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§1. Introduction and preliminaries

This article can be considered as an extension of Leung’s work in [7]. The re-
action-diffusion equation

o= o duy+wla-+fi(u,, u,)]

1.1)
autz = 0'24”2 + uz[b +f;(u1’ uz)]

is studied, where 4=>7_,*/0x}, a, b, 0,, 6, are positive constants. f;: R*~—>R have
Holder continuous partial derivatives up to second order in compact sets, i=1, 2.
Further, we assume that

f40,0)=0, i=1,2;

1.2) ‘ —%<0, each i,j=1 or 2

Uu;

for (u;, u,) in the first open quadrant; and (for Theorem 2.1 only) there exists a posi-
tive constant C, such that

(1.3 b+£,0, C)<0.

The system (1.1) together with assumptions (1.2) is a model for biological competing
species interactions, where u,(x, t), i=1, 2 represent the concentration of two species
at position x=(x,, - - -, x,) and time ¢t >0. g, ¢, are diffusion rates; a, b are growth
rates, and f;, f, describe interactions as in [7].

Many studies related to (1.1) can be found in [1] to [3], [6] to [8], [12] and
numerous others. Careful study of Dirichlet problems for (1.1) is made in [7].
However, the homogeneous condition for both species:
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(1.4) u,(x,t)=0,i=1,2 fort>0, x e 62,

where 02 is the boundary of a bounded domain 2, had not been treated satisfactorily
in [7]. (Except for Theorem 3.2, when both a and b are small relative to g,, o, re-
spectively). When one or both a and b are not small, the existence of nontrivial
equilibrium states had been observed in Theorem 3.3 and remark (ii) in [7). However,
their stabilities had not been studied. The construction for the upper and lower solu-
tions in [7] simply do not carry over easily to the case when both u; vanish on the
boundary and one or both a, b are not small. In order to construct the upper and
lower solutions for stability analysis in these situations, more elaborate procedures
had to be made in order to deal with condition (1.4). This article carefully studies
this stability problem, which is of practical as well as theoretical interest.

Let 2, > 0 be the principal eigenvalue for the Dirichlet problem du-+ Au=0 in
2,u=0o0n 2. Vaguely speaking, this article proves that when a<<g,4,, b>a.4,, u,
tends to zero and u, has a stable positive equilibrium in the interior. When a>¢,4,,
and b>a,4,, there exists a stable equilibrium with both u,, u, positive in the interior,
provided suitable conditions are satisfied. One can interpret that stable positive
equilibrium bifurcates from O when the growth rates a, b increase, or diffusion rates
g,, g, decrease. Of course, the size of the domain, which determines 2,, is also an
important parameter in the bifurcation process.

We consider equation (1.1) for x=(x,, - - -, x,,) € &9, where & is a bounded open
connected subset of R”, n>>1 with boundary 2. Let H?**!(Z) denote the Banach
space of all real-valued functions u continuous on 2 with all first and second deriva-
tives also continuous in 2, with finite value for the norm

lu|¢*P= > sup|Du|+ > sup |[D“u](x)——[D“u](y)|‘
o<Tal<z 9 la]=2 Ix_y]l

We assume that 62 € H**'. For any T>0, let 2,=2X(0,T). H**L'*V¥(Z,)
denotes the Banach space of all real-valued functions # having all derivatives of the
form D*Dju with 2r+|«|<2 continuous on 2, and having finite norm |u[3}?, as in-
dicated in [7]. For more details of these symbols and norms, see [7] or [12]. Finally,
let v denote the outward unit normal at the boundary 62 of 2.

§ 2. Stability for equilibria with homogeneous Dirichlet data

The main results of this article are Theorems 2.1 and 2.2. The following lemma
had been proved in Section 2 of [7], and will be used later. We state it here for
convenience:

Lemma 2.1. Let v,(x,t), wi(x, 1), (x,t) e I X|[t), 0), i=1,2 be functions in
H L1 G X [t,, T, each T > t,, satisfying the inequalities:
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Ogvigwia [= 1: 27

o,

g, dv,+vla+fi(vy, wy)] — ot >0
Q.1 o dw,+wila+fi(w, v)] — a;: L. <0
0,40, + Vb + (w5, V)] — "”a‘f >0
ow,
GZAWZ + W2[b +fé(v1: Wz)] - o <0.

