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On the Fundamental System of Solutions of y™ - py—0

By

W.J. Kim
(State University of New York, US.A.)

§1. Introduction.

The differential equation to be considered is of the form

(E) Yy +py=0,

where p is continuous and of constant sign on an interval [a, c0). A nontrivial solu-
tion of (E) is said to be oscillatory if it has an infinite number of zeros on [a, o).
Unless the contrary is stated, the term ““solution’ will be used as an abbreviation for
“nontrivial solution.” A solution of (E) which is not oscillatory is called nonoscilla-
tory. Equation (E) is said to be oscillatory if it has at least one oscillatory solution;
otherwise, it is said to be nonoscillatory.

Various aspects of (E) have been investigated by many authors [1-3, 6, 7, 9-11,
14-20]. As a result of these investigations, it is known that the asymptotic and
growth properties of solutions of (E) depend on the parity of » and the sign of p [9,
15, 18, 19]:

(i) n even, p>0,
(i) n odd, p>0,
(iii) n even, <0,
>iv) n odd, p<0.

Equation (E) satisfying condition (i), for example, is denoted by (E)); (E;), (E,;;), and
(E,,) are similarly defined.

The set N of all nonoscillatory solutions of (E) may be partitioned with the help
of the following lemma. :

Lemma 1 [9]. Suppose that y is a nonoscillatory solution of (E) such that y>0
on [b, oo) for some b>a and that p=£0 on [b,, o) for every b,>a. Let [C] be the
greatest integer less than or equal to C.

If y is a solution of (E,) or (E,,), there exists an integer j, 0< j<[(n—1)/2], such
that

(1) y(i>>0, j:(), 1, ---,2j,
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on [b,, o) for some b,>b,
2) C(=DYOS0, =2 -l

on [b, ), and y(x)—0 as x—o0, i=2j+2, ..., n—1.
If y is a solution of (E;) or (Ey,), there exists an integer j, 0<j<[n/2], such that

(3) yH >0, i=0,1,...,2j—1,
on [b,, o) for some b,>b,
(4) (=D9Y®>0,  i=2j,---,n—1,
on [b, oo) and y“(x)—0 as x—o0, i=2j+1,---,n—1.
For (E)) and (E;,), we define
A;={y|y or —y satisfies (1) and (2)}, 0<j<(n—1)/2].
Similarly, define for (E;;) and (E,;,),
A;={y|y or —y satisfies (3) and (4)}, 0<j<[n/2].
Lemma 1 may now be restated in terms of these classes 4;:
A;NA,=0,  j*k,
and the set NV has the representation

4,U4,U--- U A(n—2)/2 for (E),
N=¢4,U4,U---U A(n—l)/z for (E;) and (E;,),
A UA U -UAd,p for (Ey;,).

The author studied the problem of determining the number of solutions in class A4,
and proved, for example, that for (E;) the maximum number of solutions belonging
to A4;, of which every nontrivial linear combination again belongs to 4,, is 0 or 2 [9,
0.

Studying the special equation

(5) V4 py=0, p<0,

Hastings and Lazer [6] obtained results on the existence of bounded oscillatory solu-
tions, while Ahmad [1] proved that the equation has three linearly independent
oscillatory solutions if it is oscillatory. On the other hand, Leighton and Nehari [14]
showed that every solution of

Y+ py=0, p>0,
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is oscillatory if the equation is oscillatory. Johnson [7], Read [20], Lovelady [17],
and Etgen and Taylor [3] investigated Equation (E;;). In particular, Lovelady [17]
proved that (E,;,) has n—1 linearly independent oscillatory solutions if 4, UA4,U - - -
U A, .=0, ie., every nonoscillatory solution belongs to 4,U 4,,,,. '

We shall study the structure of the solution space of (E) in a series of lemmas
and theorems, and generalize some of the above results. For example, it will be
shown in Theorem 5 that if (E,;;) with n>>4 is oscillatory, it has at least (n42)/2 or
(n+4)/2 linearly independent oscillatory solutions according as n/2 is even or odd.
Also motivated by the notion of principal solutions [4, 13], we introduce the concepts
of small and large solutions and prove their existence in Theorems 1 and 2. We make
use of asymptotic properties of nonoscillatory solutions such as proved in [9, 10] and
others to follow, to investigate the behavior of oscillatory solutions.

