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1. Let £ be a bounded domain in R* with coordinates (x, y). Let x and y be
real valued functions in C'(2). We shall say that the pair {«, x} has property (C),
if it satisfies in 2

© <K +p#<2,  9r<Q—r"— 2"+ pH—-1).

This condition means that k0 in 2. The pair {x, 0} always satisfies (C) for £ with
<k <2.
A subset F of 2 is said to satisfy (D,) for a real number 7, if it holds

(D) [ wis ), P1rdsdy<oo,

where dis ((x, y), F) is the distance from the point (x, y) to F.

Hereafter we denote by | |, the two-dimensional Lebesgue measure. In the
final part of this section we shall give an example of a closed subset F of 2 with | F|,
0 such that F satisfies (D,) for any given y (0<y<(1) and F has no interior point.

We assume that each pair {x;, ¢;} (1<j<m) satisfies (C). Then we consider
the system

(11) [ay"}_(ﬂj_'_lﬁj)az]u]:; bjlula J: la 29 cee,m, i= vV — 1 1>’

where b,, is in L=(2). It is well known that single elliptic equations of simple char-
acteristics are reduced to the form (1.1).
It is easy to see that there is a real number & with 0<<a<1 such that

1
(12) 1+«
@+aru<(+a—r—@) (+a)E+m—1D,  j=12--,m.

<&i+p<l4a

From now on let « be the same as in (1.2) and let us write simply 9%+ "2 =897,
Our object is to prove

D We write simply 8,=3/6x and 9,=3d/dy.
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Theorem. Suppose that F is a closed subset of £ with |F|,+0 satisfying (D,.) for
some o with a<a/<1. Then there are an open subset G of 2 and positive constants
C, d, k with d, k<1 such that the following holds:

Let ¢ and K be any given real numbers satisfying 0<e<dK and K<1. Let {u,)
be in CY) and solutions of (1.1) in Q. If|0"u;|<K in 2 (n<2) and |u,|, |0u;|<e in
F, then we have

(jj ]ujlzdxdy>1/2§ Ce* K~ ¥,
c ,

where C, d, k and G depend only on {x;, y;}, {b;,} and F.

The proof is given in the final section.

This theorem corresponds to Hadamard’s three circles theorem in the theory of
functions with one complex variable, where F(G) is called “‘the inner (middle) circle”,
respectively.

When the inner circle is an open set, there are several results for elliptic opera-
tors (see e.g. [1], [5], [7]). The case of F with no interior point appears in the book
of M. M. Lavrentiev [4], where the three circles theorem is stated with the maximum
norm for analytic functions. Recently, this case has been treated for elliptic opera-
tors with analytic coefficients by N. S. Nadirashvili [6]. Our method is to prove an
L’-estimate of Carleman’s type as in the book of L. Hérmander (Chapter 8, [2]) and
to use the idea of F. John [3] with respect to the incorrectly posed problem in R”,
where the Cauchy surface is an open subset of an (n— 1)-dimensional hypersurface.

Now we give an example of a closed subset F with |F|,0 such that F has not
any interior point and satisfies (D,) for any given fixed y with 0<y<1.

Example. Let G={(x, y)||x|, |y|<a} (a<1). We first show
(1.3) [ wis (e 3, Gn-ravay= ca,
G

where C is independent of a. In fact, denoting by G’ the triangular {(x, ) |0<x<y
<a}, we have

J f _[dis (Cx, ), G)]rdixdy

= SJIG' (a—y)-rdxdy
=8(1—7)"'Q—p) a7

(see Figure 1). Hence (1.3) is valid.

Secondly we take a monotone decreasing sequence {a,} of positive numbers for
any given ¢ with 0<<c¢<1 in such a way that
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Figure 1

' n—1
a,<ec, an<2l“"(c—Z 2""1aj> n=2)
7=1
:and
ST g2 < 8
n=1

Denoting by J the closed square {(x, y)|0<x, y<c}, we first eliminate from J
an open square whose sides have length ¢, and whose center is identical with that of
J. That is, the square eliminated from J is the set {(x, )| $(c—a)<x, y<i(c+a)}.
The rest consists of eight pieces of rectangles, from which we eliminate respectively

Hf/Gz
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Figure 2

an open new square of its length of side a, from each center (see Figure 2). Con-

tinuing such operation eternally, we obtain the remainder, which is denoted by F.
It is clear that F has not any interior point and

|Fly=c*— 3 2540420
n=1

Giving a number in turn to each eliminated open square, we write these by G,,
G,, - --. It follows o .
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J‘J'J——F [dis ((x, y), F)I""dxdy

<3 [, 1dis o y). Gp1-vday

IA

C; 2egir (by (1.3)).
Hence we have
J j | Ldis ((x, ), F)]rdxdy<co.
If 2 is a bounded domain containing J, we see
J j ., [dis (Ce, ), F)]-"dxdy
gj J- ., [dis (s, 3), D] rdxdy
+J‘IJ—~F [dis ((x, »), F)]""dxdy.