Let (u/(x, 1), uy(x, 1)) with u, e H*“'*Y*(G X [t,, T]), each T>t,, i=1,2, be a
solution of the reaction-diffusion equations (1.1) with initial-boundary conditions such
that

Ui X, to)gui(xa to)gwi(xa to): X e 99 i= 19 27

2.2
@2 v (x, ) <uy(x, ) <wi(x, 1), (x,1) € 69 X[t,, ), i=1, 2.

Then (u,(x, t), ux, t)) will satisfy

(2.3) vi(x, D<Zu(x, )<wix, 1), (x,1) € T X[t,, o).

We shall refer to v,, v, as lower solutions and w,, w, as upper solutions of the
respective equations in (1.1) and initial boundary conditions associated with (2.2).

When a<¢,4, and b>¢,4,, we now prove that under the homogeneous Dirichlet
condition (1.4), there is a stable solution of (1.1) with #,=0 and u,(x) >0 for x ¢ 2.

Theorem 2.1. Suppose a<a,2,, b> 0,4;, and uf(x) e H**'(9) is a solution of
o, du+ulb+£,(0,u)]=0 in 2, u=0 on 62,

with uf(x)>0 for xe @. Let (u(x,t), ux, 1)) with u, e H**»'*v¥(9 %[0, T), each
T>0,i=1,2, be a solution of the reaction-diffusion equations (1.1) with initial-boundary
conditions

ui(xs 0):01(9‘)209 X € @;

u,(x, 1)=0, X €09, t >0,
i=1,2, where 0, H**'(9), i=1,2 satisfy the compatibility conditions of order 1 at
t=0 as described in [5], p. 319. Then (u,(x, t), u(x, t))—(0, uf(x)), as t— oo, uniformly

for x € 9, provided that 0,, 8, and all their first partial derivatives are close enough to
0, u respectively and their corresponding first partial derivatives.

Proof. The fact that u¥(x) exists can be readily seen as follows. Let w(x) be
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the principal eigenfunction for the eigenvalue problem du+Au=0 in &, u=0 on 69,
with =24, as the principal eigenvalue (thus w(x)>0 in 92). For >0 sufficiently
small, we have ¢,4(6w) -+ (6w)[b+15(0, 6w)]l=dw[ —a,2,+b+1,(0, 6w)]>0. While for
K >0 sufficiently large (1.3) implies that ¢,4K+ K[b+£,(0, K)]<<0. Thus by [11] or
[2], 5 (x) exists in H2*Y(D) with dw(x)<uFf(x)< K, xe 9. We now proceed to apply
Lemma 2.1 by constructing appropriate v, w,;, i=1,2. Let v,(x, 1)=0 for (x,1) e @
X [0, e0). If 6,(x)=0, define w,(x, 1)=0; otherwise, define w,(x, ) as the solution of
the initial boundary value problem: g,4dw,+ w,[a+fi(w,, 0)] —ow,/0t=0 for (x,t) e
X (0, 00), wi(x, 0)=0,(x) for xe D, w(x,t)=0 for (x,t) e 62 X[0, o). Exactly as
in Theorem 3.1 in [7], we have 0<<w,(x, t) <K e~ for (x, t) € 2 X][0, o), and some
positive constants K, «;.