§2. Preliminary results.
In this section we collect and prove results which will be used repeatedly in the

discussion of our main theorems.

Remark 1[10]. Ifue A, and ve 4,,,, k>1, then v+Cu e A,,, for any con-
stant C.

Lemma 2. Suppose thatue A,,ve A,,,, k>1, and u and v are eventually posi-
tive. Then

o, 0<r<2i,
(r)
im Y70l iytiee, i l<r<2i42k,
a0 UT(X)
0, 204+ 2k+1<r<n,
for (E) and (E,,); and
o, 0<r<2i—1,
()
lim 2 )E"; (=1,  2i<r<2it2k—1,
zoo Y (x
co, 204 2k<r<nm,

Sor (Ey) and (Ey;).

Proof. Consider (E;;) and (E;;;). Assume that u™ >0, r=0,1, ...,2i—1, and
v >0, r=0,1, ---,2i42k—1, on [b,, o) for some b,>a (Cf. Lemma 1). Since
v -D(x)—>o00 and u®**-?(x) remains bounded as x— oo,

U(2i+2k—2)(x)~Cu(2i+2k—2)(x)—)oo as x—oo

for any constant C; and this in turn implies
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(6) v"(x) — Cu”(x)—> o0 as x—o00,

r=0,1, ..., 2i4+2k—2, for any constant C. Furthermore, for any fixed constant C,
there exists a point « such that

(7 ) v(2i+2k—1)(x)___ Cu(2¢+zx-1)(x)>0’ x e [C(, oo),

since v®**?%-1 jg eventually positive and increasing, while u#®:***-9(x)—0 as x—oo by
Lemma 1.

It is easily seen that

tim sup 2™ _{im inf )
e e BTN

r=0,1, ...,n. If this were not the case, there would be a constant C; such that v
— C,u¥ for some j, 0< j<n, has an infinity of zeros on [a, co0). But this is contrary
to Lemma 1 because v—Cju € 4,,, by Remark 1. Consequently,

lim {v™(x)/um(x)}, r=0,1, .-+, n,

exist. We claim that these limits cannot be finite. If lim,_., {v¥(x)/u“(x)} is finite
for some j, 0< j<<2i+2k—1, then there exist B,, B, and a,>>b, such that

v9(x)
B < o <B,  xela, ).
If 42 >0 on [a,, o0), then v’ — B,u¥’ <0 on [a,, co), contradicting (6) or (7). Thus,
. (%) .
(8) lim =00, 0<r<2i4+2k—1,
a—ew U(X)

if 7 >0 on [b,, o0). On the other hand, if <0 on [a,, o0), then v — B,u® <0
on [a,, oo) and again contradicts (6) or (7). Therefore,

(9) lim YO0 _

— (oo
o—e UM(X)

> 0£r£2i+2k—1,

if u” <0 on [b,, o). In view of (8) and (9), and Lemma 1, we have

i v(x) oo, 0<r<2i—1,
m -
o—w U (X) (—1) oo, 2i<r<2i+2k—1.

Turning to the case 2i+2k<r<m, suppose that

(10) fim V()
e UD(x)
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for some j, 2i+2k< j<n, and some constant K. Then

D (x)— Ku9(x)
(1) e (x;’ 2.0, xe[f, o)

for some p>b,. Because of (6) we may assume that p(x)=uv(x)—Ku(x)>0, x €

[B, o0). Since y € 4,,, by Remark 1, sgn y’ =sgn u" on [B, co) by Lemma 1, which
is incompatible with (11). Consequently, (10) cannot hold for any j, 2i4+2k<j<n,
and ‘

v(x) _

=00, 2i4+2k<r<n.
o u )

Proofs for (E;) and (E,,) are similar.

Remark 2. Lemma 2 for the case r=0 may be stated as follows: If u and v
are eventually positive solutions of (E), u € 4,, and

lim sup v(xi +0 [lim sup UEX; ;&oo],

L— o M(X L0 ux
then v € 4, for some j>i [j<i].