The first integral on the right-hand side is obviously finite. Thus F satisfies (D,).

2. Let {£;, #;} be the same as in the previous section and let us write r=
(x*4+5"*.  We denote {k;, ;} simply by {«, ¢} for any fixed j. We define

M =5, 42p19,0,+ (> + )73,
Then we have:
Lemma 1. There is a positive constant c, such that
Mr-*>cyp2" in 0.
Proof. An easy computation shows
Mr=*=ar=*~[(1+a—£"— ")y + 22+ a)pxy+ (1 + o) (&* + 7)) — 1)x°].

In virtue of (1.2) this completes the proof.
From now on let F be such a set as in our theorem. We set

@D it ) =[ (=97 (— 1) dsar.

Then we see:

Lemma 2. The function . is in C'(R®), and for any fixed o with a<a'<l,
[dis ((x, ¥), F)]¥0*y(x, y) is bounded in R*—F.
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Proof. The proof is conventional in the potential theory. It is evident that
there are functions f;(r) for any § >0 such that

filr) e C(R:,), |91 in R,
f)=r (=0

and
02 fi(r) <o (r<9).
We define

o= [ L=+ G —oyym)-<dsa.

Then it is clear that »{ ¢ C'(R?).
For any fixed point (x, y) we put

D,={(s, 1) | (x— )+ (y— 1 <&},

It follows
4G D=4 NI ([ =5+ = ey dsa
+[[,. . =spr—tyyrdsat.

Hence the sequence {y{} converges to +, uniformly in R®.. Putting

e, )= oG =5 +O—1)-<rdsa,
F
we see similarly that {9+{”} converges uniformly to % by virtue of |3f;|<1. Therefore

Yy is in CY(R).
Secondly it is evident that

|asz(x: J’)l_ﬁ_ C J‘JF ((x—s)2+(y_ t)Z)— @+ /2 gt
and
dis ((x, »), ) S((x—s)}+(y—1t))*

for any (s, t) e F. Hence we get

(dis (G5 3 F)” 10 DI C [ [ (Gemst-r— 1y,
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Since the integral on the right-hand side is finite, the proof is complete.
Further we have:

Lemma 3. For any given p>0, there are positive numbers c,, ¢, and subsets F’,
Q., 2,, 2’ having the following properties:

(i) FFcc,cq.

(ii) F’is a closed subset of F, and it satisfies (D,) for the same o' as in our
theorem.

(iii) 82, 2, and £’ are subdomains of 1.

(iv) It holds that

"!’F’: a‘kF'

where . is the potential (2.1) substituted for F’.
V) <e.
Vi) Yp=c in 2, and rp <c, in Q' —0,.

épM'll/‘F/ il’l .Q/—’F/,

Proof. We may assume that the origin is the Lebesgue density point of F. If
we write r,,=((x—s5)-+(y—1)?)"* for any fixed point (s, ¢), it follows that Mr;*>
G2~ by virtue of Lemma 1. And we easily see that r;«, |0r;*|< Crs;*', when
Is], [£]<1 and (x,y) e 2. On the other hand, there are a positive number § (<1)
and a subdomain {2’ containing the origin such that if |s|, |#|<6 and (x, y) e £, we

have Cr;;'~*< pc,r;;~*. Hence we have
res, |org | < pMrge,

if |s|, |¢|<6 and (x, y) e 2.

Secondly we take subdomains 2,, 2, and positive numbers a,, a, in such a way
that (0,0) e Q,c 2,2, a,<a, and r<a, in Q,, r=a, in 5. Then taking § smaller
if necessary, we see that r,,<b, in 2, and r,,>b, in 5 for |s|, |¢|< 0, where b,, b, are
some positive numbers with b, <b,.

Since the origin is a density point of F, there is a closed square J containing the
origin such that J isin {|x|, | ¥|<<d} and |FN J|,#0. Denoting F/=F(J, we see that
F’ also satisfies (D,,). In fact, it follows that

J‘J‘Q—F' [dis ((x, ), F))]~ < dxdy
éj.[g_p [dis (Cx, ), F)]"“dxdy
+J I ., [dis (Ce, ), F))]~'dxdy.

The first integral on the right-hand side is finite by our hypothesis. The second
integral there is estimated from the above by
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.”p-,; [dis (Cx, »), -f)]""dxdy,

which is obviously finite.
If we put ¢;=b;*|F'|,(j=1, 2), we complete the proof, because rp =b;*|F’l;
in 2, and Y <b;*|F'|; in 2 —0,.