We let v,(x, t)=[1 —k(x)e” "]Juf(x), (x,1) € Z X][0, o), where k(x)= —euj(x)+C,
0<C<1, and /, £ are positive small constants to be chosen. We have

v,
ot

= 0 fi(Wss V) — 0, 0)+£10, v) — 10, u)]
@4 —e-tau(dius +2 33 kit o ki |

0.4V, +v,[b+fo(w,, v,)] —

2u;‘<[—qu““”—|—(l —C) min k(x)e~uk

1-cy<s<i

Lﬁ(o’ su)
o,

——e"”(oZAk—kkl)] 20,071 ST Ky uf,
i=1

Here —g=min, .z min,,,.x (0.f;/0u,)(s,, S;u5(x)) <0, and ¢ is small enough such that
1-C<s2k1

k(x)>0in 2. Choose I=c¢a,, thus |ufe '(o,dk + kl)|=|ufe "( —oeduf 4 eo(—euf +
O))|<Leoufe R, for some constant R>0 independent of ¢, for all (x, ) € Z X [0, o0).
In a neighborhood & of 62 in 2, we have —2g,e7 > ", k,u¥, —eoufe "R=
20,67 e >0 ufl —eaufe " R>g,ce” " P for some positive constant P independent of ¢
(because u5f(x) > dw(x), thus > 7, uf’ + 0 on §2). Further, the first term —ujgKe ¥
in the last line of (2.4) will in absolute value <(1/2)g,ce~*P, provided that ¢ is small
enough so that /=cg,<a,, and ¢ is large enough; and the second term in the same
line is always >0 for (x,t) e 2 X]0, o). Consequently, ¢,4v,+ v,[b-+f,(w,, V)] —
ov,/ot >0 for x e &, t large enough. In the complement of & in 9, the second term
in the last line of (2.4) is bounded below by Qe~** for some positive constant Q which
can remain unchanged if ¢>0 is reduced. The remaining terms will have absolute
value <(Q/2)e* for small enough ¢>0 and ¢ large enough, as before. Therefore the
expression in (2.4) is >0, for x e 2\ &, t large enough; and v,(x, t) is a lower solu-
tion for ¢ >T, for some large T.

Next, we let w,(x, 1)=[14k(x)e W (x), (x,1) € T X[0, oo), where k(x)=C —
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2u(x), and C, I, & are positive constants to be chosen (¢ at least small enough so that
k(x)>0in ). We have

ow,
ot

o 2A w,+ Wz[b +ﬂ(05 Wz)] -

= W0, W) i, )+ e on(auz +20, 3% it + i |

2.5)
gu;k[ min |92 (0, 5)|(— e~ up) + e~ (o, dK + zéi)]
0<s<1+€ | OU,
+2g,e7 % i} lég“u;';z
=1

Choose [=2g,, thus |ufe "o,k + k)| <éouie R, for some R>0 independent of
g, for all (x,¢) € 2 X[0, o0). In a neighborhood Z of 62 in Z, we have

~ n A Py A~ A n Py o) ry o)
20,678 3k uk, +Eoufe " R= — 20,671 3 uFl +EoquFe "R —ayte ' P <O,
i=1 i=1

for some positive constant P independent of &. Consequently a,4w, + w,[b+£,(0, w,)]
—ow,/0t <0 for x e &, t>0. In the complement of . in @, the first term in the
last line of (2.5) is bounded above by —Qe~’* for some positive constant O, and the
remaining terms will have absolute value < (Q/2)e-% for small enough & The ex-
pression in (2.5) is therefore <0 for x € 2\ .F, t>>0. wyx, t) is an upper solution.

Since u¥(x)>dw(x), 6>0, and v € H**Y(9), the outward unit normal derivative
of u¥ is bounded above by a negative constant. Thus, by choosing §,(x), 6,(x) and
their first partial derivative to be sufficiently close to that of 0 and #(x) and their first
partial derivatives respectively, we have v,(x, T) <ufx, T)<wyx,T) for x e 9, i=1, 2.
By Lemma 2.1, we conclude that v,(x, t) <ux, ) <wyx, t), for (x,1) e I X[T, o),
i=1,2. By the choice of v,, w,, we see that (u,(x, 7), u,(x, t))—(0, uf(x)) as t—oo,
uniformly for x ¢ 2. This completes the proof.

The more interesting case occurs when both a>¢ 4, and b>0,4,. One looks
for the possibility of an equilibrium state for the homogeneous Dirichlet problem with
both species u, having positive concentrations in the interior. One also looks for
conditions with which these positive solutions become asymptotically stable as #— oo.