Lemma 3. If the class A, contains two solutions v, and v, of which every non-
trivial linear combination again belongs to A,, then A, contains two solutions y, and y,,
each a linear combination of v, and v,, such that

(1)
(12) lim 2% )Ex; —oo,  r=0,1,---,n.
a—e PIT(X
Conversely, if y,, v, € A, such that
(13) im 22 _ o
= Yi(X)

then every nontrivial linear combination of y, and y, belongs to A, and (12) holds.

Proof. We may assume that v,>v,>0 on [b, oo) for some b>a. Since v,—
Kv, belongs to A, for any constant K, lim,_., {v.(x)/v,(x)} exists. If the limit is
infinite, put y,=v,, i=1, 2. If the limit is finite and equal to C, then

v,(x) — Co(x) _

lim 0;
Zoveo v,(x)
put y,=v,—Cv, or y,= —(v,— Cv,) according as v,— Cuv, is eventually positive or

negative, and y,=v,. In either case, we then have lim,_. {y,(x)/y,(x)} =00, where
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both y, and y, are eventually positive. Evidently, Y, =y,— Ky, belongs to 4, for any
constant K and is eventually positive. According to Lemma 1, Y, r=0,1, -- -, n,
have constant signs on [b,, o) for some b,>>a. Therefore, lim,_.. {¥{”(x)/¥{"(x)},
r=0,1, -.-,n, exist. Suppose that

' ¥57(x)
(14) i_,w y(])(x) <

for some constant M and some j, 0<j<n. Then

¥5"(x) — My{”(x)
s P () <0,

on [d, oo) for some d. Here, y, and Y,,=y,— My, belong to 4, and both are even-
tually positive; thus ¥ and Y’ must have the same sign on [d,, co) for some d, by
Lemma 1. But this conclusion is contrary to (15). Hence, (14) cannot hold for any
J>» 0<j<n, and any constant M, proving (12).

Conversely, assume that (13) holds, y,>0, and y,>0 on [b,, oo) for some b,.
Every nontrivial linear combination of y, and y, is nonoscillatory and belongs to 4,,
for some i</, by Remark 1. It suffices to show that it cannot belong to A4,, i</.
If C,y,+Coy,=Y e A, i<, for some non-zero constants C, and C,, then

G+ G, lim 24 ZCINENTIND (C))
L= yl( ) oo y1(x)

where the left-hand side is infinite, while the right-hand side is zero by Lemma 2.
Thus every nontrivial linear combination of y, and y, belongs to 4,; and (12) now
follows from (13), as shown in the first part of the proof.

Lemma 4. Suppose that (E) has a nonoscillatory solution y e A; which is even-
tually positive and a solution w. If

(16) im sup " o
a~e Y(X)

and w is oscillatory, then y — Kw € A; and it is eventually positive for any nonnegative
constant K. Similarly, if

a7 lim inf "™ _o,

2o Y(X)

and w is oscillatory, then y—Kw € A; and it is eventually positive for any nonpositive
constant K.

If'w is eventually positive [negative] and (16) [(17)] holds then y—Kw e A; and it
is eventually positive for any constant K.
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Proof. If (16) [(17)] holds, u=y— Kw is nonoscillatory for all nonnegative [non-
positive] constant K, regardless of whether or not w is oscillatory. To see this, assume
the contrary; then there exists a sequence {£;} of real numbers, &,—co as i—>oo, such
that u(¢,)=0, i.e., w(&,)/¥(§,)=K*>0 [<0] for i>N for some N (Of course, the as-
sertion is trivial if K=0). But this contradicts (16) [(17)]. Hence, ¥ must be non-
oscillatory and eventually positive by (16) [(17)]. If w is eventually positive [negative],
then y— Kw is eventually positive for any negative [positive] constant K. Thus, u €
A, for some i by Lemma 1.

From the definition of u, we have

ux) _ g
y(x) y(x)

and by Lemma 2,

limK(JQ:{O’ Tfl<J}=1_K1im we)
v Y(X) oo, if i>) g V(X)

which is compatible with neither (16) nor (17). Consequently, i=j and y—Kw ¢ 4.