3. In this section let F’, 2,, £2,, 2’ and ¢, ¢, be those such as in Lemma 3.
The positive p will be determined later. Let ¢, be any fixed number such that ¢, <c,
and ¥, <c,in 2. Lemma 2 holds naturally for +-,,.. We define

L=0,4+(p+ik)d,.
Then we have:

Lemma 4. Let v be a function in C{(2')? such that |0"v|<K(L1) in £ for n<2
and |v|, |0v|<e (XK) in F'. Then the inequality

c ”F |0 exp (e )dxdy

<cC [eKe“f"—l— j f | Luf? exp (ZT\VF,)dxdy]
Fre

is valid for any ©>1, where C is independent of v and .

Proof. Writing +,, simply by +, we set w=ve* and g=L+. For any fixed 7,
we denote by [a,, b,] the minimum closed interval containing the set F'N{y= 77}
Let us write F,=F'({y=y}. The complement of F; in R' is written as

Fir=F N {y=r}=(~ 0, &) U by, 20U () (@, ).

By virtue of Lemma 2, w e C{2), g e C°(2) and |ag|< C[dis ((x, y), F)]"* in
F*N Q. From (ii) of Lemma 3 this implies that w-d(gw) is in L'(F’¢), that is, it is
in LI(F}°) for almost all . If fis a fixed function in C!(22"), we have the following
for such 7:

(faxwr gW)F;IC + (Wa ax(fgw))ﬁ’,’f
=[(f&|w)as, 7)) —(fE W)~ o0, 7)]
(3.1 +[(fg|wPXoo, p)—(fZ[W)bo 7]

435 [ WD, 9 — U1 )

where ( , )r,c means the inner product in L2(F’°)

2 By C%) we denote the set of all functions in C*Q") W1th compact; support in. 2.
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On the other hand we have

(f&|wP)b., D) —(f2|W)a,, 1)
=(fgw)(b, P)(W(b,, 7)) —W(a,, )
+(f8)(Bu, D)W, PW(b,, 7)) —w(a,, 7))
+((f8)(b. D) —(f8)(a. 0) [W(a,, DI

This implies that
(e )B. D~ (T2 W Nas D)
I8 )| [ 0.0, )] d

D DI W D [ 10,005, )l dx
1w DI [ (21, 1865, DI+ 7 1085 7D

We obtain similar inequalities for
|(fg W)@, 9)—(fZIW)—oco, )| and [(fZ[w[) oo, n)—(fZWI)(bo ).
Since the points (a,, 7) and (b, ) belong to F’, we see
(W@ D [W(bas )| S

For the sake of simplicity we put E=F’¢. We denote by || ||z ((, )z) the norm (the
inner product) in L*(E), respectively. Integrating the both sides of (3.1), we obtain
from the above '

[(f3.w, gw)g+ (W, 3.(fgW))xl
<C [ee”“ JJ.E |ow| dxdy + e*e**> JL’_F' (1+|og) dxdy].

Since F” satisfies (D,.), the last integral is finite. Obviously |ow|<2cKe®. Accord-
ingly, it follows that

|(f3.w, gw)e+(w, 3.(fgw))s|< CerKe*.
The same inequality holds also for |(fd,w, gw);+(w, 8,(fgw))z|. Thus we get
(3.2) |(e'Lw, gw)z— (W, L*(x™'gw)) ;| < CreKe**s.

From now on we assume that x>0 in Q. If #<0, we replace « by |k|. We
define the quantity R as follows:
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(£~'Lw, gw)p+(gw, £ Lw)y
=W, £ (gL*w+ gLw)) s+ (W, £ 'WL¥*g)
+(w, gwL*k™)p+2(w, £, (u—ik)-gw) s+ R.
By (3.2) we see
|R|< CreKe*.

Let us denote by Q,, Q,, - - - the differential operators of first order. We can
write

and
gL*w+gLw= —gLw-+gLw+wQu,
where L=09,+ (¢—ix)d,. Hence it follows that

—[(c™ " Lw, gw) 5+ (8w, 67 Lw),]
=t(w, £ WM)z—z(w, £~ (gLw —gLw))g+(w, wQu) s —tR.

In Lemma 3 we chose previously p in such a way that & | Q| <3M < in Q' —F.
On the other hand it holds

et Loy =L |+ | s~V gwlfy

—z[(c"'Lw, gw) 5+ (gw, £7'Lw),],
because eV Lv=Lw—zgw. And we see

T|(w, £ (Lw—gLw)) | < 7" ||~ gwllp+ 1 ||+~ (g/g)Lw— Lw)3
=7 ||le"gwlp+% (&= Lw |z +| £~ Lw|).

