-1}(¥tau)X^{k}(¥tau)Q(¥tau)X^{k}(¥tau)S^{-1}(¥tau)d¥tau+(t-t_{2})I$

for $t¥geqq t_{2}$ , where I is the identity matrix. From (5) we see that $¥lim_{t¥rightarrow¥infty}¥lambda(S^{-1}(t))=¥infty$ ,
where $¥lambda(S^{-1}(t))$ denotes the smallest eigenvalue of $S^{-1}(t)$ . Therefore, $S(t)$ is positive
definite on some interval [ $T$, $¥infty)$ , $T¥geqq t_{2}$ . Using (1) and the symmetry of $X(t)$, we
have

$(tX^{-k}(t)X^{¥prime}(t)X^{-k-1}(t))^{¥prime}=-¥frac{1}{2k}(X^{-2k}(t))^{¥prime}-(2k+1)tX^{-k}(t)S^{2}(t)X^{-k}(t)-tQ(t)$ .

Integrating the above over $[T, t]$ , $t¥geqq T$, gives

$TX^{-k}(T)S(T)X^{-k}(T)+¥frac{1}{2k}X^{-2k}(T)$

$=tX^{-k}(t)S(t)X^{-k}(t)+¥frac{1}{2k}X^{-2k}(t)+(2k+1)¥int_{T}^{t}¥tau X^{-k}(¥tau)S^{2}(¥tau)X^{-¥mathrm{k}}(¥tau)d¥tau$

$+¥int_{T}^{t}¥tau Q(¥tau)d¥tau$,

From which it follows that

(6) $¥Lambda(TX^{-k}(T)S(T)X^{-k}(T)+¥frac{1}{2k}X^{-2k}(T))¥geqq¥Lambda(¥int_{T}^{t}¥tau Q(¥tau)d¥tau)$,

where $¥Lambda(M)$ denotes the largest eigenvalue of M. This implies that the right-hand
side of (6) remains bounded as $ t¥rightarrow¥infty$ , which contradicts (4).

Theorem 2. Suppose that

(7) $Q(t_{1})Q(t_{2})=Q(t_{2})Q(t_{1})$ for all $t_{1}$ , $t_{2}¥in[t_{0},$ $¥infty)$ .

Then equation (1) has a prepared solution which is symmetric and nonsingular for all
large $t$ if the limit

(8) $¥lim_{t¥rightarrow¥infty}¥int_{t¥mathrm{o}}^{t}¥tau Q(¥tau)d¥tau$

exists and is finite.
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Proof. Choose $T>t_{0}$ so large that

(9) $(1+n^{1/2})^{2k+1}¥int_{T}^{¥infty}(¥tau-T)||Q(¥tau)||d¥tau¥leqq 1$ ,

vhere $||Q(t)||=(¥sum_{i,j=1}^{n}q_{ij}^{2}(t))^{1/2}$, $Q(t)=(q_{ij}(t))_{i,j=1}^{n}$ . This is possible because of (8).
let ($¥ovalbox{¥tt¥small REJECT}$ denote the locally convex space of $n¥times n$ matrix continuous functions on $[T,$ $¥infty$ )
vith the topology of uniform convergence on compact subintervals. Let $¥mathrm{f}¥mathrm{f}$ denote
tie set of functions $X¥in(¥ovalbox{¥tt¥small REJECT}$ such that

(0) $||X(t)-I||¥leqq 1$ , $X^{*}(t)=X(t)$ , $Q(t_{1})X(t_{2})=X(t_{2})Q(t_{1})$

$¥mathrm{f})¥mathrm{r}$ all $t$, $t_{1}$ , $t_{2}¥in[T,$ $¥infty$ ). Then $¥mathrm{f}¥mathrm{f}$ is a nonempty convex subset of $¥ovalbox{¥tt¥small REJECT}$ . For $ X¥in¥chi$ ,
cefine the map $F$ by

$(|¥sim 1)$ $(FX)(t)=I-¥int_{t}^{¥infty}$ $(¥tau-t)X^{k}(¥tau)Q(¥tau)X^{k+1}(¥tau)d¥tau$, $t¥geqq T$.

Using (7), (9) and (10), we see that $F$ maps $ff$ into itself. The continuity of $F$ is
cbvious. It is easy to verify that

$||(FX)(t)||¥leqq 1+n^{1/2}$

$¥mathrm{a}¥mathbb{R}¥mathrm{d}$

$||(FX)(t_{1})-(FX)(t_{2})||¥leqq|t_{1}-t_{2}|(1+n^{1/2})^{2k+1}¥int_{T}^{¥infty}||Q(¥tau)||d¥tau$

for all $X¥in ¥mathrm{f}¥mathrm{f}$ and for all $t$, $t_{1}$ , $t_{2}¥in[T,$ $¥infty$ ). Therefore, $F(X)$ is precompact by the
Ascoli-Arzela theorem. From the Schauder-Tychonofffixed point theorem it follows
that the map $F$ has a fixed point $X¥in¥ovalbox{¥tt¥small REJECT}$ . In view of (11) this fixed point $X=X(t)$ is
a symmetric nonsingular solution of equation (1) on some interval $[T_{1},$ $¥infty)$ , $T_{1}¥geqq T$.
That $X(t)$ is prepared follows from the fact that $¥lim_{t¥rightarrow¥infty}X(t)=I$ and $¥lim_{t¥rightarrow¥infty}X^{¥prime}(t)=0$ .

Remark. From a result of Kartsatos and Walters [2, Theorem 1] it follows that
condition (8) guarantees the existence of a nonsingular solution of (1). Theorem 2
asserts that under the additional condition (7) equation (1) possesses a symmetric
nonsingular solution.

Combining Theorem 1 with Theorem 2 we have the following result which
extends the oscillation theorem of Atkinson to the matrix differential equation (1).

Theorem 3. Suppose that (7) holds. Then condition (4) is necessary and sufficient
for all symmetric prepared solutions of (1) to be oscillatory.

An example of matrices satisfying the conditions of Theorem 3 is
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$Q(t)=¥left(¥begin{array}{ll}q_{1}(t) & q_{2}(t)¥¥q_{2}(t) & q_{1}(t)¥end{array}¥right)$ $n=2$

where $q_{1}(t)$ and $q_{2}(t)$ are continuous fonctions on [ $t_{0}$ , $¥infty)$ such that

$q_{1}(t)>0$, $q_{1}(t)>|q_{2}(t)|$ and $¥int_{t¥mathrm{o}}^{¥infty}tq_{1}(t)dt=¥infty$ .
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