§3. Small and large solutions.

Hastings and Lazer [6] observed for (5) that every oscillatory solution w=w(t)
—0 as t—oo if p € C'[a, ), p’(t)<0 and lim,_,, p(#)= — co. This result raises the
following question: How fast does w(#)—0 as t—>oc0? In this connection we shall
generalize the notion of principal solutions introduced by Leighton and Morse [13],
to equations of higher order which may or may not be oscillatory. In some sense, a
principal solution is “smaller” than all other linearly independent solutions [4, 12].
It is this property of a principal solution that we seek to preserve to the extent pos-
sible in our generalization.

Definition. A nonoscillatory solution Y of (E) is called a small solution of (E)
if
lim sup w(x)

z=eo - Y(X)

for every solution w of (E). Introducing a companion concept, we shall say that a
nonoscillatory solution Y, of (E) is a large solution of (E) if

lim sup w(x)
T L x)

#0,

00,

for every solution w of (E).
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The terms “small” and “large” are to be interpreted in the following way: For
an arbitrary solution w, there exists positive constant K such that |w(x)| is not
bounded above by K| Y(x)| for sufficiently large x, and |w(x)|< K’ | Y,(x)|, x € [a, o),
for some positive constant K’. In Theorems 1 and 2 we shall discuss the existence of
small and large solutions of (E).

It is well-known that A4, is nonempty for (E;,) and (E,;;) [5]; let y € 4, and assume
y>0 without loss of generality. If 4, is nonempty for (E,) and (E,,), it contains two
eventually positive solutions y, and y, such that lim, ., {y,(x)/»,(x)} = oo by [10, The-
orem 5] and Lemma 3. Define

Y y for (E;) and (E;),
7y, for (E) and (E,,) if 4, is nonempty.

Theorem 1. If w is an oscillatory solution of (E), then

(18) lim sup W) o,
R £ €3]

and

(19) lim inf ¥ 0.
Z—oo 5(x)

If w is an eventually positive [negative] solution, (18) [(19)] holds.

Proof. Consider the cases (E;;) and (E;;). If (18) [(19)] does not hold, there
exists a positive [negative] constant K and a point «>a such that u=Y,—Kw>0 on
[, 00) and u(ew)=0. According to Lemma 4, u belongs to 4,; but this is incompati-
ble with Lemma 1 because u(a) =0.

For (E;) and (E,,), assume that Y>>0 on [b, oo) for some b>a, w is oscillatory
and (18) [(19)] does not hold. Let w(c)=0 for some ¢>b. Then there exists a
positive [negative] constant K such that u,=Y;— K,w>0 on [c, oo) and u,(8)=u{(8)
=0 for some >c. But this is contrary to Lemma 1 since u, € 4, by Lemma 4. If
w is eventually positive [negative] and (18) [(19)] does not hold, then

lim *® _o,
a=e Yo(X)
putting y,=w[—w], we see that
lim Y% _ oo, 0<i<< j<2.

oo Py(X)

By Lemma 3 in [9], there exists a solution v=>2_, &, ), such that v>>0 on [£, o)



Fundamental Systems 9

and v(Q)=v'({)=0 for some point { € (§, o0). This again contradicts Lemma 1 be-
cause v € 4, by Lemma 4, and completes the proof.

It was proved in [9] that no class 4, can contain three nonoscillatory solutions
Y1, Vs, and y, such that

im 2 o 1<i<j<a.
a=e P(x)
Improving this result, we shall show that if 4, contains two solutions y, and y, such
that
(20) Jim 22 _ oo
z=eo Yi(X)

and y, >y, >0 on [b, o), then (E) cannot have a solution w satisfying

(21) lim sup w(x) =oo and lim sup w(x) =0.
a=e Pi(X) Fvco Ya(X)

Similarly, if Y, is an eventually positive solution of (E;;) [(E;,)] belonging to the non-
empty class A4, ,[4 -1 ] [8], (Ey) [(E;,)] cannot have a solution w such that

(22) lim sup w(x) =00

r—co YL X

Remark 3. Conditions of the type (21) and (22) may be written in equivalent
forms using the limit inferior; this is easily seen when w is replaced by —w and the
relation lim sup, .., g(x)= —lim inf, _ , [—g(x)] is recalled.