Combining the above inequalities, we obtain
L e L )4 5O, s,
< C%eKe* s + ||k~ 2e " Lo|[%.
In virtue of Lemma 1, this implies that
T Jf |v? e*Vdxdy
E

< sk [[ ILoreasdy+ QL —lerLup)].
E

Hence if we can show
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(3.3) &=Lz — || &= "Lw|[| < CeKe**s,

our proof is complete.
We see immediately

|6~ 2Lw [y — ||~ Lw ][ =2i((0.W, 0, W) — (@, W, 0,W)).

By virtue of (ii) of Lemma 3, o°w-w is in L'(F’°). Hence we can proceed simiiarly
as in (3.1), that is

@,w, 0W)pye+(0,0,W, W)pye
=(0,w)(co, Pw(co, 1) —(@,w)(bs, PW(by, 1)
+ (9, w)(ao, PW(ao, 1) —(3,w)(— 0, Pw(— oo, 7)

+ 33 @ )bws DB, 1) — (0,9, (@ 7).
And we see

(ayw)(bna W)W(bm n)_(ayw)(am 77)"—‘)(6%’ 77)
= (ayw)(bn, 77)(W(bm 7]) - w(an, 77)) ‘I_ W(an, 77)((ayw)(bna 77) - (ayw)(ana 77))

[ — bn
=(0,w)(b., ) L 0.w)x, Ddx+w(a,, 1) f (9.0,w)(x, p)dx.
Since (a,, 7) and (b,, y) € F’, we have

W@ Dl (WG Dl @)@ Dl @B, PI< Creets.
Thus we obtain
|Gy, 0.0) 5+ (0.0, w, W)
< Cese ([ (@w)ex I+1@w)Cx, D)y

< CrleKete f LI ([ ey
< CrPeKe™.
Similarly we get
|(@,w, 0,w)z+(3,0,w, w);| < CrleKe*.
Therefore it follows that
|0, 0. (@, 8, w)5| < Ce'eKe™,

This implies (3.3). Thus we complete the proof.



On the Three Circles Theorem 151

4. Proof of our theorem.

Taking a function { e C;°(£2") such that {=1 in Q,. If we set v;={u, and L,
=4, + (u;+ ik ;)0,, the following inequality holds from Lemma 4:

. j f (ﬁ I, 12) exp (24 )dxdy
<C [eKe“S’—}—JfF,c(Z |L;v; 12) exp 2z )dxdy]

=)
On the other hand we see

Ly;=u;L,L+CLu;

Hence there is a positive 7, such that for z=>z, the inequality is valid
[f (3 1eiF) exp @eppainay
=
<C [eKe“S’—i—II ( |u;L,& |2) exp 2ty ) dxdy]

Since L,=0 in £2,, we obtain

J I o1 (Z s 12) exp (2eyrp)dxdy

j=1

<C [eKe3”3’+IJg . (]_ |1 |2) exp 2z )dxdy]

In virtue of Lemma 3 this implies

e | (}j lu, |2)dxdy< CK (6™ + Ke*™),
21— F’

j=1

Dividing the both sides by e*', we put A=1%(3¢c;—2c,) ™! and z=1log (K/e)", where we
can assume that =0 without loss of generality. Then the following estimate holds:

j‘J‘ (Z lujIZ)dxdy< C(51/2K3/2+52h(01 62)K2+2h(02 c1))
21—~F’

j=1

On the other hand it is trivial that

_”F (JZ_JI 1 Iz)dxdy< Ce

from our assumption. Therefore, taking d=e~"/*, k=min (1/4, h(c;—c,)) and G=
Q,, we complete the proof of our theorem.
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Remark. Let E be a closed set on 2N {y=0}. We assume that the one-
dimensional measure of E is positive and we set

ose, )= (Cr—sy+r)rds

where « is a number such as in (1.2). Then, in parallel with Lemma 2 we can show
that ¢, ¢ C°(R®) and [dis ((x, ), E)]*'0py, [dis ((x, ¥), E)]'**' 8%, are bounded in 2 — E
for any fixed o with a<<a’<1.

And there are a subdomain Q7 of £, a closed subset E’ of E and a constant C

such that the inequality
: ” |V exp (2ce,) dxdy<C ” | vl exp (220,)dxdy

is valid for any =1 and any v e C}(£2""). Its proof is similar to that of Lemma 4.
Further the following statement is quite similarly verified:
Let {u;} be in C*2) and solutions of (1.1) in £. If u;=0 on E, then u, vanish

identically in 2.
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