Theorem 2.2. Suppose a>a,2,, b>a.4,, let (W (x), u,(x)), with u,(x) e H** (D),
i=1, 2 be a solution of the homogeneous Dirichlet problem (1.1), (1.2) and (1.4). Sup-
pose that a,(x)>0 in 2, 0u,/ov<<0 on 69, i=1,2, and

(2.6) sup 7,(x)  (@f;/ou)(@(x), #,(x)) i < inf| #09) . @ff0u)@ (), m() |
veo | @ (x) (0f;/0u)@(x), #(x)) | zeo| uy(x) (0fi/0u;)(@(x), #(x))

for each 1<i, j <2, i#j, then (a,(x), #,(x)) is asymptotically stable. (Here, asymptotic
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stability is interpreted to mean that for any solution (u(x,?), u,(x,t)) with u, e
H* 51419 ¢ [0, T)), each T>0, i=1, 2, of the reaction-diffusion equations (1.1) with
boundary conditions u,(x, t)=0, and initial conditions u,(x, 0) whose values and first
partial derivatives are close enough to that of #,(x) respectively for all x e 2, i=1,2,
one has u,(x, t)—u,(x) uniformly as #— +4-co0, i=1,2.) (Remark: The existence of a
solution (#,(x), #,(x)) with all the properties described will be shown later in an
example.)

Proof: Assumption (2.6) implies that there are p,, p, close enough to 1 with
0. <1< p, such that for each x € 9,

(2.7) 0< ,(x) maxX, <s,c<ps l(afj/auz-)(Sﬂl(x), Tl (X)) |
u,(x) min, ., |(0f;/0u)(su,(x), 7(x))|
inf %) [ min,, .o, [(0i/0u)(sT(X), rit (N |
<5 a].(x){ MAX, -, |(0f:f0,)(7,(X), 7)) j=a<

for each 1<<i, j<2, i+~j, where ¢, is a small positive number. We will construct ap-
propriate lower and upper solutions v;, w;, and apply Lemma 2.1. Let

G(x)=1u,(x) min

p1=58<t<py

ﬁf—z(sal(x), rﬂz(x))‘ . (ﬁl(x) max
ou,

p1<s<1

2L (o0, 1))
ou,

for x ¢ 2; and let @ be a number, 1<<a<p, such that (1—p,)>(e—1)inf, ., G(x).
Define wy(x, t) =p(x, t)a,(x), p(x, t) =1+ (e — 1 —e,ii,(x))e~ ™, where ¢, and m are posi-
tive constants to be determined later (one condition on ¢, is e, max, .z #,(x)<<a—1).
On the other hand, define v,(x, 1)=q(x, )i, (x), g(x,1)=1—(1—p(x))e” ™, where
B(x)=1—(a—1)inf, ., G(x)+ e —1)+e(c—1)it,(x), &, and ¢, are small positive
constants satisfying ¢, +¢, max, .3 #;(x)<e, <inf,., G(x). (Observe that p,<p(x)<1).
We have

o dw,[b+f(vy, wz)] - oW,

ot
:p(X, t)az[ﬂ(vla Wz) _fz(vn l_‘z) +f;(vla ﬁz) _f;(ﬁla ﬁz)]
(2.8) +e ™ [m(oz — 1 —e,1,(X))t, — 11,046,408, — 20,8, Zi; z‘zgm]

< p(r, D] max {22 v, e (e — Die —estze ™)

1<r<p2 auz

— min { gfz (572, az)} (1 —Ppme ™ —eya— lme-m}] e -]

p1<s<1 ul

where [. - -] represents the terms inside the brackets immediately before the inequality
sign <, and f=1—(a—1)inf,., G(x)+e(a—1). Sete,=m=z¢,; thus
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1 p(x, t)ﬁz[ max { aafz (vy, rﬁz)}( —e, ize™ ™)