Theorem 2. Suppose that the class A, of (E) contains two solutions y, and y, for
which (20) holds and y,>y,>0 on [b, o) for some b>a. Then for every solution w

of (E),

+0.

lim sup W) #oo or limsup w(x)
&= Ji\x Toe Ya\X

If Y, is an eventually positive solution of (Ey,) [(Ey)] belonging to A, [A -1l
then

lim sup w(x) =+ oo
s Y(x)

For the proof of Theorem 2, we require the following lemmas.

Lemma 5. Suppose that (E) has a nonoscillatory solution y which is eventually
positive and an oscillatory solution w. If
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(23) lim sup W) oo,
2= P(X)

then By Cw is an oscillatory solution for any constants B and C+0, BC<0. If, on
the other hand,

(24) fim inf Y& _ _ o,
awe J(X)

then By Cw is an oscillatory solution for any constants B and C+0, BC>0.

Proof. Choose an arbitrary nonnegative [nonpositive] constant X. Due to (23)
[(24)] there exists a sequence {&;} with &,—oco0 as i—oco such that w(£)/¥(&)=K, i=
1,2, .... If we make the particular choice K= — B/C, then By(¢,)+ Cw(§,)=0, i=
1,2, ..., and the solution By+ Cw is oscillatory with BC<0 [>0].

Lemma 6. Suppose that (E) has a solution w and two nonoscillatory solutions y,
and y, for which (20) and (21) hold and y,>y, >0 on [b, o) for some b>a. If yis an
arbitrary point on [b, ), there exists a solution v=ay,+ By,+ 1w, a, >0, y <0, such
that v>0 on [b, o) and v({)=1v'({)=0 for some { €[5, o).

Proof. Choose a constant K>0 such that u=w— Ky, <0 on [b, 7] In view of
(21), w/y, cannot be bounded above by K on [b, 0); u(§) >0 for some £>5. Leto
be the first zero of u on (3, c0). Then u<{0 on [b, ¢) and y,—K,u>0 on [b, ¢) for
any nonnegative constant K;,. On [b, c0), u=w—Ky,<w and

wE o,

M

/,=1im sup ux) <lim sup =
zoeo Yy(X) s PyX)

thus,

u(x) _

lim sup
T Yy 2(x)

(because /,>0 if u is oscillatory, and u is eventually positive and /,>>0 if u is non-
oscillatory). Therefore, y,— K,u is eventually positive for any constant K,>0 by
Lemma 4. If we choose K, >y,(&)/u(£)>0, then y,(§) —Ku(§)<<0. Consequently,
there exists a constant K,>0 such that v=y,—Ku>0 on [b, o) and v({)=0 for
some point { € [, o) (Cf. [9, Proof of Lemma 3]). Since v>0 on [b, o), v({)=0
implies v'({)=0. Putting «=KK,, =1, and y=—K,, we get v=ay,+y.+rw
with «, $>>0 and y<<0.
This lemma generalizes Lemma 3 in [9].

Proof of Theorem 2. Assume to the contrary that (21) holds. Let {3} be a
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sequence of numbers with 7,>>56 and »,—c0 as i—>co. For each i there exists a solu-
tion

vi=an+Biyetraws a8, >0, 7,<0, 05%+‘B%+T%:13

such that v,>0 on [, co0) and v,(,)=v;({,)=0 for some {,>», by Lemma 6. Ac-
cording to (20) and Lemma 3, for each i, f;=w,;y,+ ;. € 4, and f;>0 on [b, o)
since y,>y,>0 on [b, o) and «;, 5,>>0. Due to (21),

wx) _ W)
O lim swp -y =M

’

and v, € 4, for every i by Lemma 4. Let

a=lime; p=lmp, r=limy,
(take subsequences if necessary), and Y=ay,+ By,+ 1w, a, >0, y<<0. Since ¥(x)
=lim,_,., v,(x) and v,>0 on [b, o) for every i, Y >0 on [b, =0), i.e., Y is a nonoscil-
latory solution. If 8=~0, then 8y<0, By,+yw € 4, and it is eventually positive by
Lemma 4; thus Y ¢ 4,, for y, >0 on [b, oo) and «>0 (Cf. Remark 1). Next consider
the case 3=0: If w is oscillatory, ¥ would be oscillatory by Lemma 5 unless y=0;
we therefore have y=0and Y=y, € 4,. If wis nonoscillatory, ¥ would be eventually
negative by (21) unless y=0; thus, y=0 and again Y=y, € 4,. Consequently, Y e
A, in any case.
From Lemma 1 we see that

(25) Y>0, Y'>0,...,Y®>0,
on [b,, o) for some b,>>b, where

21 for (E,) and (E,,),
"Tla—1 for (By) and (E,).

The remainder of the proof is patterned after the proof used in [9, Theorem]. Since
lim,_ ., v{(b,)= Y9 (b,), there exists a number N such that i >N implies

Z—»oo

Y(b

(26) vib)> L 00) o o, 1,

and », >b,. Furthermore, v{"*" >0 on [b, o0); this follows from Lemma 1, for v, e
A, and v,>0 on [b, o0). Hence,
27 V(b)) < (z), 7 e[by, o0).

From (26) with j=v and (27), we get



12 W. J. KiM

28) v()> 1 ;(bz) 0D by, o).

Integrating (28) from b, to x € [b,, oo0) and substituting in the resulting expression (26)
with j=v—1, we obtain

> L) (o py g YD,

Repeating a similar procedure v —1 times, we arrive at

s YOB) ©-(B,) . e,
7 T +nm4m( by i+ Y

x € [b,, o0).
But this inequality cannot hold throughout the interval [b,, co); for x=¢,>7,>b,

(when i>N), the left-hand side v,({;)=0, while the right-hand side is positive by (25).
Thus (21) cannot hold, and this proves the first part of the theorem.

For the second part, 4, .[4,_ ] 1s nonempty for (E;;) [(E;))] [8]. Assume that
(22) holds and Y, >0 on [b, o) for some b>a. Then there exist a sequence {£,}, &,
—o00 as i—o0, and a solution

such that #,>0 on [b, &,) and u,(§,)=0, for each i. Let

B=limB, C=IlimC,

i—oo f—

Then B>0, C<0, B*+ C*=1, and V=BY,+ Cw>0 on [b, o). If w is oscillatory,
V is oscillatory by Lemma 5 unless C=0; we must have C=0 and Ve 4, ,[4,_,, ]
If w is nonoscillatory, then V>0 on [b, o) and (22) requires C=0. Thus, Ve
A, Ay 2] in any case. By Lemma 1,

(30) V>0, V'>0,.--,V®b>0,

on [c, o) for some ¢>b. Choose a number N such that i> N implies
U
3D ur@> >0, j=0,1, 0 n—1,

and §;>c¢. Onlc, &, wj” = —pu, >0, ie., u{" (c)<u{*(z), r € [¢, £]. When this
inequality is substituted in (31) with j=n—1, there results

(32) u%%ﬂ>3f;EL rele, &)
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Integrate (32) from c to x ¢ [c, &,] and substitute therein (31) with j=n—2, then

Ve-9(c)

69> L) o)+ L xele, &l
Repeating a similar procedure n—2 times, we get
V (n=1) (C) n-1 V " )(C) n-2 V(C)
u; >———( )i (x +o =L xele, &)
0> =1 RS TR 2 e &

This inequality, however, cannot hold at x=¢, because u,(&,)=0, while the right-
hand side is positive by (30); and the proof is complete.

§4. Fundamental systems.