1<7r<p,

+ min { % (sa,, ﬁz)}s3(oz—1)a§e‘”“]

m<s<i\ Ju,

+e” ™ ma — 1 —e,i,(X))ity — U,0.6,41,] | <e,e” ™ (x)K,

for all x € 2, where K| is some positive constant. In a neighborhood 2 of §Z in 2,
we have —2g.6, > 7, 43, 6" ™ +ee ™ u,(x)K, <0, for all >0, since #,=0 on /2.
Further,

max { gf Wi(x, 1), raz(x»}(a—l)az(x)

— min { ZZ{ (51,9, 560D | (1 — By ()
< max | ZL{ (51,03), 700 | (— D)

+ max Zf (s7(), az(x»} (@— 1)) —ela— D))
—— min g,{ (s72,(x), mz(x))| (a— D))

gfz (si1,(x), < (x) ](«— 1)
U,

+i,(x) min
P1<S<Tt<py

—é&(a— D, (x) max
p1<s<l

L (), nz(x))’ <o,
ou,

for all xe 9, t>>0. Consequently, we have g,4w,+ w,[b+f(v,, w,)]—aw,/dt <0, for
xef,t>0. Forxe2\Q, two terms in (2.8) satisfy the inequality:

p(x, ), [max { gfz (V1 Tﬁz)}(oz— Dize™ ™

1<t<py U,

2L (s, 1) (1 — (e < —eiKe ™,
ou

1

— min {
p1<s<1
for some K,>0, all #>>0; and for such (x, ¢), the sum of all the other remaining terms
after the inequality sign <in (2.8) can be reduced to less than (1/2)e,K,e~™ in absolute
value, by choosing ¢,=m=¢, sufficiently small. We therefore have ¢,4w,-+w,[b+
S, wp)l—ow,fot < 0, for (x, t) € I X [0, 00), and wy(x, t) is an upper solution.
For v,, we have the inequality:
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0.0+ vila-+ v, )] =20
= Q(X, t)ﬂl[fl(vl’ Wz) —.f;(vv ﬁz) +.f1(v19 52) _ﬁ(ﬂls L_IZ)]
(2.9) +e” mt[— m(1— [B(X))L_II + 0,6 — 1A, +20,e(a—1) ZZ: n%rz]

>4, 0m, | min { gfl (01 8 {lr— Ditge ™™ —e ™™
U,

1<e<p,

— max {95 on, )} (1= Pe—ea—Date | +e -]

p1<s<L1

where [- - -] represents the terms inside the brackets immediately before the inequality
sign > . Due to the choice ¢,=m=¢, made previously, one has the inequality

lq(x, 1)u, [min { gi‘ (v, rﬂZ)} — e dize™ ™)

1<7<p,

— max { 0/, (s7,, 172)}( —el@— Diite _m)]

p1<s<1 s

e ™[— m(l - IB(x))al + alo.leii(a_ I)Aﬁl] <ee” mtﬁl(x)K;

for all x € 7, where K, is some positive constant. In a neighborhood @ of 62 in 7,
we have 206,(a—1) D7, @5, e ™ —ee” ™ u(x)K, >0, for all >0, since #,=0 on 2.
Further,

min { gﬁ (0, Tﬂz)}(a—l)ﬁz— max { glfz (7, ﬂz)}(l— b,

1<r<p, 2 p1<8<1
af; o/
ou, ou

= — max
P1<8,7<py

. (1 "‘é)al

(¢— 1)it,+ min
p1<8<L1

(Sﬂla Tﬂz) (Sals 172)

> —(a—1)g, min | 9t (sa, m) (inf G(x)—el)
p1<s<1| ou zED
+ min |97 (sa, m,) -(1—p)a,
pi<s<1| Oy
— —&,(x) min fl O sz, @) - (e —e)@—1)>0,
p1<sL1

for all x € @, t >0. The second > sign in the last sentence is due to hypothesis (2.6).
Consequently, we have ¢,4v, + v,[a+f,(v,, w,)]—6v,/0t >0, for x e O, t>0. For x ¢
2\ 0, two terms in (2.9) satisfy the inequality:

q(x, D), [min { gfl (v fﬁz)}°(a~l)a2e‘mt

1<z<p, Uy
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— max {20 (o, )} (1— e | > @ —ekie
m=s<1 U oy,

for some K, >0, all £ >0; and for such (x, ¢), the sum of all the other remaining terms
after the inequality sign > in (2.9) can be reduced to less than (1/2)(s;, —¢&)K,e™™ in
absolute value, by reducing the size of ¢,=m=¢,. We therefore have ¢,4v, 4 v,Ja+
(v, wp)]—0ov,/ot >0, for (x, t) € Z X[0, o0), and v,(x, ¢) is a lower solution.