Suppose that Equation (E) is oscillatory. Then there exists an empty class A4,
for some i. This is because if 4, is nonempty for all j, (E) has a fundamental system
consisting of n nonoscillatory solutions of which every nontrivial linear combination
is nonoscﬂlatory [9, 10], that is, (E) is nonoscﬂlatory Let 4;,A4,, -+, 4;,_, /<l
<...<}j,_;, be nonempty classes and let 4,, - - -, 4, , j,<--.<j,, be empty clas-
ses, where m=[(n—1)/2] for (E,) and (E,,), and m=[n/2] for (E;;) and (E;;;}). In view
of [10, Theorem 5], we may choose a set N of eventually positive solutions consisting
of

Voiots Vorso € Aj,, i=0,1,---,5 for (E)),

€Ay Vop Vesi1 €A, i=1,2,...,5—1, for (E,),

Vi€Ay Vot Vess1€A4;, i=1,2,---,5—2, and y,,_,eA4,,, for (E;»),
Voirts Vasaz € Ajp, 1=0,1,---,5—2, and y,, ;€ A_ype for (E,,),

for which (12) of Lemma 3 holds.

Extend N to a fundamental system F by adjoin-

ing solutions w,, w, 4, -+ -, W,
F:{yl, Voo = v s Vaots War = *» Wn}’
where
25s+1 for (E),
q=12s for (E;) and (E,,),
2s—1 for (E;;).

We may assume that w,, - - -

, w,, are oscillatory solutions (Cf. [10]):

For definiteness,

consider (E,) If w, is nonoscillatory for some /, g<{/<n, then w, € 4;, for some k, 0

<k<s—1, and w,=w,— > 3*1* ¢,y, must be oscillatory for some constants ¢, ¢, -

..
>

Cow.o- We may replace w, € F by W, to obtain a new fundamental system. Evidently,
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this procedure can be repeated until w,, - - -, w, are all oscillatory.

Lemma 7. Suppose that A;, is nonempty, A, is empty and j,<j,. Ify, e A 5N
F, then there exists an oscillatory solution w, € F such that

(33) fim inf 2o _fim sup We®)
T yr(x) T yr(x)
Proof. This lemma will be proved by showing that unless (33) holds we can
construct a solution ¢, of (E) which violates Lemma 1.
Suppose that (33) does not hold; then

(34) im "™ —o, =g g+1,..-.n,
a—e Y,(X)

since w, is oscillatory while y, is eventually positive. For any given « ¢ [a, o0), we
assert that there exists a nontrivial solution of the form

(35 u(x)zizui ¢, yi(x)—{—iq cwi(x), ¢, constant,
such that
(36) wa)=u'(a)="- - =u"(a)=0,
where
B {2[ for (E,) and (E,,),
21—1 for (E;) and (E,;),

and

2j, for (Ey and (E,,),

“ {2jz —1 for (E;) and (E;).
Note that > 7, ¢;y,(x) is a linear combination of the solutions in FN(4,,U--- U
A;,_). The assertion will follow if we show that there are at least 42 solutions in
the linear combination (35). Evidently, there are v4-n—(g—1) solutions in it.
Among the j, 41 classes 4,, 4,, - - -, 4;,, there are /41 nonempty classes 4,, 4,
-++, A;, and at most k—s empty classes 4,, - - -, 4;,_, since j,<j, and A4,, is empty.

Hence, j,+-1<<I/4+14+k—s, and

(2),4+2<L21—2s+2k+2<2]—2s+n for (E)
2j,+1<2]-254+-2k4+-1<2]—25+n for (E,)
T )2j,4 1< 20— 254 2k+1<2—2s4+n+1 for (E,)
2j,+2<2]—254+2k+2<2]—-2s+n41 for (E,)

fa‘+2 :U+n—Q+1,
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ie., p+2<v+n—q-+1 for (E), proving the existence of u satisfying (35) and (36).
The term 2., ¢, in (35) is a nonoscillatory solution belonging to 4, for some
0<j, by Remark 1. Therefore,

e
7) ey e R

by Lemma 2 and (34). In fact, it will be shown that

(38) im Y7 o im0, 1,....n

e YPR)
If u is oscillatory, the limits in (38) must exist; for if the limit does not exist for some
J» 0< j<n, there exists a number K such that y{’ — Ku'” has infinitely many zeros on
[a, o). But this is impossible because y, — Ku € 4;, by (37) and Lemma 4, and y¢’
— Ku® is eventually of constant sign by Lemma 1. Hence the limits exist, and they
must be zero. . On the other hand, if  is nonoscillatory, u € 4, for some 7, 0<z <,
by (37) and Lemma 2. Therefore, (38) follows from Lemma 2 if < j, and from
Lemma 3 if =,
We are ready to construct the function ¢,. Noting that y» >0, i=0,1, - - -, g,
on [, o) for some « since y, € 4,,N F, we deduce from (38) that y®® — Cu®, i=0, 1,
- - -, u, are eventually positive for any constant C. Furthermore, y®(a) — Cu®(a) =
Y¥P(a)>0,i=0,1, - - -, u, due to (36). Therefore, we may choose a constant C, such
that ¢, =y, — C,u has the following properties:

¢’E"Z)(x)207 X € [aa OO), i:07 ]-9 Y] /’t’ SZS;.‘:)(C):O,

for some £, 0<<k<y, and some { € («, o).

If e <<p, ¢ (£)=0 implies ¢&*P(£)=0 since ¢* >0 on [, o0); continuing this
argument we obtain successively ¢¢*?()=- .- =¢**9()=0. Consequently, ¢,>0
on [a, o0) and ¢#*({)=0. But this is incompatible with Lemma 1 because ¢, € 4;,
as can be easily seen: If u is oscillatory, then ¢, € 4;, by (37) and Lemma 4. If u

€ A;,, then ¢, € 4;, by (37) and Lemma 3. Finally, if u € 4, for some <, then ¢,
e A;, by Remark 1. This completes the proof.
Under the conditions of Lemma 7, choose a constant K such that

lim inf M<K< lim sup Wo(X) ,
Z—00 yr(X) L= oo Ve X)

then w, — Ky, is an oscillatory solution.

Suppose that a class 4, of (E) is empty. If the family {4,, 4,, - - -, 4} contains
¢ empty classes and 1+ 1 —¢ nonempty classes, there are at least 2¢ oscillatory solu-
tions w, in the fundamental system F and 2(2+1—¢)[2(21+ 1 —¢)—1] oscillatory solu-
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tions of the form w,—K,y,, where K, is a constant and w,, y, e F, for (E;) and (E,,)
[(E;) and (Ej;)].
We thus have the following result.

Theorem 3. If A, is empty, (E)) and (E,,) have at least 22+ 2 linearly independent
oscillatory solutions, and (E;;) and (E.;)) have at least 24+ 1 linearly independent oscil-
latory solutions.

Equation (E) is k—(n—k) disfocal if and only if its adjoint equation (E*) is
(n—k)—k disfocal [18]. Moreover, A ,; is nonempty if and only if (E) is even-
tually k—(n—k) disfocal on [a, oo0), provided (—1)"~*p(x)<<0 [2, 10]. Therefore,
Ay j2p of (E) is empty if and only if A4,y of (E*) is empty, provided (—1)"*p(x)
<0, x € [a, oo0); more specifically, 4, is empty for (E) if and only if 4,_; is empty for
(E*), where 7 is equal to (n—2)/2 for (Ef), (n—1)/2 for (E;}) and (Ej), and n/2 for
(B

We can now easily prove the following statements for the self-adjoint equations
(E) and (E;y).

Theorem 4. If
(39) yem +py=0, p>0, m>2,

is oscillatory onm [a, o), it has at least m+2 or m~+1 linearly independent oscillatory
solutions according as m is even or odd.

Theorem 5. If
y(Zm) +py:03 p<0: m22,

is oscillatory on [a, o0), it has at least m-+1 or m+2 linearly independent oscillatory
solutions according as m is even or odd.

Since (39) which is (E,) is oscillatory, 4, is empty for some j, 0<j<m—1, and
therefore 4,,_,_, is also empty. This means that there is an empty class 4, with &
>m/2 [(m—1)/2] if m is even [odd]. For example, take k=max (j, m—1—j). By
Theorem 3, (E,) has at least 2k+2 linearly independent oscillatory solutions, where
2k+2>m+2 if mis even and 2k+2>m-1 if m is odd. This proves Theorem 4.

Theorem 5 may be proved in a similar manner.
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