Since all the first partial derivatives of f; and f, have the same sign, we can in-
terchange the role of i, f; with &, f, respectively and construct lower and upper solu-
tions v,, w, in exactly the same manner as before. Here v,, w, are of the form v,=
G(x, )a,(x), w,=p(x, t)u,(x) with p(x,t), §(x,t) analogous to p(x,t), q(x,t) respec-
tively. (p(x, t)—1%, §(x, t)—1-, as t—o0, all x € D).

Finally, we have v,(x, t)—i,(x) from below, and w,(x, #)—i,(x) from above, as
t— oo, uniformly for x € 9, i=1,2. When the initial conditions u,(x, 0) and their
partial derivatives are close to that of #,(x) in the sense described in the theorem, we
have v,(x, 0)<u,(x,0)<w,(x,0), xe€ 2. (Note that we have 0u,/o0v<<0 on D).
Applying Lemma 2.1, we clearly have (#,(x), #,(x)) as an asymptotically stable solution.

As an example for a solution of (1.1) satisfying all the properties described in
Theorem 2.2, we consider

450u;"(x) 4 u,[S00 — 494u, — u,] =0 d

(2.10) forxe (0,n), "= o
450u; (x) + u,[ 500 — u, — 494u,] =0 X

with boundary condition u,(0)=u,(x)=0 for i=1,2. The function ¢,(x)=.05sin x
satisfies 450¢; -+ ¢,[500-494¢, — il,] = ¢,[50-24.7 sin x — ,] >0, for each 0<{#, <2, x €
[0, z]. On the other hand ¢,(x)=2 satisfies 450¢; + $,[S00-494¢, — ii,] = 2[ — 488 — ii,]
<0, for each 0<#,<2. Similarly, letting +r,(x)=.05sin x and 4r,(x)=2 and sub-
stituting into the second equation for u,, we conclude by means of [11] that thereis a
solution (#,(x), i1,(x)) to the homogeneous Dirichlet problem for (2.10) in H**¥([0, x]),
with .05 sin x<#@1,(x)<2, x € [0, z], i=1,2. Clearly, the conditions 9z,/dv<<0 at x=
0, = and #,(x)>0 in (0, ) are satisfied. To check the inequality in (2.6), we have to
estimate the size of the first derivatives. First, (2.10) implies that |@;'(x)|<2/450[500
+2+4-494(2)] <7, hence

|#(0)] <2 max |7(0)]- L + L max |#/()|r<2@)L + L)< 13
0<z<n T 2 o<z<n T 2

for x e [0,1] (see [4], p. 139 for estimate). By symmetry of (2.10), we also have
|7;(x)|<13 for x € [0, 1]. Since |#,|<2, we have

-, { () }> min {.05sinx}: .05 si112 @/13) < 40375:

ze@n L #(x) ) o<z<ams 13x
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on the other hand
sup { () }g max {—ﬁ«} =¥,—2—<267.
e o, LX) o<z<2/13 L .05 sin x .05 sin (2/13)

For (2.10), we identify f(u,, u,) = 500-494u, — u, and f(u,, ;) =500 —u, —494u,. We
have 8 f;/ou, = — 1, df,/ou,= — 494, 0 f,/ou,= — 494, 4 f,/ou,= —1; and clearly the in-
equality (2.6) is satisfied for i=1, j=2 for this example (&,(x), #,(x)). By symmetry,
(2.6) is also true for i=2, j=1. Consequently, we can apply Theorem 2.2 to assert
the asymptotic stability of this solution.
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